七年级数学--绝对值化简专题训练

合集下载

人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)

人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)

人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN牢记方法规则:1.判断绝对值里面量的正负2.去掉绝对值产生括号3.去掉括号合并同类项第1天1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.第2天6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.第3天11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.第4天16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b ﹣c|.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.参考答案1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.解:由图可得,c<b<0<a,则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.解:由数轴可知c<a<0<b,且|a|<|b|<|c|,则a﹣b<0、a+c<0、b﹣2c>0,∴原式=b﹣a﹣2(a+c)﹣(b﹣2c)=b﹣a﹣2a﹣2c﹣b+2c=﹣3a.4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.解:根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b﹣c>0,a﹣c>0,则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.解:∵由图可知,c<a<b,∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)=a﹣c﹣2b+c﹣a﹣c﹣a﹣b=﹣a﹣3b﹣c.6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.解:根据图示,可得c<b<0<a,且a<|c|,∴a+c<0,2a+b>0,c﹣b<0,∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b+c﹣b=a.7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)=b.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.解:根据数轴上点的位置得:﹣1<c<0<a<b,∴c﹣1<0,a﹣c>0,a﹣b<0,则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,∴a﹣c<0,a+b>0,b﹣c<0,2b<0原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)=c﹣a﹣a﹣b﹣c+b﹣2b=﹣2a﹣2b.11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.解:∵由数轴上a、b、c的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b=﹣c.12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.解:∵由图可知,c<a<0<b,∴2b﹣c>0,c-a<0,a﹣b<0,∴原式=2b﹣c+2(c-a)+3(b﹣a)=2b﹣c+2c﹣2a+3b-3a=-5a+b+c.15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.解:∵由数轴上a、b、c的位置可知,a<b<0<c,∴a﹣b<0,c﹣a>0,b+c>0,∴原式=﹣a﹣[﹣(a﹣b)]+(c﹣a)+(b+c)=﹣a+a﹣b+c﹣a+b+c=﹣a+2c.16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则|2a﹣b|+3|c﹣a|﹣2|b﹣c|,=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),=﹣2a+b+3c﹣3a+2b﹣2c,=﹣5a+3b+c.18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b ﹣c|.解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,则|a﹣b|+3|c﹣a|﹣|b﹣c|=b﹣a+3(c﹣a)﹣(c﹣b)=b﹣a+3c﹣3a﹣c+b=2b﹣4a+2c.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|,=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,=﹣3a﹣c+b.20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.。

七年级数学上册1.2.4 绝对值-化简绝对值 选择题专项练习三(人教版,含解析)

七年级数学上册1.2.4 绝对值-化简绝对值 选择题专项练习三(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-化简绝对值1.下列关系一定成立的是( )A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b|2.若|a|=3,|b|=5,a 与b 异号,则|a -b|的值为( )A .2B .2-C .8D .2或83.|x|=2,则x 是( )A .2B .2-C .12 D .2或2-4.|-2018|等于( )A .-2018B .2018C .8012D .120185.a ,b ,c 的大小关系如图所示,则 a b b c caa b b c c a ----+---∣∣∣∣∣∣ 的值是 ( )A .3-B .1-C .1D .36.若aab b =- ,则下列结论正确的是( )A .0,0a b <<B . 0,0a b >>C .0ab >D . 0ab ≤7.已知a 、b 、c 都是不等于0的数,求a b c abca b c abc +++的所有可能的值有()个. A .1 B .2 C .3 D .48.把下列各数在数轴上表示出来,表示在数轴最左边的数是( )A .23- B .32- C .0 D .()2.5--9.有理数a 在数轴上的表示如图所示,那么1a +=( )A .1+aB .1-aC .-1-aD .-1+a10.如果|a|=-a ,那么a 一定是 ( )A .正数B .负数C .非正数D .非负数11.如图数轴的A 、B 、C 三点所表示的数分别为a 、b 、c .若|a ﹣b|=3,|b ﹣c|=5,且原点O 与A 、B 的距离分别为4、1,则关于O 的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、B 之间C .介于B 、C 之间D .在C 的右边12.x 、y 、z 在数轴上的位置如图所示,则化简|x ﹣y|+|z ﹣y|的结果是( )A .x ﹣zB .z ﹣xC .x+z ﹣2yD .以上都不对13.已知∣a∣=-a,化简∣a -1∣-∣a -2∣所得的结果是( )A .-1B .1C .2a -3D .3-2a14.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --15.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列各式正确的个数有( ) ①abc >0;②a ﹣b+c <0;③||||1||a bc a b c ++=-;④|a+b|﹣|b ﹣c|+|a ﹣c|=﹣2c .A .4个B .3个C .2个D .1个16.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①0abc <;②0a b c -+<;③3abca b c ++=;④2a b b c a c a --++-=.A .4个B .3个C .2个D .1个17.在﹣710,0,﹣|﹣5|,﹣0.6,2,﹣(﹣13),﹣10中负数的个数有( )A .3B .4C .5D .618.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a -b|的结果为( )A .2aB .-2bC .-2aD .2b19.实数a ,b 在数轴上的位置如图所示,则|a|﹣|b|可化简为( )A .a ﹣bB .b ﹣aC .a+bD .﹣a ﹣b20.若a 是负数,则||a a +的值是( )A .负数B .零C .非负数D .无法确定参考答案1.D解析:根据绝对值的定义进行分析即可得出正确结论.详解:选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.2.C解析:先根据绝对值的性质求出a、b的值,再根据a、b异号讨论a、b的值,代入代数式进行计算.详解:∣|a|=3,|b|=5,∣a=±3,b=±5,∣a、b异号,∣当a=3时,b=-5,此时原式=|3-(-5)|=|8|=8;当a=-3时,b=5,此时原式=|-3-5|=|-8|=8.故选C.点睛:本题考查的是绝对值的性质及代数式求值,熟练掌握绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0是解题的关键.3.D解析:利用绝对值的代数意义求出x的值即可.详解:|x|=2,则x是2或-2,故选:D.点睛:此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.解析:根据绝对值的概念判断即可.详解:|-2018|=2018故选B点睛:本题考查绝对值得概念,熟悉“正数的绝对是是它本事,负数的绝对值是它的相反数”是解题关键.5.A解析:先根据数轴分别判断出a b b c c a ---,,的符号,然后根据绝对值的性质去绝对值,化简即可.详解:解:由数轴可知: 0,00a b b c c a -<->-<, ∣a b b c c a a b b c c a ----+---∣∣∣∣∣∣=()()a b b c c a a b b c c a ----+----- =()111--+-=3-故选A.点睛:此题考查的是数轴的比较大小和去绝对值,掌握利用数轴比较大小和绝对值的性质是解决此题的关键.6.D解析:根据绝对值的性质:正数的绝对值等于这个数本身,负数的绝对值等于这个数的相反数,0的绝对值还是0进行判断.详解:a ab b=- ∴0a b≤ ∴a,b 异号∴ 0ab ≤故选D.本题考查了绝对值的化简,熟练掌握绝对值的性质是解题的关键.7.C解析:根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.详解:由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .点睛:本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.8.B解析:先根据绝对值运算、去括号法则化简选项,再根据数轴的定义即可得.详解:()22, 2.5 2.533-=--= 由数轴的定义,将四个选项在数轴上表示出来如下:由此可知,表示在数轴最左边的数是32-故选:B .点睛:本题考查了绝对值运算、去括号法则、数轴的定义,掌握理解数轴的定义是解题关键.9.B解析:由数轴可得到-1<a<0<1,从而逐步去掉绝对值,进而得出答案.详解:解:∣-1<a<0<1,∣|a|=a,1-a>0,+=1a-=1-a.则1a故答案选择B.点睛:从数轴得出a的取值范围,依据绝对值的性质逐步去掉绝对值是解题的关键.10.C解析:根据负数的绝对值等于他的相反数,可得答案.详解:∣负数的绝对值等于他的相反数,|a|=-a,∣a一定是非正数,故选C.点睛:考查了绝对值,注意负数的绝对值等于他的相反数.11.C解析:分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∣|a﹣b|=3,|b﹣c|=5,∣b=a+3,c=b+5,∣原点O与A、B的距离分别为4、1,∣a=±4,b=±1,∣b=a+3,∣a=﹣4,b=﹣1,∣c=b+5,∣c=4.∣点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.12.B解析:根据x、y、z在数轴上的位置,先判断出x-y和z-y的符号,在此基础上,根据绝对值的性质来化简给出的式子.详解:由数轴上x、y、z的位置,知:x<y<z;所以x-y<0,z-y>0;故|x-y|+|z-y|=-(x-y)+z-y=z-x.故选B.点睛:此题借助数轴考查了用几何方法化简含有绝对值的式子,能够正确的判断出各数的符号是解答此类题的关键.13.A解析:根据|a|=-a,可知a≤0,继而判断出a-1,a-2的符号,后去绝对值求解.详解:∣|a|=-a,∣a≤0.则|a-1|-|a-2|=-(a-1)+(a-2)=-1.故选:A.点睛:本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.D解析:负数小于0,可将各项化简,然后再进行判断.详解:解:A、−(−3+a)=3−a,当a≤3时,原式不是负数,故A错误;B、−a,当a≤0时,原式不是负数,故B错误;C、−|a+1|≤0,当a=−1时,原式不是负数,故C错误;D、∣−|a|≤0,∣−|a|−1≤−1<0,原式一定是负数,故选D.点评:点睛:本题考查了负数的定义和绝对值化简,掌握负数的定义以及绝对值的性质是解答此题的关键.15.B解析:先由数轴观察得出b<c<0<a,|b|>|c|>|a|,据此逐项计算验证即可.详解:解:∣由数轴可得:b <c <0<a ,|b|>|c|>|a|∣abc >0,①正确;a ﹣b+c >0,②错误;||||||a b c a b c++=1﹣1﹣1=﹣1,③正确; |a+b|﹣|b ﹣c|+|a ﹣c|=﹣a ﹣b ﹣(c ﹣b )+a ﹣c=﹣a ﹣b ﹣c+b+a ﹣c=﹣2c④正确.综上,正确的个数为3个.故选B .点睛:本题主要考查数轴上的有理数的正负性,绝对值以及大小比较,掌握有理数的四则运算法则和求绝对值法则,是解题的关键.16.D解析:先由数轴观察得出b <c <0<a ,|b|>|c|>|a|,据此逐项计算验证即可.详解:解:∣由数轴可得:b <c <0<a ,|b|>|c|>|a|∣abc >0,①错误;a -b+c >0,②错误;abca b c ++=1-1-1=-1,③错误;a b b c a c --++-=a -b -(-b -c)+a -c=a -b+b+c+a -c=2a ,④正确.综上,正确的个数为1个.故选:D .点睛:本题考查了利用数轴进行的相关计算,数形结合并明确绝对值等的化简法则,是解题的关键.17.B解析:负数就是小于0的数,依据定义即可求解.详解:解:﹣|﹣5|=﹣5,﹣(﹣13)=13,故负数有﹣710,﹣|﹣5|,﹣0.6,﹣10,共4个. 故选:B .点睛: 此题考查了正数和负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.18.A解析:试题分析:根据有理数a 、b 在数轴上的位置,可得,a<0,b>0,所以∣a∣<∣b∣,所以可得,a+b>0,a -b<0则=(a+b )+a -b=a+b+a -b=2a,故选A 考点:1.数轴;2.绝对值19.C解析:试题分析:观察数轴可得a >0,b <0,所以则|a|﹣|b|=a ﹣(﹣b )=a+b .故答案选C . 考点:数轴;绝对值.20.B解析:根据绝对值的性质化简即可.详解:解:∣a 是负数,∣||0a a a a +=-+=,故选:B .点睛:本题主要考查了化简绝对值,解题的关键是熟知正数和零的绝对值是它本身,负数的绝对值是它的相反数.。

七年级语文--绝对值化简专题训练

七年级语文--绝对值化简专题训练

七年级语文--绝对值化简专题训练一、什么是绝对值?绝对值是一个数的非负值。

绝对值通常用竖线符号 | | 表示。

例如,|3| 的绝对值是 3。

绝对值表示数与零点之间的距离。

二、绝对值的化简规则1. 正数的绝对值等于本身。

例如,|5| = 5。

2. 负数的绝对值等于它的相反数。

例如,|-3| = 3。

3. 零的绝对值仍然是零。

例如,|0| = 0。

三、绝对值化简的专题训练1. 计算下列各组数的绝对值:a) |-7| = ?b) |2| = ?c) |-12| = ?d) |0| = ?e) |-9| = ?2. 化简下列各式并计算结果:a) |-5| + |8| = ?b) |3 - 9| = ?c) |-2 + 4| = ?d) |5 - 5| = ?e) |-10 + 3| = ?3. 填写下列各题中的空白处,并计算结果:a) |7| - |3| = ?b) |9 - 12| + |4| = ?c) |2 + (-6)| - |-3 - 5| = ?d) |-4| + |8 + (-8)| = ?e) |-1 - 6| - |3| = ?4. 解方程:a) |x - 2| = 4,求 x 的值。

b) |-2x| = 10,求 x 的值。

c) |3x + 5| = 7,求 x 的值。

d) |2x - 3| = 9,求 x 的值。

e) |4x| - 2 = 14,求 x 的值。

以上是七年级语文的绝对值化简专题训练,通过练和理解绝对值的概念和化简规则,可以帮助学生提高解决绝对值问题的能力。

七年级数数学绝对值化简专题训练试题

七年级数数学绝对值化简专题训练试题

绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉绝对值符号的方法大致有三种类型;一、根据题设条件例1 设化简的结果是 ;A B C D思路分析由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.解∴应选B.归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.二、借助数轴例2 实数a、b、c在数轴上的位置如图所示,则代数式的值等于.A B C D思路分析由数轴上容易看出 ,这就为去掉绝对值符号扫清了障碍.解原式∴应选C.归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:1.零点的左边都是负数,右边都是正数.2.右边点表示的数总大于左边点表示的数.3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.三、采用零点分段讨论法例3 化简思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.解令得零点:;令得零点: ,把数轴上的数分为三个部分如图①当时,∴原式②当时, ,∴原式③当时, ,∴原式∴归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点不一定是两个.2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,得到问题的答案.误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.练习:请用文本例1介绍的方法解答l、2题1.已知a、b、c、d满足且 ,那么2.若 ,则有 ;A B C D请用本文例2介绍的方法解答3、4题3.有理数a、b、c在数轴上的位置如图所示,则式子化简结果为.A B C D4.有理数a、b在数轴上的对应点如图所示,那么下列四个式子,中负数的个数是.A0 B1 C2 D3请用本文例3介绍的方法解答5、6题5.化简6.设x是实数,下列四个结论中正确的是 ;A y没有最小值B有有限多个x使y取到最小值C只有一个x使y取得最小值D有无穷多个x使y取得最小值。

七年级历史--绝对值化简专题训练

七年级历史--绝对值化简专题训练

七年级历史--绝对值化简专题训练
目标:通过绝对值化简专题训练,帮助七年级学生掌握绝对值的概念和运算规则。

通过绝对值化简专题训练,帮助七年级学生掌握绝对值的概念和运算规则。

绝对值的概念:绝对值是一个数与零之间的距离,无论这个数是正数还是负数,绝对值都是正数。

绝对值是一个数与零之间的距离,无论这个数是正数还是负数,绝对值都是正数。

绝对值的运算规则:
- 正数的绝对值就是这个数本身。

- 负数的绝对值是它的相反数。

绝对值的化简方法:
1. 如果绝对值内是正数,化简后的结果还是这个数本身。

例如:$|2|=2$
2. 如果绝对值内是负数,去掉负号,化简后的结果是这个数的相反数。

例如:$|-5|=5$
3. 如果绝对值内是一个算式,先计算这个算式的值,然后按照规则1和规则2处理。

例如:$|3-8|=|-5|=5$
绝对值化简专题训练:
1. 化简下列绝对值:
- $|7|$
- $|-10|$
- $|-2-6|$
- $|8-15|$
- $|-4+9|$
2. 解答问题:
- $|-7|$ 与 $|7|$ 之间有什么关系?
- $|-x|$ 与 $|x|$ 之间有什么关系?
3. 计算下列算式的值:
- $|3-12|$
- $|5-(-9)|$
- $|7+(-5)|$
- $|6-(2+4)|$
- $|(5-3)+(6-2)|$
通过完成以上练习,相信同学们能够更好地理解绝对值的概念和运算规则,并能够熟练地进行绝对值化简。

祝愿同学们顺利掌握这一专题!。

七年级数学下-专题 含有绝对值的式子的化简(解析版)

七年级数学下-专题 含有绝对值的式子的化简(解析版)

(人教版)七年级上册数学《第二章整式的加减》专题含有绝对值的式子的化简一、选择题(共10小题)1.有理数a、b在如图所示数轴的对应位置上,则|b﹣a|﹣|b|化简后结果为()A.a B.﹣a C.a﹣2b D.b﹣2a【分析】代入化简后的算式,求出算式的值是多少即可.【解答】解:|b﹣a|﹣|b|=a﹣b+b=a,故选:A.【点评】此题主要考查了整式的加减﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.2.(2022秋•罗湖区校级期末)有理数a,b在数轴上如图所示,则化简|2a|﹣|b|+|2a﹣5|的结果是()A.4a+b﹣5B.4a﹣b﹣5C.b+5D.﹣b﹣5【分析】先结合数轴确定a,b的范围,再运用绝对值知识进行化简.【解答】解:由题意可得,﹣2<b<﹣1<1<a<2,∴|2a|﹣|b|+|2a﹣5|=2a﹣(﹣b)+[﹣(2a﹣5)]=2a+b﹣2a+5=b+5,故选:C.【点评】此题考查了运用数轴表示有理数及绝对值求解的能力,关键是能准确理解并运用以上知识.3.(2022秋•天山区校级期末)已知a,b,c在数轴上位置如图所示,则|a﹣b|﹣|b﹣c|+|c﹣a|可化简为()A.0B.2b﹣2a C.2a﹣2b D.﹣2a【分析】先由数轴确定a,b,c的符号和大小,再分别确定a﹣b,b﹣c,c﹣a的符号,最后化简绝对值并计算求解.【解答】解:由题意得,a<b<0<c且|a|>|b|>|c|,∴a﹣b<0,b﹣c<0,c﹣a>0,∴|a﹣b|﹣|b﹣c|+|c﹣a|=b﹣a+b﹣c+c﹣a=2b﹣2a,故选:B.【点评】此题考查了运用数轴进行绝对值的化简、计算能力,关键是能准确理解并运用以上知识.4.(2022秋•永兴县期末)有理数a,b,c在数轴上的位置如图所示,式子|a|+|b|+|a+b|+|b﹣c|化简为()A.2a+3b﹣c B.3b﹣c C.b+c D.c﹣b【分析】根据正数的绝对值等于它本身,负数的绝对值等于它的相反数可得结果.【解答】解:由数轴得,﹣1<a<0,b>1,c>b,∴a+b>0,b﹣c>0,∴|a|+|b|+|a+b|+|b﹣c|=﹣a+b+a+b﹣b+c=b+c.故选:C.【点评】本题考查了绝对值与数轴,用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.5.(2022秋•黄埔区期末)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0B.2a+2b C.2b﹣2c D.2a+2c【分析】先根据各点在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可.【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.【点评】本题考查的是整式的加减、数轴和绝对值,熟知数轴上右边的数总比左边的大是解答此题的关键.6.已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|c﹣b|=()A.0B.2a+2b C.2b﹣2c D.2a+2c【分析】根据数轴的意义可知:c<a<0<b,结合绝对值的性质化简给出的式子.【解答】解:根据数轴图可知:c<a<0<b,∴a+b>0,a+c<0,c﹣b<0,∴|a+b|+|a+c|﹣|c﹣b|=a+b﹣a﹣c+c﹣b=0.故选:A.【点评】此题考查了数轴、绝对值的有关内容,能够正确判断绝对值内的式子的符号,再根据绝对值的性质正确化简.7.已知有理数a,b在数轴上的位置如图所示,则化简|b+1|﹣|b﹣a|的结果为()A.a﹣2b﹣1B.a+1C.﹣a﹣1D.﹣a+2b+1【分析】先根据数轴判断a、b的大小,再判断所求式子中绝对值内部的符号,再化简求值.【解答】解:由数轴可知,﹣1<b<0,1<a<2,∴b+1>0,|b+1|=b+1,b﹣a<0,|b﹣a|=a﹣b,∴原式=b+1﹣(a﹣b)=1+2b﹣a,故选:D.【点评】本题考查绝对值和数轴.关键在于根据数轴判断b+1、b﹣a的符号,进而取绝对值化简求值.8.有理数a、b、c在数轴上位置如图,则|c﹣a|﹣|a+b|﹣|b﹣c|的值为()A.2a﹣2c+2b B.0C.﹣2c D.2a【分析】根据点所处的位置确定绝对值内数据的符号:c﹣a<0,a+b<0,b﹣c<0,即可求解.【解答】解:根据点所处的位置确定绝对值内数据的符号:c﹣a<0,a+b<0,b﹣c<0,原式=﹣(c﹣a)+(a+b)+(b﹣c)=2a﹣2c+2b,故选:A.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.9.已知有理数a,b,c在数轴上的位置如图,且|c|>|a|>|b|,则|a+b|﹣2|c﹣b|+|a+c|=()A.c﹣b B.0C.3b﹣3c D.2a+3b﹣c【分析】由有理数a,b,c在数轴上的位置及|c|>|a|>|b|可得:c<b<0<﹣b<a<﹣c,再按照绝对值的化简法则和有理数的加减运算法则计算即可.【解答】解:由有理数a,b,c在数轴上的位置及|c|>|a|>|b|可得:c<b<0<﹣b<a<﹣c,∴|a+b|﹣2|c﹣b|+|a+c|=a+b﹣2(b﹣c)﹣a﹣c=b﹣2b+2c﹣c=c﹣b.故选:A.【点评】本题考查了借助数轴进行的绝对值化简及有理数的加减运算,数形结合并熟练掌握相关运算法则是解题的关键.10.(2022秋•辉县市校级期末)有理数a,b,c在数轴上所对应的点的位置如图所示,试化简|a﹣b|﹣2|b﹣c|+|a+b|﹣|c+b|的结果是()A.﹣3b+3c B.3b﹣3c C.﹣2a+3b+c D.2a﹣b+3c【分析】根据有理数a,b,c在数轴上所对应的点的位置得出c<b<0<a,|a|<|b|<|c|,然后化简绝对值即可.【解答】解:∵c<b<0<a,|a|<|b|<|c|,∴a﹣b>0,|b﹣c|>0,|a+b|<0,|c+b|<0,∴|a﹣b|﹣2|b﹣c|+|a+b|﹣|c+b|=a﹣b﹣2(b﹣c)+[﹣(a+b)]﹣[﹣(c+b)]=a﹣b﹣2b+2c﹣(a+b)+(c+b)=a﹣b﹣2b+2c﹣a﹣b+c+b=﹣3b+3c,故选:A.【点评】本题主要考查了绝对值的意义,有理数加法、减法运算,合并同类项,解题的关键是根据有理数a,b,c在数轴上所对应的点的位置得出c<b<0<a,|a|<|b|<|c|.二、填空题(共10小题)11.(2022秋•莱阳市期末)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|=.【分析】由数轴上右边的数总比左边的数大,且离原点的距离大小即为绝对值的大小,判断出a+b与c ﹣b的正负,利用绝对值的代数意义化简所求式子,合并同类项即可得到结果.【解答】解:由数轴上点的位置可得:c<b<0<a,且|a|<|b|,∴a﹣b>0,c﹣b<0,a+b+c<0,则|a﹣b|+|a+b+c|﹣|c﹣b|=a﹣b﹣a﹣b﹣c+c﹣b=﹣3b.故答案为:﹣3b【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.12.(2022秋•温江区校级期中)有理数a,b,c数轴上的位置如图所示,请化简:|﹣c+b|+|a﹣c|﹣|b+a|=.【分析】结合数轴判断﹣c+b<0,a﹣c>0,b+a<0,再根据绝对值的性质“正数和零的绝对值是本身,负数的绝对值是相反数”可将原式化简,即得答案.【解答】解:由数轴可知:﹣c+b<0,a﹣c>0,b+a<0,∴原式=﹣(﹣c+b)+(a﹣c)+(b+a)=c﹣b+a﹣c+b+a=2a,故答案为:2a.【点评】本题考查了数轴,绝对值,关键是根据绝对值的性质“正数和零的绝对值是本身,负数的绝对值是相反数”将原式化简.13.有理数a、b、c在数轴上的位置如图,则|a+c|+|c﹣b|﹣|a+b|=.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴得:a<b<0<c,且|a|>|b|>|c|,∴a+c<0,c﹣b>0,a+b<0,则原式=﹣a﹣c+c﹣b+a+b=0.故答案为:0.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14.有理数a,b,c在数轴上的对应点如图所示,化简|a﹣b|﹣|a+c|+|b﹣c|=.【分析】根据绝对值的性质,可化简绝对值,根据整式的加减,可得答案.【解答】解:|a﹣b|﹣|a+c|+|b﹣c|=﹣(a﹣b)+(a+c)+(b﹣c)=﹣a+b+a+c+b﹣c=2b.故答案为:2b.【点评】本题考查了数轴,利用绝对值的性质化简是解题关键.15.有理数a,b,c在数轴上的位置如图所示,化简|a+b﹣c|﹣|c﹣b|+2|a+c|=.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴a+b﹣c<0,c﹣b>0,a+c<0,则原式=﹣a﹣b+c﹣c+b﹣2a﹣2c=﹣3a﹣2c,故答案为:﹣3a﹣2c.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.16.a,b,c三个数在数轴上的位置如图所示,化简|a+b|﹣|b﹣c|+|c﹣a|﹣|a﹣b|=.【分析】根据数轴点的位置得出a+b<0,b﹣c<0,c﹣a>0,a﹣b<0,再去掉绝对值符号,合并同类项即可.【解答】解:∵从数轴可知:a<b<0<c,|b|<|c|,∴a+b<0,b﹣c<0,c﹣a>0,a﹣b<0,∴|a+b|﹣|b﹣c|+|c﹣a|﹣|a﹣b|==﹣(a+b)﹣(c﹣b)+(c﹣a)﹣(b﹣a)=﹣a﹣b﹣c+b+c﹣a﹣b+a=﹣a﹣b,故答案为:﹣a﹣b.【点评】本题考查了整式的加减和数轴的应用,解此题的关键是能根据数轴去掉绝对值符号,题目比较好,难度不是很大.17.已知数a、b、c在数轴上的位置如图所示,则|a﹣c|﹣|a+b+c|﹣|b﹣a|=.【分析】先根据a、b、c在数轴上的位置进行绝对值的化简,然后去括号,合并同类项求解.【解答】解:由图可得,c<b<0<a,则原式=a﹣c+(a+b+c)+(b﹣a)=a﹣c+a+b+c+b﹣a=a+2b.故答案为:a+2b.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.18.已知有理数a,b,c在数轴上的位置如图所示,化简:|b﹣c|﹣2|b﹣a|+|c+a|=.【分析】根据数轴上右边的数总比左边的数法,判断大小;原式各项利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:c<b<0<a,|c|>|a|,∴﹣c>a,∴b﹣c>0,b﹣a<0,a+c<0,∴原式=b﹣c﹣2(a﹣b)+(﹣c﹣a)=b﹣c﹣2a+2b﹣c﹣a=﹣3a+3b﹣2c;故答案为﹣3a+3b﹣2c.【点评】此题考查了整式的加减,绝对值,以及有理数的大小比较,熟练掌握运算法则是解本题的关键.19.表示有理数a,b,c的点在数轴上的位置如图所示,请化简|a+b|﹣2|a﹣c|+|c﹣a+b|=.【分析】根据数轴先判断a、b、c的符号和大小关系,再判断a+b、a﹣c、c﹣a+b的符号,进而去绝对值化简.【解答】解:根据数轴可知,a<b<0<c,故a+b<0,a﹣c<0,c﹣a+b>b﹣a>0,∴原式=﹣(a+b)﹣2(c﹣a)+(c﹣a+b)=﹣a﹣b﹣2c+2a+c﹣a+b=﹣c.故答案为:﹣c.【点评】本题考查了绝对值的的化简.通过数轴判断a、b、c的符号,再判断绝对值中的式子符号,是解题的关键.有的时候还需要注意有理数与原点距离的远近.20.数a,b,c在数轴上的位置如图所示.化简:2|b﹣a|﹣|c﹣b|+|a+b|=.【分析】根据数轴即可将绝对值去掉,然后合并即可.【解答】解:由数轴可知:c<b<a,b﹣a<0,c﹣b<0,a+b>0,则原式=﹣2(b﹣a)+(c﹣b)+(a+b)=﹣2b+2a+c﹣b+a+b=3a﹣2b+c.故答案为:3a﹣2b+c.【点评】本题考查整式化简运算,涉及数轴,绝对值的性质,整式加减运算等知识.三、解答题(共20小题)21.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|【分析】由题意可知:a﹣b>0,a+c<0,c﹣a<0,a+b+c<0,b﹣c>0,根据绝对值的性质化简即可.【解答】解:由题意可知:a﹣b>0,a+c<0,c﹣a<0,a+b+c<0,b﹣c>0,原式=a﹣b+a+c+c﹣a﹣a﹣b﹣c+b﹣c=﹣b【点评】本题考查数轴、绝对值等知识,解题的关键是记住绝对值的性质:数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.22.已知有理数a、b、c在数轴上对应点的位置如图所示.化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.【分析】由数轴得出﹣1<c<0<b<1<a,|b|<|c|<|a|,去掉绝对值符号,再合并即可.【解答】解:∵由数轴可知:﹣1<c<0<b<1<a,|b|<|c|<|a|,∴a﹣b>0,b﹣c>0,c﹣a<0,b+c<0,∴原式=a﹣b+b﹣c+c﹣a﹣(b+c)=﹣b﹣c.【点评】本题考查了数轴和绝对值,能正确去掉绝对值符号是解此题的关键.23.有理数a、b、c在数轴上的位置如图所示.化简:3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|﹣|b﹣a+c|.【分析】根据数轴,先确定a、b、c的正负,再判断a﹣b,a+b,c﹣a,b﹣c,b﹣a+c的正负,最后根据绝对值的意义,对代数式化简.【解答】解:由数轴知:a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,b﹣a+c>0所以3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|﹣|b﹣a+c|=3(b﹣a)﹣(a+b)﹣(c﹣a)+2(c﹣b)﹣(b﹣a+c)=3b﹣3a﹣a﹣b﹣c+a+2c﹣2b﹣b+a﹣c=﹣b﹣2a.【点评】本题考查了数轴上点的特点、有理数的加减法法则及绝对值的化简.根据绝对值的意义化简代数式是关键.注意:大的数﹣小的数>0,小的数﹣大的数<0.24.有理数a,b,c在数轴上的位置如图:试化简:|a﹣b|﹣|c﹣a|+|b﹣c|﹣|c|【分析】根据绝对值的性质化简即可.【解答】解:由题意:a﹣b>0,c﹣a<0,b﹣c>0,c<0,∴|a﹣b|﹣|c﹣a|+|b﹣c|﹣|c|=a﹣b+c﹣a+b﹣c+c=c.【点评】本题考查绝对值的性质、数轴等知识,熟练掌握绝对值的性质是解决问题的关键.25.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|.【分析】首先判断出a<0,a+b<0,c﹣a>0,再根据绝对值的性质化简即可.【解答】解:观察数轴可知:a<0,a+b<0,c﹣a>0∴原式=﹣a+a+b+c﹣a=b+c﹣a.【点评】本题考查数轴、绝对值的性质等知识,解题的关键是熟练掌握绝对值的性质,记住如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.26.已知a,b在数轴上对应的点如图示化简:|a|+|a+b|﹣|a﹣b|﹣|b﹣a|.【分析】首先根据图示,可得a<0,a+b<0,b﹣a>0,a﹣b<0,然后根据整数的加减的运算方法,求出算式的值是多少即可.【解答】解:根据图示,可得a<﹣b<0<b<﹣a;∴a<0,a+b<0,a﹣b<0,b﹣a>0,∴|a|=﹣a,|a+b|=﹣(a+b),|a﹣b|=﹣(a﹣b,|b﹣a|=b﹣a,∴|a|+|a+b|﹣|a﹣b|﹣|b﹣a|=﹣a﹣a﹣b+a﹣b﹣b+a=﹣3b.【点评】此题考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大.还考查了整式的加减运算,解答此类问题的关键是要明确整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.27.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|+|a﹣b|﹣|b﹣c|+|2a|.【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值的性质去掉绝对值号,再合并同类项即可.【解答】解:由图可知,a<0,b>0,c<0且|c|>|a|>|b|,所以,a﹣b<0,b﹣c>0,a﹣c>0,所以原式=a﹣c+b﹣a﹣b+c﹣2a=﹣2a.【点评】本题考查了数轴,绝对值的性质,准确识图并判断出各数正负情况是解题的关键.28.已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|﹣|a+c|+2|c﹣b|.【分析】解决此题关键要对a,b,c与0进行比较,进而确定b﹣a,a+c,c﹣b与0的关系,从而很好的去掉绝对值符号.【解答】解:由数轴可知:a>b>0>c,|a|>|c|,则b﹣a<0,a+c>0,c﹣b<0.∴|b﹣a|﹣|a+c|+2|c﹣b|=﹣(b﹣a)﹣(a+c)﹣2(c﹣b)=﹣b+a﹣a﹣c﹣2c+2b=b﹣3c.【点评】在去绝对值符号时要注意:大于0的数值绝对值是它本身,小于零的数值绝对值是它的相反数.29.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.【分析】先根据各点在数轴上的位置判断出其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.【点评】本题主要考查了数轴和绝对值,理解绝对值的意义是解答此题的关键.30.如图,数a,b,c在数轴上的位置如图.(1)判断符号:a+b0,b﹣c0,a﹣c0;(填“>”、“<”)(2)化简:|b﹣c|﹣|a+b|﹣|a﹣c|.【分析】(1)根据数轴、有理数的加法可判断a+b,b﹣c,a﹣c的符号;(2)根据绝对值和a+b,b﹣c,a﹣c的符号化简式子|b﹣c|﹣|a+b|﹣|a﹣c|即可.【解答】解:(1)由数轴得,a>c>0<b,|b|>a>c,∴a+b<0,b﹣c<0,a﹣c>0;故答案为:<,<,>;(2)∵a+b<0,b﹣c<0,a﹣c>0,∴|b﹣c|﹣|a+b|﹣|a﹣c|=﹣b+c﹣(﹣a﹣b)﹣(a﹣c)=﹣b+c+a+b﹣a+c=2c.【点评】本题考查了数轴,有理数的加减运算法则,绝对值的性质,整式的加减,掌握正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0是解题的关键.31.(2022秋•綦江区期中)有理数a、b、c在数轴上的对应点的位置如图所示:(1)用“>”“<”或“=”填空:a+b0,c﹣a0,b﹣c0;(2)化简:|a+b|﹣|c﹣a|﹣|b|+|b﹣c|.【分析】(1)根据各点在数轴上的位置判断出a,b,c的符号,进而可得出结论;(2)根据(1)中a,b,c的符号去绝对值符号即可.【解答】解:(1)由各点在数轴上的位置可知,a<0<b<c,|a|>b,∴a+b<0,c﹣a>0,b﹣c<0.故答案为:<,>,<.(2)∵由(1)可知,a+b<0,c﹣a>0,b﹣c<0,∴|a+b|﹣|c﹣a|﹣|b|+|b﹣c|=﹣(a+b)﹣(c﹣a)﹣b+(c﹣b)=﹣a﹣b﹣c+a﹣b+c﹣b=﹣3b.【点评】本题考查的是有理数的大小比较,熟知数轴的特点和绝对值的性质是解题关键.32.(2022春•杜尔伯特县期中)有理数a、b、c在数轴上的位置如图所示.(1)用“<”连接:0,a、b、c.(2)化简:|c﹣a|+2|b﹣c|﹣|a+b|【分析】根据有理数a、b、c在数轴上的位置即可得到结论.【解答】解:(1)a<b<0<c;(2)原式=(c﹣a)+2(﹣b+c)﹣(﹣a﹣b),=c﹣a﹣2b+2c+a+b,=3c﹣b.【点评】本题考查了数轴和有理数的大小比较法则,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.33.有理数a、b、c在数轴上的位置如图所示.(1)判断a﹣b0,a﹣c0,b﹣c0;(2)化简|a﹣b|+|a﹣c|﹣|b﹣c|.【分析】(1)由图可得:c<a<0<b,得a﹣c>0,a﹣b<0,b﹣c>0,从而解决此题.(2)由(1)得:a﹣c>0,a﹣b<0,b﹣c>0.根据绝对值的定义,得|a﹣c|=a﹣c,|a﹣b|=b﹣a,|b ﹣c|=b﹣c,从而解决此题.【解答】解:(1)由图可得:c<a<0<b.∴a﹣c>0,a﹣b<0,b﹣c>0.故答案为:<,>,>.(2)由(1)得:a﹣c>0,a﹣b<0,b﹣c>0,∴|a﹣c|=a﹣c,|a﹣b|=b﹣a,|b﹣c|=b﹣c,∴|a﹣b|+|a﹣c|﹣|b﹣c|=b﹣a+a﹣c+c﹣b=0.【点评】本题主要考查数轴,绝对值、整式的加减运算,熟练掌握实数的大小关系、绝对值的定义、整式的加减运算法则是解决本题的关键.34.有理数a,b,c在数轴上的位置如图所示,(1)用“<”连接0,a,b,c;(2)化简代数式:|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|.【分析】(1)数轴上右边的数总比左边的数大,从而连接即可;(2)根据数轴得出a﹣b>0,a+b<0,c﹣a<0,b﹣c>0,去掉绝对值后合并即可得出答案.【解答】解:(1)结合数轴可得:c<b<0<a;(2)由题意得:a﹣b>0,a+b<0,c﹣a<0,b﹣c>0,故|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|=a﹣b﹣a﹣b﹣a+c+b﹣c=﹣a﹣b.【点评】本题考查了整式的加减、数轴及绝对值的知识,掌握数轴上右边的数总比左边的数大是解答本题的关键.35.若有理数a、b、c在数轴上测的点A、B、C位置如图所示:(1)判断代数式c﹣b、a+c的符号;(2)化简:|﹣c|﹣|c﹣b|+|a+b|+|b|.【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.【解答】解:(1)因为a<b<0<c,|a|>|c|.所以c﹣b>0,a+c<0;(2)因为a<b<0<c,|a|>|c|.所以﹣c<0,c﹣b>0,a+b<0,原式=c﹣(c﹣b)﹣(a+b)﹣b=c﹣c+b﹣a﹣b﹣b=﹣a﹣b.【点评】本题考查了合并同类项,解题的关键是利用绝对值的性质化简绝对值,利用合并同类项得出答案.36.有理数a,b,c在数轴上的位置如图所示,(1)c0;a+c0;b﹣a0(用“>、<、=”填空)(2)试化简:|b﹣a|﹣|a+c|+|c|.【分析】(1)根据在数轴上原点左边的数小于0,得出c<0;a<0<b,再根据有理数的加减法法则判断a+c与b﹣a的符号;(2)先根据绝对值的意义去掉绝对值的符号,再合并同类项即可.【解答】解:(1)由题意,得c<a<0<b,则c<0;a+c<0;b﹣a>0;故答案为<;<;>;(2)原式=b﹣a+a+c﹣c=b.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了数轴与整式的加减.37.已知a>b>0,且|a|>|b|.(1)在数轴上画出a,b,﹣a,﹣b对应的点的大致位置;(2)化简|﹣a|﹣2|a﹣b|+|a+b|.【分析】(1)根据a,b的大小关系在数轴上画出对应点即可.(2)根据绝对值的性质化简即可.【解答】解:(1)如图所示.(2)∵a>b>0,∴a﹣b>0,a+b>0,∴|﹣a|﹣2|a﹣b|+|a+b|=a﹣2(a﹣b)+(a+b)=a﹣2a+2b+a+b=3b.【点评】本题考查作图﹣复杂作图、数轴、绝对值的性质,熟练掌握数轴和绝对值的性质是解答本题的关键.38.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,c,﹣c大小;(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.【分析】(1)根据数轴即可比较大小;(2)根据绝对值的性质对整式进行化简求解.【解答】解:(1)由数轴可知:b<c<0<a,∵|a|=|c|,∴a=﹣c>﹣a=c>b.(2)∵a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴原式=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣2a﹣b+c.【点评】本题考查数轴,涉及比较大小,整式化简,绝对值的性质.39.有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:0,a,b,c;(2)化简代数式:3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.【分析】(1)根据数轴上的数,右边的总大于左边的进行判断即可;(2)根据绝对值的性质去绝对值进行计算.【解答】解:(1)如图可得,a<b<0<c;(2)由(1)得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)+[﹣(a+b)]﹣(c﹣a)+2[﹣(b﹣c)]=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.【点评】本题考查了整式的加减,解题的关键是比较a,b,c的大小以及绝对值的性质.40.(2022秋•锦江区校级期中)知有理数a、b、c在数轴上所对应的点的位单如图所示,原点为O.(1)试化简|a+2b|﹣|a+c|﹣|c﹣2b|;(2)若数轴上有一点所表示的数为x,且|x﹣5|=3,求﹣3x﹣4|1﹣x|的值.【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(2)根据|x﹣5|=3,得x=8或x=2,再依次代入所求式子即可解答.【解答】解:(1)根据数轴上点的位置得:a<b<0<c,∴a+2b<0,a+c<0,c﹣2b>0,则原式=﹣a﹣2b+a+c﹣c+2b=0;(2)∵|x﹣5|=3,∴x﹣5=3或x﹣5=﹣3,∴x=8或x=2,当x=8时,﹣3x﹣4|1﹣x|=﹣3×8﹣4|1﹣8|=﹣52,当x=2时,﹣3x﹣4|1﹣x|=﹣3×2﹣4|1﹣2|=﹣10,综上,﹣3x﹣4|1﹣x|的值为﹣10或﹣52.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.。

七年级数学上册-绝对值化简强化训练(含答案)

七年级数学上册-绝对值化简强化训练(含答案)

七年级数学上册——绝对值化简强化训练1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b-a|+|c-a|-|c-b|。

解:由图可知c<0<a<b,故而b-a>0,c-a<0,c-b<0∴ |b-a|+|c-a|-|c-b|=(b-a)+(a-c)-(b-c)=b-a+a-c-b+c=02.已知有理数a、b、c在数轴上的位置如图所示,化简|b-c|-|c-a|+|b-a|。

解:由图可知c<b<0<a,故而b-c>0,c-a<0,b-a<0∴ |b-c|-|c-a|+|b-a|=(b-c)-(a-c)+(a-b)=b-c-a+c+a-b=03.有理数a、b、c在数轴上的位置如图所示,化简|a-b|+2|a+c|-|b-2c|。

解:由图可知c<a<0<b,故而a-b<0,a+c<0,b-2c>0∴ |a-b|+2|a+c|-|b-2c|=(b-a)+2[-(a+c)]-(b-2c)=b-a-2a-2c-b+2c =-3a4.有理数a、b、c在数轴上的位置如图所示,化简|b+a|-|b-c|+|a-c|。

解:由图可知c<a<0<b且|b|<|a|<|c|,故而b+a<0,b-c>0,a-c>0 ∴ |b+a|-|b-c|+|a-c|=-(b+a)-(b-c)+(a-c)=-b-a-b+c+a-c=2b5.有理数a、b、c在数轴上的位置如图所示,化简|a-c|-|c-2b|+|a+c|-|a+b|。

解:由图可知c<a<0<b,故而a-c>0,c-2b<0,a+c<0,a+b>0∴ |a-c|-|c-2b|+|a+c|-|a+b|=(a-c)-(2b-c)+[-(a+c)]-(a+b)=-a-3b-c 6.若有理数a、b、c在数轴上的位置如图所示,化简|a+c|+|2a+b|-|c-b|。

人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)

人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)

牢记方法规则:1.判断绝对值里面量的正负2.去掉绝对值产生括号3.去掉括号合并同类项第1天1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.:2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.:4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.,5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.第2天6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.*7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.(9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.—10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.!第3天11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.【13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.^14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.】15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.第4天16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.*17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|》18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.!20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.!参考答案1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.【解:由图可得,c<b<0<a,则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.解:由数轴可知c<a<0<b,且|a|<|b|<|c|,则a﹣b<0、a+c<0、b﹣2c>0,∴原式=b﹣a﹣2(a+c)﹣(b﹣2c):=b﹣a﹣2a﹣2c﹣b+2c=﹣3a.4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.解:根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b﹣c>0,a﹣c>0,则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.,解:∵由图可知,c<a<b,∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)=a﹣c﹣2b+c﹣a﹣c﹣a﹣b=﹣a﹣3b﹣c.6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.$解:根据图示,可得c<b<0<a,且a<|c|,∴a+c<0,2a+b>0,c﹣b<0,∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b+c﹣b=a.7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)$=b.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.&解:根据数轴上点的位置得:﹣1<c<0<a<b,∴c﹣1<0,a﹣c>0,a﹣b<0,则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,∴a﹣c<0,a+b>0,b﹣c<0,2b<0原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)`=c﹣a﹣a﹣b﹣c+b﹣2b=﹣2a﹣2b.11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.解:∵由数轴上a、b、c的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b=﹣c.)12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.?解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.~解:∵由图可知,c<a<0<b,∴2b﹣c>0,c-a<0,a﹣b<0,∴原式=2b﹣c+2(c-a)+3(b﹣a)=2b﹣c+2c﹣2a+3b-3a=-5a+b+c.15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.解:∵由数轴上a、b、c的位置可知,a<b<0<c,(∴a﹣b<0,c﹣a>0,b+c>0,∴原式=﹣a﹣[﹣(a﹣b)]+(c﹣a)+(b+c)=﹣a+a﹣b+c﹣a+b+c=﹣a+2c.16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,,则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则|2a﹣b|+3|c﹣a|﹣2|b﹣c|,=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),=﹣2a+b+3c﹣3a+2b﹣2c,=﹣5a+3b+c.18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,则|a﹣b|+3|c﹣a|﹣|b﹣c|=b﹣a+3(c﹣a)﹣(c﹣b)=b﹣a+3c﹣3a﹣c+b=2b﹣4a+2c.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|,=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,=﹣3a﹣c+b.20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值化简专题训练
去绝对值的法则:1、正数的绝对值等于它本身a
a=()0〉a
2、负数的绝对值等于它的相反数a
=()0〈a
a-
3、零的绝对值等于零。

0
a()0=a
=
1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则
(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|
2.如图,数轴上的a、b、c分别表示有理数a、b、c.
(1)化去下列各式的绝对值:
①|c|=;②|a|=;③|a﹣b|=.
(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.
3.数a,b,c在数轴上的位置如图所示:
化简:|b﹣a|﹣|c﹣b|+|a+b|.
4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.
5.已知a、b、c这三个有理数在数轴上的位置如图所示,
化简:|b﹣c|﹣|a﹣b|+|a+c|.
6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.
7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.
8.已知有理数a、b、c在数轴上的位置如图所示,
化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|
9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;
(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;
(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。

相关文档
最新文档