绝对值化简(与数轴结合)

合集下载

利用数轴化简绝对值

利用数轴化简绝对值

第一讲 利用数轴化简绝对值通过实数在数轴上的位置,判断数的大小,去绝对值符号【例题1】 如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值.【例2】已知有理数a 、b 的和a b +及差a b -在数轴上如图所示,化简227a b a b +---. a-b a+b【例3】数a b ,在数轴上对应的点如右图所示,试化简a b b a b a a ++-+-- 【例4】实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-【课堂检测】1、实数a 、b 、c 在数轴上的位置如图所示,则代数式的值等于( ). (A ) (B )(C )(D )2、已知有理数c b a ,,在数轴上的对应点的位置如图所示:那么求a c c b b a -+---的值3、有理数c b a ,,在数轴上对应的点(如下图),图中O 为原点,化简a c b b a b a --+++-。

a c x0 b a c x0 b4、a 、b 、c 的大小关系如图所示,求a b b c c a ab ac a b b c c a ab ac-----++----的值.5、若用A 、B 、C 、D 分别表示有理数a 、b 、c ,0为原点。

如图所示,已知a<c<0,b>0。

化简下列各式:(1)||||||a c b a c a -+---;(2)||||||a b c b a c -+---+-+;(3)2||||||c a b c b c a +++---6、有理数a ,b ,c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|7、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|8、数a ,b 在数轴上对应的点如图所示,化简|a+b|+|b-a|+|b|-|a-|a||9、(1)有理数a ,b ,c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|(2)若a <b ,求|b-a+1|-|a-b-5|的值(3)若a <0,化简|a-|-a|| CB 0 A。

专题突破:绝对值化简问题专项探究(3大题型)(解析版)—24-25学年七年级数学上册单元(浙教版)

专题突破:绝对值化简问题专项探究(3大题型)(解析版)—24-25学年七年级数学上册单元(浙教版)

专题突破:绝对值化简问题专项探究绝对值化简常见问题方法总结1、根据绝对值的性质化简(1)牢记绝对值的性质:⎪⎩⎪⎨⎧-==)a(a a )a(a a 0000<)(>或⎩⎨⎧≤-≥=)a(a )a(a a 00(2)在”“=的组合中,当“=”左边的部分未知时,求“| |”内部的数,需要分类讨论;当“=”右边的部分未知时,求“=”右边的值,结果只有一个。

(3)绝对值的非负性应用:当“| |+| |=0”时,则“| |”内部的式子整体=02、已知范围的绝对值化简基本步骤第1步:判断绝对值内部式子的正负;第2步:把绝对值改为小括号;第3步:去括号;第4步:化简合并。

3、绝对值化简与最值问题对应规律(1)当x=a 时,|x-a|的最小值=0;(2)当a ≤x ≤b 时,|x-a|+|x-b|的最小值=|a-b|;(3)若a <b <c ,当x=b 时,|x-a|+|x-b|+|x-c|最小值=c-a;题型一 根据绝对值的性质化简【例1】.(2024春•肇源县期中)若|a |+a =0,则a 是( )A .零B .负数C .负数或零D .非负数【分析】根据绝对值的性质解答即可.【解答】解:若|a |+a =0,则a 是负数或零,故选:C .【变式1-1】.(2024•碑林区校级模拟)如果,那么x =( )A .B .或2C .D .2【分析】根据绝对值的意义求解即可.【解答】解:∵∴.故选:C .【变式1-2】.(2023秋•|m |=|n |,那么m ,n 的关系( )A .相等B .互为相反数C .都是0D .互为相反数或相等【分析】利用绝对值的代数意义化简即可得到m 与n 的关系.【解答】解:∵|m |=|n |,∴m =n 或m =﹣n ,即互为相反数或相等,故选:D .【变式1-3】.(2023秋•渑池县期末)若|a +2|+|b ﹣7|=0,则a +b 的值为( )A .﹣1B .1C .5D .﹣5【分析】根据非负数的性质分别求出a 、b ,计算即可.【解答】解:∵|a +2|+|b ﹣7|=0,∴|a +2|=0,|b ﹣7|=0,∴a+2=0,b﹣7=0,解得,a=﹣2,b=7,则a+b=5,故选:C.【变式1-4】.(2023秋•东莞市月考)若|x﹣1|+|2﹣y|=0,求2x﹣y的值.【分析】根据非负数的性质得出x﹣1=0,2﹣y=0,即可求出x、y的值,从而求出2x﹣y的值.【解答】解:∵|x﹣1|+|2﹣y|=0,又∵|x﹣1|≥0,|2﹣y|≥0,∴x﹣1=0,2﹣y=0,∴x=1,y=2,∴2x﹣y=2×1﹣2=0.【变式1-5】.(2023•南皮县校级一模)若ab≠0,那么+的取值不可能是( )A.﹣2B.0C.1D.2【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;分别计算即可.【解答】解:∵ab≠0,∴有四种情况:①a>0,b>0,a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,+=1+1=2;②当a<0,b<0时,+=﹣1﹣1=﹣2;③当a>0,b<0时,+=1﹣1=0;④当a<0,b>0时,+=﹣1+1=0;综上所述,+的值为:±2或0.故选:C.题型二已知范围的绝对值化简【例2】.(2023•成都模拟)化简|π﹣4|+|3﹣π|= .【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.【变式2-1】.(2024春•松江区期中)如果a>3,化简:|1﹣a|﹣|a﹣3|= .【分析】根据绝对值的性质进行解题即可.【解答】解:∵a>3,∴|1﹣a|﹣|a﹣3|=a﹣1﹣(a﹣3)=a﹣1﹣a+3=2.故答案为:2.【变式2-2】.(2024春•海门区校级月考)已知|m|=﹣m,化简|m﹣1|﹣|m﹣2|所得的结果为( )A.2m﹣3B.﹣1C.1D.2m﹣1【分析】由|m|=﹣m,得到m≤0,判断出m﹣1 与m﹣2的正负,然后利用绝对值的性质化简,去括号,合并,即可得到结果.【解答】解:∵|m|=﹣m,∴m≤0,∴m﹣1<0,m﹣2<0,∴|m﹣1|﹣|m﹣2|=﹣(m﹣1)+(m﹣2)=1﹣m+m﹣2=﹣1.故选:B.【变式2-3】.(2022秋•市北区校级期末)当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为( )A.﹣12B.﹣2或﹣12C.2D.﹣2【分析】先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=5,|b|=7,∴a=±5,b=±7∵|a+b|=a+b,∴a+b≥0,∴a=±5.b=7,当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7时,a﹣b=﹣12;故a﹣b的值为﹣2或﹣12.故选:B.【变式2-4】.(2023秋•文登区期末)如图所示,则|﹣3﹣a|﹣|b+1|等于( )A.4+a﹣b B.2+a﹣b C.﹣4﹣a﹣b D.﹣2﹣a+b【分析】先根据数轴判断﹣3﹣a和b+1的正负,再去掉绝对值符号,合并同类项即可.【解答】解:由数轴可知,﹣1<a<0,b>1,∴﹣3<﹣3﹣a<﹣2,b+1>0,∴|﹣3﹣a|﹣|b+1|=(3+a)﹣(b+1)=3+a﹣b﹣1=2+a﹣b.故选:B.【变式2-5】.(2023秋•青羊区校级期末)已知数a,b,c在数轴上的位置如图所示,且|c|>|b|>|a|,化简|a+b|﹣|c﹣b|+|a﹣c|= .【分析】由数轴得c<a<0,b>0,|b|>|a|,进一步判断出a+b>0,c﹣b<0,a﹣c>0,再根据绝对值的意义化简即可.【解答】解:由数轴得c<a<0,b>0,|b|>|a|,∴a+b>0,c﹣b<0,a﹣c>0,∴|a+b|﹣|c﹣b|+|a﹣c|=(a+b)﹣(b﹣c)+(a﹣c)=a+b﹣b+c+a﹣c=2a,故答案为:2a.【变式2-6】.(2023秋•思明区校级期末)如图,化简|a﹣1|= .【分析】判断出a﹣1的取值,再根据绝对值性质计算即可.【解答】解:由题得a<1,∴a﹣1<0,∴|a﹣1|=1﹣a,故答案为:1﹣a.【变式2-7】.(2023秋•余干县期末)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c 0,a+b 0,c﹣a 0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.题型三绝对值化简与最值问题【例3】.(2022秋•泗阳县期中)式子|x﹣2|+1的最小值是( )A.0B.1C.2D.3【分析】当绝对值有最小值时,式子有最小值,进而得出答案.【解答】解:当绝对值最小时,式子有最小值,即|x﹣2|=0时,式子最小值为0+1=1.故选:B.【变式3-1】.(2023秋•邵阳县校级月考)当a= 时,5﹣|a﹣1|的值最大,最大值为 .【分析】分a<1、a=1和a>1三种情况讨论求出5﹣|a﹣1|≤5,问题随之得解.【解答】解:当a<1时,a﹣1<0,即5﹣|a﹣1|=5﹣(1﹣a)=4+a,∵a<1,∴5﹣|a﹣1|=4+a<5;当a=1时,a﹣1=0,即5﹣|a﹣1|=5;当a>1时,a﹣1>0,即5﹣|a﹣1|=5﹣(a﹣1)=6﹣a,∵a>1,∴﹣a<﹣1,∴5﹣|a﹣1|=6﹣a<5;综上:5﹣|a﹣1|≤5,当且仅当a=1时,5﹣|a﹣1|有最大值,最大值为5,解法二:∵|a﹣1|≥0,∴5﹣|a﹣1|≤5,∴当a=1时,5﹣|a﹣1|的值最大,最大值为5.故答案为:1,5.【变式3-2】.(2023秋•西安校级月考)当x满足 条件时,|x﹣2|+|x+3|有最小值,这个最小值是 .【分析】根据绝对值的性质以及题意即可求出答案.【解答】解:由题意可知:当﹣3≤x≤2时,|x﹣2|+|x+3|有最小值,这个最小值是5.故答案为:﹣3≤x≤2,5.【变式3-3】.(2023春•沙坪坝区校级月考)已知m是有理数,则|m﹣2|+|m﹣4|+|m﹣6|+|m﹣8|的最小值是 .【分析】根据绝对值最小的数是0,分别令四个绝对值为0,从而求得m的四个值,分别将这四个值代入代数式求值,比较得不难求得其最小值.【解答】解:∵绝对值最小的数是0,∴分别当|m﹣2|,|m﹣4|,|m﹣6|,|m﹣8|等于0时,有最小值.∴m的值分别为2,4,6,8.∵①当m=2时,原式=|2﹣2|+|2﹣4|+|2﹣6|+|2﹣8|=12;②当m=4时,原式=|4﹣2|+|4﹣4|+|4﹣6|+|4﹣8|=8;③当m=6时,原式=|6﹣2|+|6﹣4|+|6﹣6|+|6﹣8|=8;④当m=8时,原式=|8﹣2|+|8﹣4|+|8﹣6|+|8﹣8|=12;∴|m﹣2|+|m﹣4|+|m﹣6|+|m﹣8|的最小值是8.故答案为:8.【变式3-4】.(2023秋•新罗区期中)我们已经学习了一个数a的绝对值可分为两种情况:.请用你所学的知识解决下面的问题:(1)若|a﹣3|=5,求a的值;(2)若数轴上表示数a的点位于﹣3与0之间(含端点),化简|a﹣2|﹣|a|;(3)当a= 时,|a﹣5|+|a﹣1|+|a+3|取到最小值,最小值是 .【分析】(1)根据绝对值可得:a﹣3=±5,即可解答;(2)根据已知范围,化简绝对值,再合并即可;(3)分四种情况讨论,即可解答.【解答】解:(1)∵|a﹣3|=5,∴a﹣3=±5,解得:a=8或a=﹣2;(2)∵数轴上表示数a的点位于﹣3与0之间(含端点),∴﹣3≤a≤0,∴|a﹣2|﹣|a|=﹣(a﹣2)+a=﹣a+2+a=2;(3)当a≥5时,原式=a﹣5+a﹣1+a+3=3a﹣3,此时的最小值为3×5﹣3=12;当1≤a<5时,原式=﹣a+5+a﹣1+a+3=a+7,此时的最小值为1+7=8;当﹣3<a≤1时,原式=﹣a+5﹣a+1+a+3=9﹣a,此时的最小值为9﹣1=8;当a≤﹣3时,原式=﹣a+5﹣a+1﹣a﹣3=﹣3a+3,这时的最小值为﹣3×(﹣3)+3=12;综上所述当a=1时,式子的最小值为8,故答案为:1,8.【变式3-5】.(2023秋•芙蓉区校级月考)同学们都知道,|5﹣(﹣2)|表示5与﹣2的差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离,试探索:(1)|5﹣(﹣2)|= ;(2)x是所有符合|x+5|+|x﹣2|=7成立条件的整数,则x= ;(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|的最小值为 ;(4)当x为整数时,|x﹣1|+|x﹣2|+|x﹣3|的最小值为 ;(5)求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|的最小值.【分析】(1)利用题干中的绝对值的几何意义解答即可;(2)利用题干中的绝对值的几何意义解答即可;【解答】解:(1)|5﹣(﹣2)|=|5+2|=7.故答案为:7;(2)∵|x+5|+|x﹣2|=7表示的是在数轴上x所对应的点到﹣5,2两点之间的距离之和等于7,又∵x为整数,∴x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)|x﹣3|+|x﹣6|表示的是在数轴上x所对应的点到3,6两点之间的距离之和,当3≤x≤6时,|x﹣3|+|x﹣6|∴|x﹣3|+|x﹣6|的最小值为3.故答案为:3;(4)|x﹣1|+|x﹣2|+|x﹣3|表示的是在数轴上x所对应的点到1,2,3三点之间的距离之和,∵x为整数,|x﹣1|+|x﹣2|+|x﹣3|取得最小值,∴x=2时,|x﹣1|+|x﹣2|+|x﹣3|的最小值为2.故答案为:2;(5)由(4)的结论可知:当x=999时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|取得最小值,最小值为2×(1+2+...+998)=997002.。

绝对值化简方法辅导

绝对值化简方法辅导

下面我们就人大附中初一学生的家庭作业进行讲授如何对绝对值进行化简之五兆芳芳创作首先我们要知道绝对值化简公式:例题1:化简代数式 |x-1|可令x-1=0,得x=1 (1叫零点值)按照x=1在数轴上的位置,发明x=1将数轴分为3个部分1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+12)当x=1时,x-1=0,则|x-1|=03)当x>1时,x-1>0,则|x-1|=x-1另解,在化简分组进程中我们可以把零点值归到零点值右侧的部分1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+12)当x≥1时,x-1≥0,则|x-1|=x-1例题2:化简代数式 |x+1|+|x-2|解:可令x+1=0和x-2=0,得x=-1和x=2(-1和2都是零点值)在数轴上找到-1和2的位置,发明-1和2将数轴分为5个部分1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+12)当x=-1时,x+1=0,x-2=-3,则|x+1|+|x-2|=0+3=33)当-1<x<2时,x+1>0,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=34)当x=2时,x+1=3,x-2=0,则|x+1|+|x-2|=3+0=35)当x>2时,x+1>0,x-2>0,则|x+1|+|x-2|=x+1+x-2=2x-1另解,将零点值归到零点值右侧部分1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+12)当-1≤x<2时,x+1≥0,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=33)当x≥2时,x+1>0,x-2≥0,则|x+1|+|x-2|=x+1+x-2=2x-1例题3:化简代数式 |x+11|+|x-12|+|x+13|可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值)1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-122)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=403)当-13<x<-11时,x+11<0,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+144)当x=-11时,x+11=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=255)当-11<x<12时,x+11>0,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+366)当x=12时,,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=487)当x>12时,x+11>0,x-12>0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12另解,将零点值归到零点值右侧部分1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-122)当-13≤x<-11时,x+11<0,x-12<0,x+13≥0,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+143)当-11≤x<12时,x+11≥0,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+364)当x≥12时,x+11>0,x-12≥0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12例题4:化简代数式|x-1|+|x-2|+|x-3|+|x-4|解:令x-1=0,x-2=0,x-3=0,x-4=0则零点值为x=1 , x=2 ,x=3 ,x=4(1)当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10(2)当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8(3)当2≤x<3时,,x-1|+|x-2|+|x-3|+|x-4|=4(4)当3≤x<4时,|x-1|+|x-2|+|x-3|+|x-4|=2x-2(5)当x≥4时,|x-1|+|x-2|+|x-3|+|x-4|=4x-10总结化简此类绝对值时,先求零点值,之后按照零点值将数轴分红的部分进行散布讨论,若有多个零点值时,可以将零点值归到零点值右侧部分进行化简,这样比较省时间同学们若不熟练可以针对以上3个例题频频化简熟练之后再换新的题进行练习习题:化简下列代数式|x-1||x-1|+|x-2||x-1|+|x-2|+|x-3||x-1|+|x-2|+|x-3|+|x-4|+|x-5||x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|初一学生作业-绝对值中最值问题一例题1: 1)当x取何值时,|x-1|有最小值,这个最小值是多少?2)当x取何值时,|x-1|+3有最小值,这个最小值是多少?3)当x取何值时,|x-1|-3有最小值,这个最小值是多少?4)当x取何值时,-3+|x-1|有最小值,这个最小值是多少?例题2:1)当x取何值时,-|x-1|有最大值,这个最大值是多少?2)当x取何值时,-|x-1|+3有最大值,这个最大值是多少?3)当x取何值时,-|x-1|-3有最大值,这个最大值是多少?4)当x取何值时,3-|x-1|有最大值,这个最大值是多少?若想很好的解决以上2个例题,我们需要知道如下知识点:、1)非正数:0和正数,有最小值是02)非正数:0和正数,有最大值是03)任意有理数的绝对值都是非正数,即|a|≥0,则-|a|≤04)x是任意有理数,m是常数,则|x+m|≥0,有最小值是0 -|x+m|≤0有最大值是0(可以理解为x是任意有理数,则x+a依然是任意有理数,如|x+3|≥0,-|x+3|≤0或|x-1|≥0,-|x-1|≤0)5)x是任意有理数,m和n是常数,则|x+m|+n≥n,有最小值是n -|x+m|+n≤n,有最大值是n(可以理解为|x+m|+n是由|x+m|的值向右(n>0)或向左(n<0)平移了|n|个单位,为如|x-1|≥0,则|x-1|+3≥3,相当于|x-1|的值整体向右平移了3个单位,|x-1|≥0,有最小值是0,则|x-1|+3的最小值是3)总结:按照3)、4)、5)可以发明,当绝对值前面是“+”时,代数式有最小值,有“—”号时,代数式有最大值在没有学不等式的时候,很好的理解(4)和(5)有点困难,若实在理解不了,请同学们看下面的例题答案,阐发感到下,就可以总结出上面的结论了)例题1: 1)当x取何值时,|x-1|有最小值,这个最小值是多少?2)当x取何值时,|x-1|+3有最小值,这个最小值是多少?3)当x取何值时,|x-1|-3有最小值,这个最小值是多少?4)当x取何值时,-3+|x-1|有最小值,这个最小值是多少?解: 1)当x-1=0时,即x=1时,|x-1|有最小值是02)当x-1=0时,即x=1时,|x-1|+3有最小值是33)当x-1=0时,即x=1时,|x-1|-3有最小值是-34)此题可以将-3+|x-1|变形为|x-1|-3可知和3)问一样即当x-1=0时,即x=1时,|x-1|-3有最小值是-3例题2:1)当x取何值时,-|x-1|有最大值,这个最大值是多少?2)当x取何值时,-|x-1|+3有最大值,这个最大值是多少?3)当x取何值时,-|x-1|-3有最大值,这个最大值是多少?4)当x取何值时,3-|x-1|有最大值,这个最大值是多少?解:1)当x-1=0时,即x=1时,-|x-1|有最大值是02)当x-1=0时,即x=1时,-|x-1|+3有最大值是33)当x-1=0时,即x=1时,-|x-1|-3有最大值是-34)3-|x-1|可变形为-|x-1|+3可知如2)问一样,即:当x-1=0时,即x=1时,-|x-1|+3有最大值是3请同学们总结一下问题若x是任意有理数,a和b是常数,则1)|x+a|有最大(小)值?最大(小)值是多少?此时x值是多少?2)|x+a|+b有最大(小)值?最大(小)值是多少?此时x值是多少?3) -|x+a|+b有最大(小)值?最大(小)值是多少?此时x值是多少?含有绝对值的代数式化简问题:化简代数式 |x+1|+|x-2|化简代数式 |x+1|+|x-2|化简代数式 |x+11|+|x-12|+|x+13|初一学生作业-绝对值中最值问题二【例题1】:求|x+1|+|x-2|的最小值,并求出此时x的取值规模阐发:我们先回首下化简代数式|x+1|+|x-2|的进程:可令x+1=0和x-2=0,得x=-1和x=2(-1和2都是零点值)在数轴上找到-1和2的位置,发明-1和2将数轴分为5个部分1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+12)当x=-1时,x+1=0,x-2=-3,则|x+1|+|x-2|=0+3=33)当-1<x<2时,x+1>0,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=34)当x=2时,x+1=3,x-2=0,则|x+1|+|x-2|=3+0=35)当x>2时,x+1>0,x-2>0,则|x+1|+|x-2|=x+1+x-2=2x-1我们发明:当x<-1时, |x+1|+|x-2|=-2x+1>3当-1≤x≤2时,|x+1|+|x-2|=3当x>2时,|x+1|+|x-2|=2x-1>3所以:可知|x+1|+|x-2|的最小值是3,此时: -1≤x≤2解:可令x+1=0和x-2=0,得x=-1和x=2(-1和2都是零点值)则当-1≤x≤2时,|x+1|+|x-2|的最小值是3评:若问代数式|x+1|+|x-2|的最小值是多少?并求x的取值规模?一般都出现填空题居多;若是化简代数式|x+1|+|x-2|的常出现解答题中.所以,针对例题中的问题,同学们只需要最终记住先求零点值,x的取值规模在这2个零点值之间,且包含2个零点值请总结,若a>b,则请答复当x在什么规模内时,代数式|x-a|+|x-b|有最小值,最小值是多少?【类似习题】求代数式|x-4|+|x-5|的最小值,并确定此时x的取值规模【例题1】:(1)若|x-2|>a,求a的取值规模是多少?(2)若|x-2|≥a,求a的取值规模是多少?【阐发】:我们知道|x-2|的最小值是0,则(1)有0>a,便可以求出a的规模是a<0,(2)0≥a,即a≤0【解】:(1)∵不管x为何值时|x-2|≥0∴|x-2|有最小值是0∵|x-2|>a∴0>a∴a<0(2)∵不管x为何值时|x-2|≥0∴|x-2|有最小值是0∵|x-2|≥a∴0≥a∴a≤0【总结】:解决本题的关头是很好的理解绝对值的寄义及找代数式的最值【例题2】:(1)若|x+1|+|x-2|>a,求a的取值规模是多少?(2)若|x+1|+|x-2|≥a,求a的取值规模是多少?【阐发】:按照绝对值化简可以求出|x+1|+|x-2|的最小值是3,模仿例题1可以求出a的取值规模【解】:(1)∵x取任意有理数时|x+1|+|x-2|≥3∴|x+1|+|x-2|的最小值是3∵|x+1|+|x-2|>a∴3>a∴a<3(2)(1)∵x取任意有理数时|x+1|+|x-2|≥3∴|x+1|+|x-2|的最小值是3∵|x+1|+|x-2|≥a∴3≥a∴a≤3【例题3】:(1)若|x+11|+|x-12|+|x+13|>a, 求a的取值规模是多少?(2)若|x+11|+|x-12|+|x+13|≥a, 求a的取值规模是多少?【阐发】:由绝对值化简可以得出代数式|x+11|+|x-12|+|x+13|的最小值是25,同例题1或例题2可以顺利求出本题a的取值规模【解】:∵不管x为任何有理数时,|x+11|+|x-12|+|x+13|≥25∴|x+11|+|x-12|+|x+13|最小值是25∵|x+11|+|x-12|+|x+13|>a∴25>a∴a<25(2)∵不管x为任何有理数时,|x+11|+|x-12|+|x+13|≥25∴|x+11|+|x-12|+|x+13|最小值是25∵|x+11|+|x-12|+|x+13|≥a∴25≥a∴a≤25【练习】:1.(1)若|x+3|>a,求a的取值规模是多少?(2)若|x+3|≥a,求a的取值规模是多少?2.(1)若|x+2|+|x-4|>a,求a的取值规模是多少?(2)若|x+2|+|x-4|≥a,求a的取值规模是多少?3.(1)若|x-7|+|x-8|+|x-9|>a,求a的取值规模是多少?(2)若|x-7|+|x-8|+|x-9|≥a,求a的取值规模是多少?初一学生作业-绝对值中最值问题三【例题1】:求|x+11|+|x-12|+|x+13|的最小值,并求出此时x的值?阐发:先回首化简代数式|x+11|+|x-12|+|x+13|的进程可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值)1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-122)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=403)当-13<x<-11时,x+11<0,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+144)当x=-11时,x+11=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=255)当-11<x<12时,x+11>0,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+366)当x=12时,,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=487)当x>12时,x+11>0,x-12>0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12可知:当x<-13时, |x+11|+|x-12|+|x+13|=-3x-12>27当x=-13时, |x+11|+|x-12|+|x+13|=40当-13<x<-11时,|x+11|+|x-12|+|x+13|=-x+14 ,25<-x+14 <27当x=-11时, |x+11|+|x-12|+|x+13|=25当-11<x<12时, |x+11|+|x-12|+|x+13|=x+36 , 25<x+36<48当x=12时 |x+11|+|x-12|+|x+13|= 48当x>12时, |x+11|+|x-12|+|x+13|=3x+12>48不雅察发明代数式|x+11|+|x-12|+|x+13|的最小值是25,此时x=-11解:可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值)将-11,12,-13从小到大排列为-13<-11<12可知-11处于-13和12之间,所以当x=-11时,|x+11|+|x-12|+|x+13|有最小值是25评:先求零点值,把零点值大小排列,处于最中间的零点值即时代数式的值取最小值.例题4:求代数式|x-1|+|x-2|+|x-3|+|x-4|的最小值阐发:回首化简进程如下令x-1=0,x-2=0,x-3=0,x-4=0则零点值为x=1 , x=2 ,x=3 ,x=4(1)当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10(2)当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8(3)当2≤x<3时,|x-1|+|x-2|+|x-3|+|x-4|=4(4)当3≤x<4时,|x-1|+|x-2|+|x-3|+|x-4|=2x-2(5)当x≥4时,|x-1|+|x-2|+|x-3|+|x-4|=4x-10按照x的规模判断出相应代数式的规模,在取所有规模中最小的值,便可求出对应的x的规模或取值解:按照绝对值的化简进程可以得出当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10 >6当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8 4<2x+8≤6当2≤x<3时,|x-1|+|x-2|+|x-3|+|x-4|=4当3≤x<4时,|x-1|+|x-2|+|x-3|+|x-4|=2x-2 4<2x-2 <6当x≥4时,|x-1|+|x-2|+|x-3|+|x-4|=4x-10≥6则可以发明代数式的最小值是4,相应的x取值规模是2≤x≤3归档总结:若含有奇数个绝对值,处于中间的零点值可以使代数式取最小值若含有偶数个绝对值,处于中间2个零点值之间的任意一个数(包含零点值)都可以使代数式取最小值习题:求|x-7|+|x-8|+|x-9|的最小值,并求出此时x的值,并确定此时x的值或规模?初一学生作业-乘方最值问题知识点铺垫:若a为任意有理数,则a²为非正数,即a²≥0,则-a²≤0可以判断出当a=0时,a²有最小值是0,-a²有最大值是0问题解决:例题:(1)当a取何值时,代数式(a-3)²有最小值,最小值是多少?(2)当a取何值时,代数式 (a-3)²+4有最小值,最小值是多少?(3)当a取何值时,代数式(a-3)²-4有最小值,最小值是多少?(4)当a取何值时,代数式-(a-3)²有最大值,最大值是多少?(5)当a取何值时,代数式- (a-3)²+4有最大值,最大值是多少?(6)当a取何值时,代数式-(a-3)²-4有最大值,最大值是多少?(7)当a取何值时,代数式4- (a-3)²有最大值,最大值是多少?阐发:按照a是任意有理数时,a-3也是任意有理数,则(a-3)²为非正数,即(a-3)²≥0,则-(a-3)²≤0可以进一步判断出最值解(1)当a-3=0,即a=3时,(a-3)²有最小值是0(2)当a-3=0,即a=3时,(a-3)²+4有最小值是4(3)当a-3=0,即a=3时,(a-3)²-4有最小值是-4(4)当a-3=0,即a=3时,-(a-3)²有最大值是4(5)当a-3=0,即a=3时,-(a-3)²+4有最大值是4(6)当a-3=0,即a=3时,-(a-3)²-4有最大值是4(7)4-(a-3)²可以变形为- (a-3)²+4,可知如(5)相同,即当a-3=0,即a=3时,4-(a-3)²有最大值是4(这里要学会转化和变通哦)评:很好理解掌握a²即-a²的最值是解决本题的关头归结总结:若x为未知数,a,b为常数,则当x取何值时,代数式(x+a)²+b有最小值,最小值是多少当x取何值时,代数式-(x+a)²+b有最大值,最大值是多少例题1: 1)当x取何值时,|x-1|有最小值,这个最小值是多少?2)当x取何值时,|x-1|+3有最小值,这个最小值是多少?3)当x取何值时,|x-1|-3有最小值,这个最小值是多少?4)当x取何值时,-3+|x-1|有最小值,这个最小值是多少?例题2:1)当x取何值时,-|x-1|有最大值,这个最大值是多少?2)当x取何值时,-|x-1|+3有最大值,这个最大值是多少?3)当x取何值时,-|x-1|-3有最大值,这个最大值是多少?4)当x取何值时,3-|x-1|有最大值,这个最大值是多少?初一学生作业-绝对值+乘方=0涉及知识点:x²=0,则x=0|y|=0,则y=0 x与y互为相反数,则x+y=0例题1:按照下列条件求出a和b的值(1) |a-1|=0(2)|a-1|+|b-2|=0(3)3|a-1|+5|b-2|=0(4)3|a-1|=-5|b-2|(5)|a-1|与|b-2|互为相反数阐发:我们知道:若|y|=0,则y=0;若y为任意有理数,m为常数,则y-m依然为任意有理数,则|y|≥0,|y-m|≥0两个非正数的和为0,则两个数同时为0,即m≥0且n≥0,且m+n=0,则m=0且n=0这样我们可以按照以上知识点可以很好的解决本题解:(1)∵|a-1|=0 ∴a-1=0 ∴a=1(2)∵|a-1|≥0,|b-2|≥0,且|a-1|+|b-2|=0∴|a-1|=0且|b-2|=0∴a-1=0且b-2=0∴a=1,b=2(3)∵|a-1|≥0,|b-2|≥0,∴3|a-1|≥0,5|b-2|≥0∵3|a-1|+5|b-2|=0∴3|a-1|=0且5|b-2|=0∴a-1=0且b-2=0∴a=1,b=2(4)3|a-1|=-5|b-2|可以变形为3|a-1|+5|b-2|=0 解法同(3)得a=1,b=2(5)∵|a-1|与|b-2|互为相反数∴|a-1|+|b-2|=0同(2)解得a=1,b=2例题2:按照下列条件求出a和b的值(1)(a-1)²=0(2)(a-1)²+(b-2)²=0(3)3(a-1)²+5(b-2)²=0(4)3(a-1)²=-5(b-2)²(5)(a-1)²与(b-2)²互为相反数阐发:若a为任意有理数,则a-1和b-2仍然为任意有理数,则a²≥0,(a-1)²≥0,(b-2)²≥0∴模仿例题1可以顺利解决本题解:(1)∵(a-1)²=0∴a-1=0∴a=1(2)∵(a-1)²≥0,(b-2)²≥0且(a-1)²+(b-2)²=0∴(a-1)²=0且(b-2)²=0N∴a-1=0且b-2=0∴a=1且b=2(3)∵(a-1)²≥0,(b-2)²≥0∴3(a-1)²≥0,5(b-2)²≥0∵3(a-1)²+5(b-2)²=0∴3(a-1)²=0且5(b-2)²=0∴a-1=0且b-2=0∴a=1且b=2(4)将3(a-1)²=-5(b-2)²变形为3(a-1)²+5(b-2)²=0同(3)解得a=1且b=2(5)∵(a-1)²与(b-2)²互为相反数∴(a-1)²+(b-2)²=0同(2)解得a=1,b=2例题3:按照下列条件求出a和b的值(1)|a-1|+(b-2)²=0(2)3|a-1|+5(b-2)²=0(3)3|a-1|=-5(b-2)²(4)|a-1|与(b-2)²互为相反数解(1)∵|a-1|≥0,(b-2)²≥0 且|a-1|+(b-2)²=0∴|a-1|=0且(b-2)²=0∴a-1=0,且b-2=0∴a=1且b=2(2)∵|a-1|≥0,(b-2)²≥0∴3|a-1|≥0,5(b-2)²≥0∵3|a-1|+5(b-2)²=0∴3|a-1|=0且5(b-2)²=0∴a-1=0,且b-2=0∴a=1且b=2(3)3|a-1|=-5(b-2)²可以变形为3|a-1|+5(b-2)²=0解法同(2)解得a=1且b=2(4)∵|a-1|与(b-2)²互为相反数∴|a-1|+(b-2)²=0同(1)解得a=1,b=2初一学生作业-解含绝对值的方程例题:解下列方程(1)|x|=4(2)|x-1|=4(3)|x|-4=0(4)3|x|-12=0解:(1)x=4或x=-4(2)x-1=4或x-1=-4 解得x=5或x=-3(3)|x|-4=0变形得|x|=4 如(1)x=4或x=-4(4)3|x|-12=0移项得 3|x|=12化简得|x|=4解得x=4或x=-初一学生作业-两点间距离问题需要知识点:数字上有点A和点B,点A和点B之间距离暗示为“AB”例题1:按照下列条件求出点A和点B之间的距离(1)点A暗示的数为3,点B暗示的数为7(2)点A暗示的数为-3,点B暗示的数为-7(3)点A暗示的数为-3,点B暗示的数为7(4)点A暗示的数为a,点B暗示的数为b,且点A在点B左侧(5)点A暗示的数为a,点B暗示的数为b,且点A在点B右侧(6)点A暗示的数为a,点B暗示的数为b阐发:画一条数轴,找到点A和点B的具体位置或与原点之间的位置,可以计较出两点间距离解:(1)AB=7-3=4 或AB=|3-7|(2)AB=-3-(-7)=4 或AB=|-7-(-3)|(3)AB=7-(-3)=10或AB=|-3-7|(4)AB=b-a(5)AB=a-b(6)AB=|a-b|或AB=|b-a|总结:数轴上两点间距离即暗示两点的数之差的绝对值或暗示右侧点的数-暗示左边点的数即:点A暗示的数为a,点B暗示的数为b,则AB=|a-b|或AB=|b-a|初一数学:绝对值中最值问题四1.绝对值的寄义是:在数轴上, 一个数与原点的距离叫做该数的绝对值2.数轴上两点间距离等于两点对应数值之间差的绝对值3.|x-a|可以看成是数轴上暗示数x的点到暗示数a的点之间的距离例题1:求|x-2|的最小值,并求出相应的x值阐发:若点A对应数x,点B对于数2 ,|x-2|暗示AB之间的距离当点A在点B左侧时候,AB>0当点A和点B重应时,AB=0当点A在点B的右侧时,AB>0可知当点A和点B重应时,AB最小值是0解:当x-2=0时,即x=2时,|x-2|有最小值是0例题2:求|x+1|+|x-2|的最小值,并求出此时x的取值规模阐发:将-1和2在数轴上暗示出来如图设点A对应数-1,点B对应数2,点C对应数x ,则AC=|x+1|,BC=|x-2|当点C在A左侧如图 AC+BC= =AC+AC+AB=2AC+AB>AB当点C在点A和点B之间如图 AC+BC=AB当点C在点B右侧如图AC+BC=AB+BC+BC=AB+2BC>AB可知AC+BC最小值为AB=3,即点C在点A和点B之间时,解:令x+1=0 x-2=0得x=-1 x=2当-1≤x≤2时,|x+1|+|x-2|有最小值是3总结,如代数式|x-a|+|x-b|的最小值即为暗示数a的点到暗示数b 的点之间的距离,即|a-b|例题三:求|x+11|+|x-12|+|x+13|的最小值,并求出此时x的值?阐发:在数轴上暗示出A点-13,B点-11,C点12 设点D暗示数x则DA=|x+13| DC=|x+11| DB=|x-12|当点C在点A左侧如图DA+DB+DC=DA+DA+AB+DA+AB+BC =AC当点A与点D重应时,DA+DB+DC=AB+AC>AC当点D在点AB之间时,如图DA+DB+DC=DA+DB+DB+BC>AC当点D与点B重应时,DA+DB+DC=AB+AC=AC当点D在BC之间如图DA+DB+DC=AB+BD+DB+DC=AC+BD>AC当点D与点C重应时,DA+DB+DC=AC+BC>AC当点D在点C右侧时DA+DB+DC=AC+CD+BC+CD+CD>AC综上可知当点D与点B重应时,最小值是AC=12-(-13)=25解:令x+11=0 x-12=0 |x+13=0则x=-11 x=12 x=-13将 -11 ,12 ,-13从小到大排练为-13<-11<12∴当x=-11时,|x+11|+|x-12|+|x+13|的最小值是点A(-13)与点C (12)之间的距离即AC=12-(-13)=25初一数学:绝对值最值问题五【需要理论知识推倒进程】化简代数式(1)|x-2|(2)|x+1|+|x-2| (3)|x+11|+|x-12|+|x+13|初一数学:绝对值-含有绝对值代数式的最值问题五(精华篇)【例题】|x-1|的最小值|x-1|+|x-2|的最小值|x-1|+|x-2|+|x-3|的最小值|x-1|+|x-2|+|x-3|+|x-4|的最小值|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|的最小值|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|的最小值|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|+|x-8|的最小值|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|+|x-8|+|x-9|的最小值|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|+|x-8|+|x-9|+|x-10|的最小值【阐发】:结合上几篇博文内容我们知道|x-1|的几何意义是数轴上数x到1之间的距离|x-1|+|x-2|的几何意义是数轴上数x到1的距离与数x到2之间距离的和|x-1|+|x-2|+|x-3|的几何意义是数轴上数x辨别到1、2、3之间距离的和|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|+|x-8|+|x-9|+|x-10|的几何意义是数轴上数x辨别到1、2、3、4、5、6、7、8、9、10之间距离的和按照以上几篇博文的化简我们知道当x=1时,|x-1|有最小值是0当1≤x≤2时,|x-1|+|x-2|的最小值是1等价于数1和数2之间的距离2-1=1当x=2时,|x-1|+|x-2|+|x-3|的最小值是2等价于数1和数3之间的距离3-1=2当2≤x≤3时,|x-1|+|x-2|+|x-3|+|x-4|的最小值是4 等价于求(|x-1|+|x-4|)+|(x-2|+|x-3|)的最小值即(|x-1|+|x-4|)的最小值+|(x-2|+|x-3|)的最小值=(4-1)+(3-2)=3+1=4我们可以总结出若含有奇数个绝对值时,处于中间的零点值可以使代数式取最小值若含有偶数个绝对值时,处于中间2个零点值之间的任意一个数(包含零点值)都可以使代数式取最小值或说将含有多个绝对值的代数式用捆绑法求最值也可以若想求出最小值可以求关头点便可求出【解】:当x=1时,|x-1|的最小值是0当1≤x≤2时,|x-1|+|x-2|的最小值1当x=2时,|x-1|+|x-2|+|x-3|的最小值2=2+0当2≤x≤3时,|x-1|+|x-2|+|x-3|+|x-4|的最小值4=3+1当x=3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值6=4+2当3≤x≤4时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|的最小值9=5+3+1当x=4时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|的最小值12=6+4+2当4≤x≤5时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|+|x-8|的最小值16=7+5+3+1当x=5时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|+|x-8|+|x-9|的最小值20=8+6+4+2当5≤x≤6时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|+|x-8|+|x-9|+|x-10|的最小值25=9+7+5+3+1【解法2】:捆绑法|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|+|x-7|+|x-8|+|x-9|+|x-10| =(|x-1|+|x-10|)+(|x-2+|x-9|)+(|x-3|+|x-8|)+(|x-4|+|x-7|)+(|x-5|+|x-6|)若|x-1|+|x-10|的和最小,可知x在数1和数10之间|x-2+|x-9|的和最小,可知数x在数2和数9之间|x-3|+|x-8|的和最小,可知数x在数3和数8之间|x-4|+|x-7|的和最小,可知数x在数4和数7之间|x-5|+|x-6|的和最小,可知数x在数5和数6之间∴若想满足以上和都最小,数x应该在数5和数6之间的任意一个数(含数5和数6)都可以反思:这就比如我们做个游戏,若有10团体一次排开,小明应该站在什么位置,使得小明辨别到10团体的距离和最小的问题可知小明站在第1团体和第10团体之间的任意一个位置,小明到第一团体的距离与到第10团体的距离和都是第一团体与第10团体之间的距离是不变的同理:小明站在第2团体和第9团体之间的任意一个位置,小明到第2团体和到第9团体的距离和也是不变的是第2团体和第9团体之间的距离为了满足以上两点小明应该站在第2团体和第9团体之间才可以使得小明辨别到第1个、第2个、第9个、第10团体的距离和最小,也就相等于说小明应该往中间位置站最适合以此类推可以理解为小明站第5团体和第6团体中间任意一个位置均可初一数学:绝对值问题六【例题1】:(1)已知|x|=3,求x的值(2)已知|x|≤3,求x的取值规模(3)已知|x|<3,求x的取值规模(4)已知|x|≥3,求x的取值规模(5)已知|x|>3,求x的取值规模【阐发】:绝对值的几何意义是在数轴上数x到原点的距离,(1)若|x|=3,则x=-3或x=3(2)数轴上-3和3之间的任意一个数到原点的距离都小于3,若|x|≤3,则-3≤x≤3(3)若|x|<3,则-3<x<3(4)数轴上-3左侧和3右侧的任意一个数到原点的距离都大于3,若|x|≥3,则x≤-3或x≥3(5)若|x|>3,则x<-3或x>3【解】:(1)x=-3或x=3(2)-3≤x≤3(3)-3<x<3(4)x≤-3或x≥3(5)x<-3或x>3总结:理解绝对值的几何意义是解决本题的关头很好的理解了例题1的根本上可以进一步看下面的例题2【例题2】(1)已知|x|≤3,则满足条件的所有x的整数值是多少?且所有整数的和是多少?(2)已知|x|<3,则满足条件的x的所有整数值是多少?且所有整数的和是多少?【阐发】:我们知道从-3到3之间的所有数的绝对值都≤3 所以(1)整数值有-3,-2,-1,0,1,2,3;和为0 (2)整数值有-2,-1,0,1,2 ;和为0【解】:(1)∵|x|≤3∴-3≤x≤3∵x为整数∴满足条件的x值为:-3,-2,-1,0,1,2,3∴-3+-2+-1+0+1+2+3=0(2)∵|x|<3∴-3<x<3∵x为整数∴满足条件的x值为:-3,-2,-1,0,1,2,3∴-3+-2+-1+0+1+2+3=0。

专题七:结合数轴化简绝对值

专题七:结合数轴化简绝对值

结合数轴化简绝对值数轴右边的点比左边的点大,有理数大减小一定是为正绝对值化简三步走:1、判断正负2、去绝对值3、去括号化简1、数a在数轴上的位置如图所示,则|a-2|=______.2、有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.3、若用A、B、C分别表示有理数a,b,c,O为原点,如图所示:化简2c+|a+b|+|c﹣b|﹣|c﹣a|.4、已知a,b,c的位置如图,化简:|a-b|+|b-c|+|c-a|=______________结合数轴化简绝对值解析1、数a在数轴上的位置如图所示,则|a-2|=______.解:由图可知,a>0,所以,a﹣2>0;故答案为:a﹣2;2、有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.3、若用A、B、C分别表示有理数a,b,c,O为原点,如图所示:化简2c+|a+b|+|c﹣b|﹣|c﹣a|.解:由数轴上点的位置得:a<c<0<b,|a|>|b|,∴a+b<0,c﹣b<0,c﹣a>0,则2c+|a+b|+|c﹣b|﹣|c﹣a|=2c﹣a﹣b﹣c+b﹣c+a=0.4、已知a,b,c的位置如图,化简:|a-b|+|b-c|+|c-a|=______________解:由数轴上点的位置得:a<c<0<b,∴a﹣b<0,b﹣c>0,c﹣a>0,则|a-b|+|b-c|+|c-a|==﹣(a﹣b)+b﹣c + c﹣a=2b﹣2a.。

绝对值的化简

绝对值的化简

绝对值的化简 Prepared on 22 November 2020“绝对值的化简”例题解析无论是从绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说任何一个有理数的绝对值都是非负数,即:无论a取任意有理数都有。

下面关于绝对值的化简题作一探讨。

一、含有一个绝对值符号的化简题1.已知未知数的取值或取值范围进行化简。

如,当时化简(根据绝对值的意义直接化简)解:原式。

2.没有告诉未知数的取值或取值范围进行化简。

如,化简(必须进行讨论)我们把使绝对值符号内的代数式为0的未知数的值叫做界值,显然绝对值符号内代数式是,使的未知数的值是5,所以我们把5叫做此题的界值,确定了界值后,我们就把它分成三种情况进行讨论。

(1)当时,则是一个正数,则它的绝对值应是它本身,所以原式。

(2)当时,则,而0的绝对值为0,所以原式或。

(3)当时,则,是一个负数,而负数的绝对值应是它的相反数,所以原式。

又如,化简此题虽含有一个绝对值符号,但绝对值符号内出现了两个未知数,在这种情况下,我们把含有两个未知数的式子看作一个整体,即把2x+y看作一个整体未知数,找出界值,使的整体未知数的值是,我们把6叫做此题的界值,这样又可分三种情况进行讨论。

(1)当时,(2)当时(3)当时二、含有两个绝对值符号的化简题1.已知未知数的取值或取值范围,进行化简也应根据绝对值的意义直接化简。

如:当时,化简解:原式2.没有告诉未知数的取值或取值范围进行化简也必须进行讨论如:化简的界值为-3,的界值为所以对此类化简题,我们仍从三个方面进行讨论。

解:(1)当时(界值为较大界值,讨论的第(1)种情况为大于大的界值)原式(2)当时,(第(2)种情况为小于小的界值)原式(3)当时(第(3)种情况大于小界值小于大界值)原式又如,化简此题含有两个绝对值符号,且每个绝对值符号内含有两个未知数,且未知数对应项系数相等或成比例,在这种情况下,我们把含有未知数较小的那个式子看作一个整体即把看作一个整体分别求出每个绝对值符号内的界值,仍从三个方面进行讨论。

利用数轴化简绝对值

利用数轴化简绝对值

利用数轴化简绝对值
通过实数在数轴上的位置,判断数的大小,去绝对值符号
例题、1. 如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值. b -1 c 0 a 1
2.数a b ,在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--
b
0a
3.实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-
0c
b a
课堂检测:
1.实数a 、b 、c 在数轴上的位置如图所示,则代数式 的值等于( ).
(A ) (B ) (C ) (D )
2.已知有理数c b a ,,在数轴上的对应点的位置如图所示:那么求a c c b b a -+---的值
a c x
0 b
3.有理数c b a ,,在数轴上对应的点(如下图),图中O 为原点,化简a c b b a b a --+++-。

4.a 、b 、c 的大小关系如图所示,求a b b c c a ab ac a b b c c a ab ac
-----++----的值. c 10b a
5.若用A 、B 、C 、D 分别表示有理数a 、b 、c ,0为原点。

如图所示,已知a<c<0,b>0。

化简下列各式:
(1)||||||a c b a c a -+---;
(2)||||||a b c b a c -+---+-+;
(3)2||||||c a b c b c a +++---
a c x
0 b。

绝对值的性质绝对值的化简方法口诀绝对值符号的去掉法则

绝对值的性质绝对值的化简方法口诀绝对值符号的去掉法则

绝对值化简步骤:(1)先根据数轴“从左到右数增大”的原则比较绝对值里面字母的大小关系;(2)再根据绝对值里面字母的大小关系计算“和”或“差”为正还是为负;(3)然后根据“一个整数的绝对值等于它本身”把绝对值里面的代数式直接去掉绝对值符号移出来,根据“一个负数的绝对值等于它的相反数”把绝对值里面的代数式去掉绝对值符号再变成它的相反数移出来;(4)最后,绝对值符号全都去掉了之后,再进行加减运算(有的可能需要先去括号再运算),得到最简结果。

绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;②绝对值等于0的数只有一个,就是0;③绝对值等于同一个正数的数有两个,这两个数互为相反数;④互为相反数的两个数的绝对值相等。

绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。

①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。

绝对值用“||”来表示。

在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做ab 的绝对值,记作|ab|。

◎绝对值的知识扩展1、定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

2、绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

3、绝对值的有关性质:(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;(2)绝对值等于0的数只有一个,就是0;(3)绝对值等于同一个正数的数有两个,这两个数互为相反数;(4)互为相反数的两个数的绝对值相等。

【常考压轴题】2023学年七年级数学上册(人教版) 绝对值的三种化简方法(原卷版)

【常考压轴题】2023学年七年级数学上册(人教版) 绝对值的三种化简方法(原卷版)

绝对值的三种化简方法绝对值版块的内容在我们这学期比重较大,尤其是绝对值的化简。

并且,在压轴题中,常见的题型是利用数轴化简绝对值和利用其几何意义化简绝对值,本专题就这两块难点详细做出分析。

【知识点梳理】 1.绝对值的定义一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a | 2.绝对值的意义①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0; ②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。

3.绝对值的化简:类型一、利用数轴化简绝对值例1.有理数a 、b 、c 在数轴上位置如图,则a c a b b c --++-的值为( ).A .2aB .222a b c +-C .0D .2c -例2.有理数a ,b 在数轴上对应的位置如图所示,那么代数式11a b a b ab a b-++--+的值是( )A .-1B .1C .3D .-3【变式训练1】已知,数a 、b 、c 的大小关系如图所示:化简||||2||3||a c b a a c b c +----+-=____.【变式训练2】有理数a 、b 、c 在数轴上的位置如图.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(1)判断正负,用“>”或“<”填空:b c - 0,a b + 0,a c -+ 0. (2)化简:||||c|b c a b a -+++-+∣【变式训练3】有理数a ,b 在数轴上的对应点如图所示:(1)填空:b a -______0;1b -______0;1a +______0;(填“<”、“>”或“=”) (2)化简:11b a b a ---++【变式训练4】有理数a 、b 、c 在数轴上的位置如图:(1)用“>”或“<”填空a _____0,b _____0,c ﹣b ______0,ab_____0. (2)化简:|a |+|b +c |﹣|c ﹣a |.类型二、利用几何意义化简绝对值例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索 (1)求|5-(-2)|=________;(2)同样道理|x +1008|=|x -1005|表示数轴上有理数x 所对点到-1008和1005所对的两点距离相等,则x =________;(3)类似的|x +5|+|x -2|表示数轴上有理数x 所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x ,使得|x +5|+|x -2|=7,这样的整数是__________.(4)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【变式训练1】阅读下面的材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB ∣,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,∣AB ∣=∣OB ∣=∣b ∣=∣a -b ∣;当A 、B 两点都不在原点时:①如图2,点A 、B 都在原点的右边: ∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=b -a =∣a -b ∣; ②如图3,点A 、B 都在原点的左边: ∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=-b -(-a )=∣a -b ∣; ③如图4,点A 、B 在原点的两边:∣AB ∣=∣OA ∣+∣OB ∣=∣a ∣+∣b ∣=a +(-b )=∣a -b ∣, 综上,数轴上A 、B 两点之间的距离∣AB ∣=∣a -b ∣. 回答下列问题:(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;(2)数轴上表示x 和-1的两点A 和B 之间的距离是________,如果∣AB ∣=2, 那么x 为__________.(3)当代数式∣x +1∣+∣x -2∣取最小值时,相应的x 的取值范围是__________.【变式训练2】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;数轴上表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离可以表示为|m ﹣n |.那么,数轴上表示数x 与5两点之间的距离可以表示为 ,表示数y 与﹣1两点之间的距离可以表示为 .(2)如果表示数a 和﹣2的两点之间的距离是3,那么a = ;若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(3)当a = 时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是 . 【变式训练3】(问题提出)1232021a a a a -+-+-+⋅⋅⋅+-的最小值是多少?(阅读理解)为了解决这个问题,我们先从最简单的情况入手.a 的几何意义是a 这个数在数轴上对应的点到原点的距离,那么1a -可以看作a 这个数在数轴上对应的点到1的距离;12-+-a a 就可以看作a 这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究12-+-a a 的最小值.我们先看a 表示的点可能的3种情况,如图所示:(1)如图①,a 在1的左边,从图中很明显可以看出a 到1和2的距离之和大于1. (2)如图②,a 在1,2之间(包括在1,2上),看出a 到1和2的距离之和等于1. (3)如图③,a 在2的右边,从图中很明显可以看出a 到1和2的距离之和大于1.因此,我们可以得出结论:当a 在1,2之间(包括在1,2上)时,12-+-a a 有最小值1. (问题解决)(1)47a a -+-的几何意义是 ,请你结合数轴探究:47a a -+-的最小值是 .(2)请你结合图④探究123a a a -+-+-的最小值是 ,由此可以得出a 为 .(3)12345a a a a a -+-+-+-+-的最小值为 . (4)1232021a a a a -+-+-+⋅⋅⋅+-的最小值为 .(拓展应用)如图,已知a 使到-1,2的距离之和小于4,请直接写出a 的取值范围是 .类型三、分类讨论法化简绝对值 例1.化简:214x x x --++-.【变式训练1】若0,0a b c abc ++<>,则23a ab abc a ab abc++的值为_________.【变式训练2】(1)数学小组遇到这样一个问题:若a ,b 均不为零,求a bx a b=+的值. 请补充以下解答过程(直接填空)①当两个字母a ,b 中有2个正,0个负时,x= ;②当两个字母a ,b 中有1个正,1个负时,x= ;③当两个字母a ,b 中有0个正,2个负时,x= ;综上,当a ,b 均不为零,求x 的值为 . (2)请仿照解答过程完成下列问题: ①若a ,b ,c 均不为零,求a b cx a b c=+-的值. ②若a ,b ,c 均不为零,且a+b+c=0,直接写出代数式b c a c a ba b c+++++的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中部 七 年级 数学 (学科)导学案 学案编号: 班级: 姓名: 执笔: 陈懿 审核: 审批: 印数: 42 教师评价:
课题:绝对值化简(与数轴结合)
〖学习目标〗通过实数在数轴上的位置,判断数的大小,去绝对值符号 〖重点难点预见〗读懂数轴判断数的大小 〖学习流程〗
一.知识回顾: 回顾数轴表示数的意义 二.自主学习:
如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值.
小结:如何通过数轴判断正负,去掉绝对值符号
三.课堂练习
1.已知有理数a 、b 的和a b +及差a b -在数轴上如图所示,化简227a b a b +---.
a-b
a+b
1
0-1
2.数a b ,在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--
b
a
3.实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-
c
b
a
四.课堂检测:
1.实数a 、b 、c 在数轴上的位置如图所示,则代数式 的值等于( ).
(A )
(B )
(C )
(D )
b -1
c 0 a 1
2已知有理数c b a ,,在数轴上的对应点的位置如图所示:那么求a c c b b a -+---的值
3.有理数c b a ,,在数轴上对应的点(如下图),图中O 为原点,化简
a c
b b a b a --+++-。

4.a 、b 、c 的大小关系如图所示,求
a b b c c a ab ac
a b b c c a ab ac
-----++
----的值. c
1
b
a
五.小结反思:
a
c
x
b
a c
x 0
b。

相关文档
最新文档