绝对值化简专题训练.doc

合集下载

七年级数学--绝对值化简专题训练

七年级数学--绝对值化简专题训练

绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。

0a()0=a=1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|=;②|a|=;③|a﹣b|=.(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。

七年级语文--绝对值化简专题训练

七年级语文--绝对值化简专题训练

七年级语文--绝对值化简专题训练一、什么是绝对值?绝对值是一个数的非负值。

绝对值通常用竖线符号 | | 表示。

例如,|3| 的绝对值是 3。

绝对值表示数与零点之间的距离。

二、绝对值的化简规则1. 正数的绝对值等于本身。

例如,|5| = 5。

2. 负数的绝对值等于它的相反数。

例如,|-3| = 3。

3. 零的绝对值仍然是零。

例如,|0| = 0。

三、绝对值化简的专题训练1. 计算下列各组数的绝对值:a) |-7| = ?b) |2| = ?c) |-12| = ?d) |0| = ?e) |-9| = ?2. 化简下列各式并计算结果:a) |-5| + |8| = ?b) |3 - 9| = ?c) |-2 + 4| = ?d) |5 - 5| = ?e) |-10 + 3| = ?3. 填写下列各题中的空白处,并计算结果:a) |7| - |3| = ?b) |9 - 12| + |4| = ?c) |2 + (-6)| - |-3 - 5| = ?d) |-4| + |8 + (-8)| = ?e) |-1 - 6| - |3| = ?4. 解方程:a) |x - 2| = 4,求 x 的值。

b) |-2x| = 10,求 x 的值。

c) |3x + 5| = 7,求 x 的值。

d) |2x - 3| = 9,求 x 的值。

e) |4x| - 2 = 14,求 x 的值。

以上是七年级语文的绝对值化简专题训练,通过练和理解绝对值的概念和化简规则,可以帮助学生提高解决绝对值问题的能力。

绝对值化简专题训练2(有难度)(DOC)

绝对值化简专题训练2(有难度)(DOC)

绝对值化简专题训练2(有难度)绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解(1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002,y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.。

绝对值计算化简专项练习30题(有答案)

绝对值计算化简专项练习30题(有答案)

绝对值计算化简专项练习30题(有答案)1.题目中给出了数轴上的位置,求解绝对值计算的结果。

化简后的表达式为:1) |2a| - |a+c| - |1-b| + |-a-b|2) |a-b| + |b-c| + |a-c|2.已知xy<,x<y且|x|=1,|y|=2.根据绝对值的定义,可以列出以下方程:1) x+y=0.x<y。

x=-1.y=12) |x-y|=33.计算绝对值表达式:5 | + |-10| ÷ |-2| = 5 + 5 = 104.当x<0时,求|x+1|+2x的值。

根据绝对值的定义,可以列出以下方程:1) x+1<0.x<-1.|x+1|=-(x+1)。

|x+1|+2x=-x-12) x+1≥0.x>-1.|x+1|=x+1.|x+1|+2x=3x+15.若abc<0,|a+b|=a+b,|a|<-c,求代数式的值。

根据绝对值的定义,可以列出以下方程:a+b|=a+b。

a+b≥0a|=-a。

ac6.若|3a+5|=|2a+10|,求a的值。

根据绝对值的定义,可以列出以下方程:1) 3a+5=2a+10.a=52) 3a+5=-2a-10.a=-57.已知|m-n|=n-m,且|m|=4,|n|=3,求(m+n)的值。

根据绝对值的定义,可以列出以下方程:m-n|=|n-m|。

m-n=n-m。

m=4.n=3.m+n=78.a、b在数轴上的位置如图所示,化简:|a|+|a-b|-|a+b|。

根据绝对值的定义,可以列出以下方程:1) a≥b。

|a|+|a-b|-|a+b|=2a-2b2) a<b。

|a|+|a-b|-|a+b|=2b-2a9.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a-c|-|a-b|-|b-c|+|2a|。

根据绝对值的定义,可以列出以下方程:a-c|=a-c。

a-c≥0a-b|=a-b。

a-b≥0b-c|=b-c。

有理数绝对值化简求值题20道

有理数绝对值化简求值题20道

有理数绝对值化简求值题20道一、基础题型1. 已知a = - 3,求| a|的值。

- 解析:根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

因为a=-3是负数,所以| a|=-a = -(-3)=3。

2. 若b = 5,求| b|的值。

- 解析:由于b = 5是正数,正数的绝对值是它本身,所以| b|=b = 5。

3. 已知c=0,求| c|的值。

- 解析:0的绝对值是0,所以| c| = 0。

二、含有简单运算的题型4. 已知x=-2,求| x + 1|的值。

- 解析:先计算x + 1=-2+1=-1,因为-1是负数,所以| x + 1|=-(x + 1)=-(-1)=1。

5. 若y = 3,求| y-2|的值。

- 解析:先计算y-2 = 3-2 = 1,1是正数,所以| y-2|=y - 2=1。

6. 已知m=-4,求| 2m|的值。

- 解析:先计算2m=2×(-4)=-8,因为-8是负数,所以| 2m|=-2m=-2×(-4)=8。

三、含有多层绝对值的题型7. 已知a=-2,求|| a| - 1|的值。

- 解析:首先| a|=| - 2|=2,然后|| a| - 1|=|2 - 1|=|1| = 1。

8. 若b = 1,求|| b|+2|的值。

- 解析:因为| b|=|1| = 1,所以|| b|+2|=|1 + 2|=|3| = 3。

四、含有字母表达式的题型9. 已知a、b满足a=-b,且b≠0,求| a|+| b|的值。

- 解析:因为a=-b,所以| a|=| - b|=| b|。

则| a|+| b|=| b|+| b| = 2| b|。

10. 若x、y满足x<0,y>0且| x|=| y|,求| x + y|的值。

- 解析:因为x<0,y>0且| x|=| y|,设x=-m,则y = m(m>0)。

那么x + y=-m+m = 0,所以| x + y| = 0。

(完整word版)七年级数学--绝对值化简专题训练

(完整word版)七年级数学--绝对值化简专题训练

(完整word版)七年级数学--绝对值化简专题训练亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。

下面是本文详细内容。

最后最您生活愉快 ~O(∩_∩)O ~绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。

0=a()0=a1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|=;②|a|=;③|a﹣b|=.(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.结尾处,小编送给大家一段话。

七年级数学--绝对值化简专题训练

七年级数学--绝对值化简专题训练

七年级数学--绝对值化简专题训练-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。

0a()0=a=1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|=;②|a|=;③|a﹣b|=.(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。

绝对值化简例题10道

绝对值化简例题10道

绝对值化简例题10道1.已知数轴上点A表示的数为-3,点B表示的数为5,求A、B两点间的距离(用绝对值表示并化简)。

2.某股票第一天的收盘价为每股12元,第二天上涨了3元,第三天又下跌了5元,用绝对值表示并化简第二天相对于第一天的价格变化量和第三天相对于第二天的价格变化量。

3.一辆汽车从A地出发向东行驶,速度为每小时50千米,3小时后到达B地,然后又向西行驶了2小时到达C地,A地在原点位置,向东为正方向,求汽车从B地到C地的位移的绝对值并化简。

4.一个物体在数轴上运动,初始位置在-2的位置,先向右移动4个单位长度,再向左移动3个单位长度,求该物体最终位置与初始位置距离的绝对值并化简。

5.小明家本月收入为8000元,支出了6000元,下个月收入为7000元,支出了8000元,用绝对值表示并化简本月和下个月收支差值。

6.测量某物体的长度,第一次测量值为12.5厘米,第二次测量值为12.2厘米,第三次测量值为12.8厘米,用绝对值表示并化简第一次测量值与第二次测量值的差值的绝对值,以及第二次测量值与第三次测量值的差值的绝对值。

7.某球队在一场比赛中,上半场进了3个球,下半场丢了2个球,用绝对值表示并化简上半场进球数与下半场丢球数差值的绝对值。

8.气温第一天是10℃,第二天下降了5℃,第三天又上升了3℃,用绝对值表示并化简第二天相对于第一天气温变化的绝对值和第三天相对于第二天气温变化的绝对值。

9.水库的水位第一天为15米,第二天上涨了2米,第三天下降了3米,用绝对值表示并化简第二天相对于第一天水位变化的绝对值和第三天相对于第二天水位变化的绝对值。

10.数轴上有一点P对应的数为x,已知点P到点A(-1)的距离与点P到点B(3)的距离相等,求x的值(先根据距离公式列出含绝对值的方程,这里只要求列出题目)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v1.0可编辑可修改
绝对值难题解析
绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数
学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值
符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉
绝对值符号的方法大致有三种类型。

一、根据题设条件
例 1设化简的结果是()。

(A)(B)(C)(D)
思路分析由可知可化去第一层绝对值符号,第二次绝对值符号
待合并整理后再用同样方法化去.

∴应选( B).
归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.
二、借助数轴
例 2实数a、b、c在数轴上的位置如图所示,则代数式的值等于().
(A)(B)(C)(D)
思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.
解原式
∴应选( C).
归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:
1.零点的左边都是负数,右边都是正数.
2.右边点表示的数总大于左边点表示的数.
3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.
三、采用零点分段讨论法
例3化简
思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可
采用零点分段讨论法,本例的难点在于的正负不能确定,由于x 是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.
解令得零点:;
令得零点:,
把数轴上的数分为三个部分(如图)
①当时,
∴原式
②当时,,
∴原式
③当时,,
∴原式

归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:
1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).
2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个
绝对值符号内的部分的正负能够确定.
3.在各区段内分别考察问题.
4.将各区段内的情形综合起来,得到问题的答案.
误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.
练习:
请用文本例 1 介绍的方法解答 l 、2 题
1.已知 a、 b、 c、 d 满足且,那么
2.若,则有()。

(A)(B)(C)(D)
请用本文例 2 介绍的方法解答 3、4 题
3.有理数 a、b、c 在数轴上的位置如图所示,则式子化简结果为().
(A)(B)(C)(D)
4.有理数 a、b 在数轴上的对应点如图所示,那么下列四个式子,
中负数的个数是().
(A)0(B)1(C)2(D)3
请用本文例 3 介绍的方法解答 5、6 题
5.化简
6.设 x 是实数,下列四个结论中正确的是()。

(A)y 没有最小值
(B)有有限多个 x 使 y 取到最小值
v1.0可编辑可修改(C)只有一个 x 使 y 取得最小值
(D)有无穷多个 x 使 y 取得最小值。

相关文档
最新文档