平行线的判定教案设计

合集下载

平行线的判定数学教案

平行线的判定数学教案

平行线的判定数学教案一、教学目标:1. 让学生理解平行线的概念,掌握平行线的判定方法。

2. 培养学生运用平行线的知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。

三、教学重点与难点:1. 教学重点:平行线的定义,平行线的判定方法。

2. 教学难点:平行线的判定方法的运用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究平行线的判定方法。

2. 利用多媒体课件,直观展示平行线的判定过程。

3. 进行小组讨论,培养学生团队合作精神。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考平行线的概念。

2. 讲解平行线的定义,让学生理解平行线的特点。

3. 讲解平行线的判定方法,并结合实例进行演示。

4. 进行小组讨论,让学生运用平行线的判定方法解决实际问题。

六、教学评价:1. 通过课堂提问,检查学生对平行线概念的理解程度。

2. 利用课后作业,评估学生对平行线判定方法的掌握情况。

3. 组织小组讨论,评估学生在实际问题中运用平行线知识的能力。

七、课后作业:1. 请学生绘制一组平行线,并注明判定方法。

2. 选择一道与平行线相关的实际问题,运用所学知识进行解答。

八、教学拓展:1. 探讨平行线的性质,如:平行线之间的距离相等。

2. 介绍平行线的应用领域,如:工程、设计、地理等。

九、教学资源:1. 多媒体课件:用于展示平行线的判定过程。

2. 练习题库:用于巩固学生对平行线知识的掌握。

3. 小组讨论工具:如白板、彩笔等。

十、教学反思:1. 回顾本节课的教学内容,评估学生对新知识的掌握情况。

2. 分析教学方法的有效性,如:问题驱动法、多媒体展示等。

3. 针对学生的反馈,调整后续教学计划,提高教学效果。

重点和难点解析六、教学评价:重点关注学生对平行线概念的理解程度和判定方法的掌握情况。

平行线的判定教案市公开课一等奖教案省赛课金奖教案

平行线的判定教案市公开课一等奖教案省赛课金奖教案

平行线的判定教案一、教学目标1. 知识目标:掌握平行线的判定方法,包括同位角相等、内错角互补、对顶角相等以及平行线的特性,为解决与平行线相关的几何问题打下基础。

2. 技能目标:培养学生观察、分析和推理的能力,提升解决几何问题的能力。

3. 情感目标:通过合作学习和解决实际问题的过程,培养学生的团队合作精神,增强自信心。

二、教学重点和难点1. 教学重点:学习平行线判定的方法和技巧,掌握平行线的基本特性。

2. 教学难点:理解平行线的概念及其判定方法,运用所学知识解决实际问题。

三、教学准备黑板、白板、书籍、平行尺、草纸、教学案例等。

四、教学过程Step 1 引入新知1. 引导学生思考:你们对“平行线”有什么了解?该如何判定两条线是否平行?2. 出示两条线段 AB 和 CD,让学生观察并比较。

引导学生表示平行的概念。

3. 引导学生讨论并总结两条线段平行的条件,如同位角相等、内错角互补、对顶角相等等。

Step 2 学习平行线判定方法1. 同位角相等:绘制两条平行线,引导学生观察同位角的性质和关系,并通过示例教案演示同位角相等的判定方法。

2. 内错角互补:绘制两条交叉的线段,引导学生观察内错角的性质和关系,并通过示例教案演示内错角互补的判定方法。

3. 对顶角相等:绘制两条平行线与第三条交叉线,引导学生观察对顶角的性质和关系,并通过示例教案演示对顶角相等的判定方法。

4. 引导学生总结并记忆平行线的判定方法,培养学生观察、分析和推理的能力。

Step 3 拓展知识与应用1. 引导学生运用所学知识解决实际问题。

例如:已知直线 AB 和直线 CD,点 P 为两直线之间的一个点,如何判定直线 PA 和直线 PB 是否平行?2. 给学生分组讨论并解决教师提供的实际问题,加深对平行线判定方法的理解和掌握。

Step 4 总结归纳1. 通过学生的合作探究和问题解决,教师对平行线的判定方法进行总结,并与学生一起归纳出判定平行线的要点和方法。

七年级数学下册《平行线的判定》教案、教学设计

七年级数学下册《平行线的判定》教案、教学设计
(二)过程与方法
1.提高观察能力,学会从几何图形中发现规律,总结性质。
2.培养逻辑思维能力,学会运用已知条件推导出结论。
3.学会运用画图、列表等方法整理、分析问题,提高解决问题的策略。
4.学会与同学合作交流,分享学习心得,提高合作能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,对待数学问题要有耐心和毅力。
1.必做题:
a.请从生活中找到三个平行线的例子,并简要说明其应用。
b.根ቤተ መጻሕፍቲ ባይዱ平行线的判定方法,完成以下练习题:
-判断以下直线是否平行,并说明理由:
① a ∥ b, b ∥ c,求证:a ∥ c。
②在ΔABC中,AB ∥ CD,求证:∠BAC = ∠DCE。
-填空题:
①如果两条直线上的同位角相等,那么这两条直线()。
3.作业完成后,请认真检查,确保答案正确,提高作业质量。
4.作业提交时间:下节课前。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握平行线的定义及判定方法,包括同位角相等、内错角相等、同旁内角互补。
2.能够运用直尺、圆规等工具准确画出平行线。
3.熟练运用平行线的性质解决实际问题。
(二)教学难点
1.对平行线判定方法的灵活运用,尤其是同位角、内错角、同旁内角在实际问题中的应用。
2.画平行线时,学生对工具的使用不够熟练,需要加强实践操作。
1.设计具有层次性的练习题,让学生运用平行线的判定方法解题。
2.练习题包括:
a.判断题:判断哪些直线是平行线,并说明理由。
b.填空题:补充完整平行线的判定条件。
c.应用题:运用平行线性质解决实际问题。
3.学生独立完成练习题,教师巡回指导,解答学生疑问。

数学教案-平行线的判定

数学教案-平行线的判定

数学教案-平行线的判定一、教学目标1.知识目标:掌握平行线的概念和判定方法。

2.能力目标:能够通过定理和性质判定两条直线是否平行。

3.情感目标:培养学生的逻辑思维能力和解决问题的能力。

二、教学重点与难点1.教学重点:平行线的判定方法。

2.教学难点:通过性质和定理判定两条直线是否平行的方法。

三、教学准备1.教材:数学教科书、教学PPT。

2.工具:黑板、彩色粉笔、直尺。

四、教学过程步骤一:导入新知(5分钟)1.教师提出问题:“什么是平行线?如何判断两条直线是否平行?”2.通过让学生讨论来回答这个问题,并引导学生了解平行线的概念。

步骤二:引入判定平行线的定理和性质(10分钟)1.教师通过演示和讲解,引入平行线的判定定理和性质。

2.第一种判断方法是“同位角相等定理”,通过同位角相等来判定直线是否平行。

3.第二种判断方法是“内错角相等定理”,通过内错角相等来判定直线是否平行。

4.第三种判断方法是“平行线的性质”,通过直线和平行线之间的性质来判定直线是否平行。

步骤三:举例演练(30分钟)1.教师通过示意图和具体例子,演示和讲解判定平行线的方法。

2.学生根据教师的引导,进行课堂练习。

步骤四:学习体会(10分钟)1.教师引导学生进行总结:通过本节课学习,你们学到了什么?你们能够独立解决什么问题?2.学生积极发言,分享自己的学习体会和解决问题的思路。

五、课堂作业1.预习下一节课的内容。

2.完成课堂练习题。

六、板书设计- 平行线的判定方法- 同位角相等定理- 内错角相等定理- 平行线的性质七、教学反思通过本节课的教学,学生对平行线的判定方法有了初步的了解,能够通过定理和性质判定两条直线是否平行。

在教学过程中,学生参与度较高,积极思考问题并提出自己的解决方法。

然而,我也注意到部分学生在练习过程中还存在一些困难,应该在下节课中给予更多的帮助和指导。

八年级数学上册《平行线的判定》教案、教学设计

八年级数学上册《平行线的判定》教案、教学设计
5.教师点评:强调平行线知识在实际生活中的应用,激发学生学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学内容,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,重点在于运用平行线的判定方法解决问题。
要求:学生在完成作业时,注意理解题意,规范作图,仔细计算,确保答案正确。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平行线的定义及其判定方法,包括同位角相等、内错角相等、同旁内角互补等。
2.难点:理解平行线性质的推理过程,以及在实际问题中的应用。
(二)教学设想
1.采用情境教学法,引入生活中的实际案例,让学生感知平行线在实际中的应用,激发学生学习兴趣。
例:在建筑工地,工人师傅如何保证两条直线平行?引导学生思考平行线在实际生活中的重要性。
二、学情分析
八年级学生已经具备了一定的几何基础,掌握了直线、射线、角等基本概念,能够进行简单的几何推理。在此基础上,学习平行线的判定,对于学生来说是一个新的挑战。他们需要将已知的几何知识进行拓展,运用逻辑推理和空间想象能力来探索平行线的性质和判定方法。考虑到学生的认知发展水平,他们可能在学习过程中遇到以下困难:对平行线性质的理解不够深入,判定方法的选择和应用存在困惑,以及在实际问题中运用平行线知识解决问题的能力不足。因此,在教学过程中,教师应关注学生的个体差异,提供适当的引导和帮助,鼓励学生积极参与讨论,培养他们的几何思维和解决问题的能力。同时,通过实际案例的引入,激发学生的学习兴趣,增强他们对数学知识实用性的认识。
(2)针对学生的疑惑,给予耐心解答,帮助他们克服学习难点。
(3)课后辅导,针对学生的薄弱环节,进行有针对性的辅导。
6.评价方式多样化,关注学生的全面发展。

7.3平行线的判定(教案)

7.3平行线的判定(教案)
二、核心素养目标
《7.3平行线的判定》教学旨在培养学生以下核心素养:
1.培养学生的空间观念和几何直观能力,使其能够从图形中抽象出几何关系,形成对平行线概念的理解;
2.培养学生的逻辑推理能力,通过观察、分析、归纳,掌握平行线的判定方法,并运用这些方法进行推理证明;
3.培养学生的数学建模能力,使学生能够将现实问题转化为数学问题,运用平行线的判定方法解决实际问题;
在小组讨论中,我发现有些同学在分享成果时表达不够清晰,这可能是由于他们对平行线判定方法的掌握不够熟练。为了提高学生的表达能力,我计划在接下来的课程中,多组织一些课堂讨论和分享活动,鼓励学生大胆地表达自己的观点,同时培养他们的逻辑思维和语言组织能力。
总之,在《7.3平行线的判定》这节课的教学中,我收获了许多宝贵的经验,也发现了需要改进的地方。在今后的教学中,我会针对学生的实际情况,调整教学策略,努力提高教学效果,让每位学生都能在轻松愉快的氛围中掌握几何知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《7.3平行线的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线始终不会相交的情况?”(如铁轨、操场跑道等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的判定方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

七年级数学上册《平行线的判定》教案、教学设计

七年级数学上册《平行线的判定》教案、教学设计
(2)选做课本第chapter页的拓展题,提高学生运用平行线性质解决问题的能力。
2.实践应用:
(1)观察生活中有哪些平行线的例子,用手机或相机拍照,并简要说明其中的平行线判定方法。
(2)结合实际情境,设计一道平行线相关的问题,并给出解答。
3.小组合作:
以小组为单位,共同完成以下任务:
(1)讨论平行线在实际生活中的应用,形成一份调查报告。
1.注重学生的认知规律,从简单到复杂,由易到难,逐步引导学生掌握平行线的判定方法。
2.考虑到学生的个体差异,因材施教,给予不同层次的学生适当的关注和指导。
3.激发学生的学习兴趣,通过生动有趣的生活实例,提高学生参与课堂的积极性和主动性。
4.培养学生的合作意识,组织学生进行小组讨论,使学生在互动交流中共同提高。
四、教学内容与过程
(一)导入新课
1.教学活动设计
利用多媒体展示生活中常见的平行线现象,如铁轨、电线、书本的边缘等,引导学生观察并思考这些现象背后的数学原理。
2.提出问题
提问:“同学们,你们在生活中还见到过哪些平行线的例子?这些平行线有什么共同的特点?”通过问题引导学生关注平行线的概念。
3.引入新课
在学生回答问题的基础上,教师总结:“平行线在我们的生活中无处不在,今天我们就来学习如何判定两条直线是否平行。”
作业评价:
1.作业完成情况将作为学生课堂表现评价的一部分,鼓励学生认真完成作业,提高自身能力。
2.教师将对作业进行批改,并及时给予反馈,帮助学生查漏补缺,提高学习效果。
3.对于表现优秀的学生,教师将给予表扬和奖励,激发学生的学习积极性。
请同学们认真对待本次作业,通过作业的完成,提高自己的数学素养,为今后的学习打下坚实基础。

平行线的判定数学教案

平行线的判定数学教案

平行线的判定数学教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的判定方法。

2. 培养学生观察、分析、推理的能力,提高解决问题的能力。

3. 激发学生学习数学的兴趣,培养合作意识。

二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。

三、教学重点与难点1. 教学重点:平行线的判定方法。

2. 教学难点:平行线的判定方法的运用。

四、教学方法1. 采用问题驱动法,引导学生探究平行线的判定方法。

2. 利用几何画板软件,动态展示平行线的判定过程,增强直观感受。

3. 组织小组讨论,培养学生的合作意识。

五、教学过程1. 导入新课:通过生活中的实例,引入平行线的概念。

2. 探究平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。

3. 实例分析:运用平行线的判定方法,解决实际问题。

4. 巩固练习:设计相关练习题,让学生独立完成,检验学习效果。

6. 布置作业:设计课后作业,巩固所学知识。

六、教学评价1. 采用课堂问答、练习题和小组讨论等方式,评价学生对平行线判定方法的掌握程度。

2. 关注学生在解决问题时的思维过程,评价学生的观察、分析、推理能力。

3. 结合学生的课堂表现、作业完成情况和课后自主学习情况,全面评价学生的学习效果。

七、教学反思1. 针对本节课的教学内容,反思教学目标的设定是否符合学生的实际需求。

2. 反思教学方法的选择和运用,是否有利于学生的理解和掌握。

3. 分析学生在学习过程中遇到的问题,思考如何在教学中进行调整和改进。

八、教学拓展1. 探究平行线的其他判定方法,如利用向量、坐标等概念。

2. 介绍平行线在实际应用中的例子,如建筑设计、交通规划等。

3. 引导学生关注数学与现实生活的联系,提高学生运用数学知识解决实际问题的能力。

九、课后作业1. 完成练习册的相关题目,巩固平行线的判定方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定
一、素质教育目标
(一)知识教学点
1.了解:推理、证明的格式.
2.理解:平行线判定公理的形成,第一个判定定理的证法.
3.掌握:平行线判定公理和第一个判定定理.
4.应用:会用判定公理及第一个判定定理进行简单的推理论证.
(二)能力训练点
1.通过模型演示,即“运动——变化”的数学思想方法的运用,培养学生的“观察——分析”和“归纳——总结”的能力.
2.通过判定公理的得出,培养学生善于从实践中总结规律,认识事物的能力.
3.通过判定定理的推导,培养学生的逻辑推理能力.
(三)德育渗透点
通过“转化”及“运动——变化”的数学思想方法的运用,让学生认识事物之间是普遍联系相互转化的辩证唯物主义思想.
二、教学重点、难点与疑点
(一)重点在观察实验的基础上进行公理的概括与定理的推导.
(二)难点判定定理的形成过程中逻辑推理及书写格式.
(三)疑点推理的书写格式.
三、教学方法启发式引导发现法.
四、教具准备三角板、投影胶片、投影仪、计算机.
五、教学步骤
(一)创设情境,复习引入
师:上节课我们学习了平行线、平行公理及推论,请同学们判断下列语句是否正确,并说明理由(出示投影)
1.两条直线不相交,就叫平行线.
2.与一条直线平行的直线只有一条.
3.如果直线a、b都和c平行,那么a、b就平行.
学生活动:学生口答上述三个问题
【教法说明】通过3个判断题,使学生回顾上节所学知识,第1题目的在于强化平行线定义的前提条件“在同一平面内”,第2题的目的不仅回顾平行公理,同时使学生认识学习几何,语言一定要准确、规范,同一问题在不同条件下,就有不同的结论,第3题复习巩固平行公理推论的同时提示学生,它也是判定两条直线平行的方法.
师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗?根据什么?
生:能判定垂直,根据垂直的定义.
师:在同一平面内不相交的两条直线是平行线,你有办法测定两条直线是平行线吗?
学生活动:学生思考,如何测定两条直线是否平行.
教师在学生思考未得结论情况下,指出不能直接利用平行线的定义来测定两条直线是否平行,必须找其他可以测定的方法,有什么方法呢?
学生活动:学生思考,在前面复习平行公理推论的情况下,有学生会提出,再作一条直线c,让c∥a,再看c是否平行于b就可以了.
师:这种想法很好,那么,如何作c,使它与a平行?若作出c后,又如何判断c是否与b平行?
学生活动:学生思考老师的追问,意识到刚才的回答,似是而非,不能解决问题.
师:显然,我们的问题没有得到解决,为此我们来寻找另外一些判断方法,就是今天我们要学习的平行线的判定,(板书课题)
[板书] 2.5平行线的判定(1).
【教法说明】由垂线定义可以来判断两线是否垂直,学生自然想到要用平行线定义来判断,但我们无法测定直线是否不相交,也就不能利用定义来判断,这时,学生会考虑平行公理推论,此时教师只须简单的追问,就让学生弄清问题未能解决,由此引入新课内容.
(二)探索新知,讲授新课
教师给出像课本第71页图2-20那样的两条直线被第三条直线所截的模型,转动b,让学生观察,b转动到不同位置时,∠α的大小有无变化,再让∠α从小变大,说出直线b与a的位置关系变化规律.
【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论.
学生活动:b转动到不同位置时,∠α也随着变化,当∠α从小变大时,直线b从原来在右边与直线a相交,变到在左边与a相交.
师:在这个过程中,存在一个与a不相交即与a平行的位置,那么∠α多大时,直线a∥b呢?也就是说,我们若判定两条直线平行,需要找角的关系.
师:下面先请同学们回忆平行线的画法,过直线a外一点P画a的平行线b.
学生活动:学生在练习本上完成,教师在黑板上演示.(见图2-34)
师:由刚才的演示,请同学们考虑,画平行线的过程,实际上是保证了什么?
生:保证了两个同位角相等.
师:由此你能得到什么猜想?
生:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.
师:我们的猜想正确吗?会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢?
教师用计算机演示运动变化过程.在观察实验之前,让学生认清α角和β角(如图
2-35),而后开始实验,让学生充分观察并讨论能得出什么结论.
学生活动:学生观察讨论,分析.
总结出,当β≠α时,a不平行b,而无论α取何值,只要β=α,a、b就平行.教师引导学生自己表达出结论,并告诉学生这个结论称为平行线的判定公理.
[板书] 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行.
即:∵∠1=∠2(已知见图2-36),
∴a∥b(同位角相等,两直线平行).
【教法说明】通过实际画图和用计算机演示运动——变化过程,让学生确信公理的正确.尝试反馈,巩固练习(出示投影)
1.如图2-37,∠1=150°,∠2=150°,a∥b吗?
2.∠c=31°,当∠ABE=______时,就能使BE∥CD?
【教法说明】这两个题目意在巩固所学判定公理,对于第2题是已知结论,找出使它成立的题设,这是证明问题时应掌握的一种思考方法,要求学生逐步学会执因导果和执果索因的思考方法,教师在教学时要注意逐渐培养学生的这种数学思想.
(出示投影)
直线a、b被直线c所截.
1.见图2-38,如果∠1=∠2,么a与b有什么关系?
2.∠1与∠3有什么关系?
3.∠2与∠3是什么位置关系的一对角?
学生活动:学生观察,思考分析,给出答案:∠1=∠2时,a∥b,∠1与∠3相等,∠2与∠3是内错角.
师:∠3与∠2满足什么条件,可以得到∠1=∠2?为什么?
生:∠3=∠2,因为∠3=∠1,通过等量代换可以得到∠1=∠2.
师:∠1=∠2时,你进而可以得到什么结论?
生:a∥b.
师:由此你能总结出什么正确结论?
生:内错角相等,两直线平行.
师:也就是说,我们得到了判定两直线平行的另一个方法:
[板书] 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.
【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考,善于动脑、分析的良好学习习惯.
师:上面的推理过程,可以写成
∵∠3=∠2(已知),
∠1=∠3(对顶角相等),
∴∠1=∠2.
∵∠1=∠2(已证)],
∴a∥b(同位角相等,两直线平行).
【教法说明】这里的推理过程可以放手让学生试着说,这样才能使学生大胆尝试,培养他们勇于进取精神.
教师指出:方括号内的∵∠1=∠2,就是上面刚刚得到的“∴∠1=∠2”,在这种情况下,方括号内这一步可以省略.
尝试反馈,巩固练习(出示投影)
1.如图2-39,直线AB、CD被直线EF所截.
(1)量得∠1=80°,∠2=80°,就可以判定AB∥CD,它的根据是什么?
(2)量得∠3=100°,∠4=100°,就可以判定AB∥CD,它的根据是什么?
2.如图2-40,BE是AB的延长线,量得∠CBE=∠A=∠C.
(1)从∠CBE=∠A,可以判定哪两条直线平行?它的根据是什么?
(2)从∠CBE=∠C,可以判定哪两条直线平行?它的根据是什么?
学生活动:学生口答.
【教法说明】这组题旨在巩固平行线的判定公理和判定方法的掌握,使学生熟悉并会用于解决简单的说理问题.
(三)变式训练,培养能力
(出示投影)
1.如图2-41所示,由∠DCE=∠D,可判断哪两条直线平行?由∠1=∠2,可判断哪两条直线平行?
2.如图2-42,已知∠1=45°,∠2=135°,L1∥L2吗?为什么?
学生活动:学生思考后回答问题.教师给以指正并启发、引导得出各种答案.
【教法说明】这组题不仅让学生认识变式图形,加强识图能力,同时培养学生的发散思维,也就是培养学生从多角度,全方位考虑问题,从而得到一题多解.提高了学生的解题能力.
(四)归纳总结
2.结合判定定理的证明过程熟悉表达推理证明的要求,初步了解推理证明的格式.
六、布置作业课本习题
七、板书设计。

相关文档
最新文档