分式的乘法和除法

合集下载

分式的乘除(基础)知识讲解

分式的乘除(基础)知识讲解

分式的乘除(基础)责编:杜少波【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】【高清课堂402545 分式的乘除运算 知识要点】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】类型一、分式的乘法1、计算:(1)422449158a b x x a b g ;(2)222441214a a a a a a -+--+-g . 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算.【答案与解析】解:(1)422449158a b x x a b g 422449315810a b x b x a b x==g g . (2)222441214a a a a a a -+--+-g 22(2)1(1)(2)(2)a a a a a --=-+-g 22(2)(1)(1)(2)(2)a a a a a --=-+-g g 222(1)(2)2a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算.举一反三:【变式】计算.(1)26283m x x m g ;(2)22122x x x x+-+g 【答案】解:(1)原式22621283242m x mx x x m mx ===g g ; (2)原式22112(2)2x x x x x x+==-+-g ; 类型二、分式的除法【高清课堂402545 分式的乘除运算 例1(4)】2、 计算:(1)222324a b a b c cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简.【答案与解析】解:(1)222324a b a b c cd -÷22222244236a b cd a b cd c a b c a b ==--g g 23d c=-.(2) 2222242222x y x y x xy y x xy-+÷+++ 2(2)(2)2()()2x y x y x x y x y x y+-+=++g 22(2)24x x y x xy x y x y --==++. 【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的.举一反三:【变式】(2015•宝鸡校级模拟)化简:.【答案】解:原式=• =.类型三、分式的乘方3、(2014秋•华龙区校级月考)下列计算正确的是( )A. B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C .【解析】解:A 、,本选项错误; B 、,本选项错误;C 、,本选项正确;D 、,本选项错误.所以计算结果正确的是C .【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算4、 计算:(1)(2016春•淅川县期中)(﹣2ab ﹣2c ﹣1)2÷×()3;(2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g . 【思路点拨】先算乘方,再算乘、除.【答案与解析】解:(1)(﹣2ab ﹣2c ﹣1)2÷×()3=﹣•• =﹣. (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g 2222232()1()[()]()a b ab b a a b b a -=+-g g 22222332()()1()()a b a b a b b a a b a b +-=+-g g211()a a b a ab==++. 【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算.举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)2222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭g .【答案】解: (1)332212b ba a ab⎛⎫⎛⎫⎛⎫-÷-÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a ba a ab a b⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭g g.(2)2222()m n n m m nm n mn m--+⎛⎫÷⎪-⎝⎭g22222()()()()m n m n m n m m nm n m n m n mn+---==-+g g.。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。

2. 培养学生运用分式的乘除法解决实际问题的能力。

3. 提高学生对分式运算的兴趣和自信心。

二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。

三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。

四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。

五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。

【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。

2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。

3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。

5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。

7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

8. 总结:让学生总结分式的乘除法运算规则,加深印象。

9. 课堂小测:进行课堂小测,了解学生掌握情况。

10. 课后作业:布置课后作业,让学生巩固所学知识。

六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。

2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。

3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。

七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。

2. 分析学生的学习困难,针对性地调整教学内容和策略。

说课讲稿分式的乘法和除法

说课讲稿分式的乘法和除法

二、探究新知
• 1、类比分数乘除法法则得到分式的乘 除法法则 • 分式的乘法法则:两个分式相乘,把分 子相乘的积作为积的分子,把分母相乘 的积作为积的分母 • 分式的除法法则:两个分式相除,把除 式的分子和分母颠倒位置后再与被除式 相乘。
• 2、用符号语言加以表示 • 分式的乘法:
b d bd a c ac
• 小提示:在运算过程中,应进行约分,如 果分子或分母是多项式,要注意因式分解, 并把结果化为最简分式 。
• 师生互动:安排两名学生板演,每生各做一 题,其余学生两题均做,教师巡视指导; 结合板演情况,先由学生点评修改,再由 老师点评并出示标准做法。教师点评时, 引导学生明白每一步的算理。
• 设计意图:帮助学生熟练乘法法则,并会 应用法则计算分式的乘法题目。学生刚刚 学习了分式的乘法法则,学生能根据法则 进行尝试计算,教师可大胆放手让学生自 己尝试,给学生创造一个自我展示和享受 成功的机会。
一、说教材
• (二)学情分析
• 通过前面的学习,同学们已经有了必要的 知识准备:分式的基本性质、分式的约分、 因式分解;经过前面分数与分式的几次类 比学习,同学们也掌握了必要的学习方 法—类比(分数)学习法。 • 现在所学的乘除法是分式基本性质的一个 应用,一个实践。本节课学生运用分式的 基本性质、分式的约分、因式分解以及类 比学习法,通过自主学习、讨论交流和老 师的点拨,能够掌握分式的乘除法的法则 和具体应用。
说课讲稿
3.3分式的乘法与除法
青岛版八年级数学上册
安庄镇教研中心 李庆林
• (一)教材所处的地位及作用 • “分式的乘除法”是青岛版八年级上册第 三章第三节的内容,本节课在学习了分式 基本性质和分式的约分的基础上进一步学 习分式的乘除法,是对分式基本性质、分 式的约分、分解因式的应用,也是为学习 分式的化简与求值等作准备,具有承上启 下的作用,在教材中处于重要的位置。

分式运算的八种技巧

分式运算的八种技巧

分式运算的八种技巧分式运算是数学中的一项基础知识,通过巧妙地运用一些技巧,可以简化分式的计算过程,提高计算的效率。

下面将介绍分式运算的八种技巧。

一、分式的通分当两个或多个分式进行加减运算时,需要先进行通分。

通分的目的是使分母相同,从而方便进行分式的加减运算。

二、分式的化简对于分子和分母同时包含因式的分式,可以通过因式分解进行化简。

化简后的分式通常更简洁、易于计算。

三、分式的约分对于分子和分母有公因式的分式,可以通过约分将其化简为最简形式。

约分可以简化计算过程,并且可以减小分子和分母的数字的大小,便于观察和把握。

四、分式的乘法和除法分式的乘法和除法相对简单,只需要将分子与分子相乘,分母与分母相乘即可。

当进行分数的除法运算时,可以将除法转化为乘法,将除法运算转化为分数的倒数,再进行乘法运算。

五、分式的加法和减法分式的加法和减法需要进行通分。

通分后,先对分子进行加减运算,再保持分母不变。

最后结果的分子分母可以进一步进行约分,化简为最简分数形式。

六、分式的分数化整数当分子大于分母时,可以进行分数化整数的运算。

将分子除以分母,得到一个整数,再将余数定为新的分子,保持分母不变,即可将分数化为带分数的形式。

七、小数转分数将小数转化为分数可以更方便地进行运算和比较。

通过将小数的小数位数与整数的数量级相匹配,将小数乘以适当的十的幂,然后化成最简分数即可。

八、分式的比较大小对两个分式进行比较大小的时候,可以化为相同分母的分数,然后比较分子的大小。

若分子相同,再比较分母的大小。

通过掌握这些分式运算的技巧,可以更加熟练地进行分式的计算,提高计算的准确性和效率。

同时,可以将复杂的分式化简为简单形式,便于理解和运算。

分式的认识与运算

分式的认识与运算

分式的认识与运算分式是数学中的一种表达形式,它由分子和分母组成,用分子除以分母表示。

在分式中,分子和分母可以是整数、小数、甚至是其他分式。

分式在数学中具有广泛的应用,特别是在代数、方程式求解以及实际问题中的运用。

一、分式的认识分式的基本形式是a/b,其中a称为分子,b称为分母。

分式可以用来表示实数的比值、比例或部分数额。

例如,10/5表示10和5的比值,即2;3/4表示3的四分之三。

分式也可以表示为小数,比如1/2等于0.5。

分式可以化简为最简形式。

即分子和分母的公因数要被约去,使得分子和分母没有公因数。

例如,4/8可以化简为1/2,16/20可以化简为4/5。

化简分式使其更加简洁明了,方便运算和理解。

二、分式的运算1. 分式的加减运算:两个分式相加减,要求分母相同,可以先找到它们的最小公倍数,然后对分子进行运算,并保持分母不变。

例如,1/3 + 2/3 = 3/3 = 1。

2. 分式的乘法运算:两个分式相乘,直接将它们的分子和分母相乘即可。

例如,1/4 × 3/2 = 3/8。

3. 分式的除法运算:两个分式相除,可以将除法转化为乘法,即将除数的分子和除数的倒数的分子相乘,同时分母作同样的操作。

例如,1/4 ÷ 3/2 = 1/4 × 2/3 = 2/12 = 1/6。

在进行分式的运算时,可以先将分式化简为最简形式,然后再进行运算,最后再将结果化简为最简形式,以保证结果的准确性。

三、应用实例1. 比例问题:分式可以用来表示比例关系,例如三个数a、b、c成比例,可以写为a/b = c/d。

通过解方程,可以求出未知数的值。

2. 面积和体积问题:对于一些复杂的几何图形,可以通过设立分式表示其面积或体积与已知量之间的关系。

通过解方程,可以求出未知量的值。

3. 财务问题:分式可以用来描述资金的分配比例、投资收益率等内容。

通过运算,可以帮助实际问题的解决。

总结:分式在数学中起着重要的作用,它可以用来表示比例、比值、部分数额等内容。

《分式的乘除》教案

《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。

2. 掌握分式的乘法和除法运算规则。

3. 能够解决与分式有关的实际问题。

二、教学重点1. 分式的乘法和除法运算规则。

2. 实际问题的解决。

三、教学难点实际问题的解决。

四、教学准备1. 教师准备:课本、黑板、粉笔。

2. 学生准备:课本、笔记。

五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。

2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。

例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。

例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。

分式的乘除运算讲解

分式的乘除运算讲解

分式的乘除运算讲解1.引言1.1 概述分式是数学中重要且常见的概念,在解决实际问题中具有广泛的应用。

分式的乘除运算是我们在求解分式相关问题时必须掌握和应用的基础运算。

分式的乘法运算是指将两个分式相乘,得到一个新的分式。

而分式的除法运算则是将一个分式除以另一个分式,同样得到一个新的分式。

在实际生活中,我们经常遇到需要对分式进行乘除运算的情况,比如在购物中打折优惠、计算比例和比率等等。

为了正确进行分式的乘除运算,我们需要先了解分式的定义与性质。

分式可以看作是分子和分母之间带有分数线的数学表达式。

在分式中,分子表示分数的分子部分,而分母表示分数的分母部分。

分式的分子和分母都可以是整数、变量、或两者的组合。

在乘法运算中,我们将两个分式相乘,只需将它们的分子相乘,分母相乘,得到的积即为乘法结果的分子与分母。

而在除法运算中,我们将一个分式除以另一个分式,需要将被除数的分子与除数的分母相乘,被除数的分母与除数的分子相乘,从而得到商的分子与分母。

通过了解分式乘除运算的步骤和性质,我们可以更加灵活地对分式进行运算,解决实际问题中的各种分式运算题目。

分式的乘除运算不仅是数学中重要的基础知识,也是我们日常生活中的实际运用。

掌握了分式的乘除运算,我们能够更好地理解和应用数学知识,提高数学解题的能力和运算的准确性。

综上所述,本文将详细介绍分式的乘除运算的定义、性质以及运算步骤,并总结其应用与拓展。

通过学习与掌握分式的乘除运算,我们可以在数学解题中更加得心应手,为日常生活中的计算和问题解决提供帮助。

1.2 文章结构本文将按照以下结构进行分析和讲解分式的乘除运算。

2. 正文2.1 分式的乘法运算2.1.1 定义与性质2.1.2 乘法运算的步骤2.2 分式的除法运算2.2.1 定义与性质2.2.2 除法运算的步骤3. 结论3.1 总结分式的乘除运算在本章节中,我们通过详细解释分式的乘法与除法运算,掌握了其定义、性质以及实际操作步骤。

分式解法及应用总结

分式解法及应用总结

分式解法及应用总结分式是一种特殊的代数表达式,包含分子和分母两部分,分子和分母都可以是代数式,其形式为a/b,其中a为分子,b为分母。

对于分式的加、减、乘、除运算,要根据运算法则进行处理,以得到最简形式的分式。

分式解法及应用在数学中具有重要意义,既可以用来解决实际问题,也可以用来推导和证明数学定理。

下面我将对分式解法及应用进行总结。

一、分式解法:1. 分式的加法与减法:对于分式a/b和c/d,可以采用通分的方式进行运算。

先找到a/b和c/d的最小公倍数lcm,然后将a/b和c/d分别乘以lcm/b和lcm/d,得到分母相同的两个分式。

最后,将分子相加或相减即可。

2. 分式的乘法:分式的乘法直接将分子相乘,分母相乘即可。

即(a/b) * (c/d) = (a*c)/(b*d)。

3. 分式的除法:分式的除法可以转化为乘法的倒数。

即(a/b) / (c/d) = (a/b) * (d/c) = (a*d)/(b*c)。

4. 分式的化简:对于分式a/b,可以将a和b的公因式约掉,得到最简形式的分式。

如果a和b都是多项式,可以进行因式分解后约掉公因式。

5. 分式方程的求解:将方程两边的分式化简后,将分子和分母交换位置,再将方程等式两边的分式乘以分母的最小公倍数,将方程化为整式方程,再根据整式方程的解法求解。

二、分式应用:1. 基本经济学原理:在经济学中,人们常常用比例和分式来表示经济关系。

例如,GDP(国内生产总值)可以表示为人均GDP的乘积,即GDP/人口数量。

又如价格的计算可以使用原价和折扣率的分式表达,价格=原价* (1-折扣率) / 100%。

2. 物理学中的速度计算:物理学中,速度是物体在单位时间内所经过的距离,通常使用分式来表示速度。

速度=位移/时间,分子位移代表物体所经过的距离,分母时间表示时间的长短。

3. 科学研究中的实验设计:在进行科学实验时,通常需要对研究对象进行分组,常用的分组方法之一是随机分组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.2 分式的乘法和除法(第二课时)
教学目标
1 探索分式乘方的运算法则.
2 熟练运用乘方法则进行计算. 重点、难点
重点:分式乘方的法则和运算.
难点:分式乘方法则的推导过程的理解及利用分式乘方法则进行运算. 教学过程
一创设情境,导入新课 1. 复习:分式乘除法则是什么? 2 .什么叫最简分式?
3 .取一条长度为1个单位的线段AB ,如图:
第一步:把线段AB 三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由_____条长度相等的线段组成的折线,每一段等于____,总长度等于____.
第二步:把上述折线中的每一条重复第一步的做法,得到___,继续下去.情况怎么样呢? 这节课我们来学习------分式的乘方.
二 合作交流,探究新知. 分式乘方的法则 (1)把结果填入下表: 总长度
3
13⎛⎫ ⎪⎝⎭
=
43⨯43⨯43
=
6427
N=2N=1N=0A
B
B
A
5
13⎛⎫ ⎪⎝⎭
=43⨯43⨯43⨯
43⨯43
=
1024
243
(2)进行到第n 步时得到的线段总长度是多少呢?
44444444 (33333333)
n
n n n ⨯⨯⋅⋅⋅⎛⎫
=⨯⨯=
= ⎪⨯⨯⋅⋅⋅⎝⎭144444444424444444443个
(3)把43
改为
f g ,...n
n n
n f f f f f f f f g g g g f f g g
⎛⎫⨯⨯⋅⋅⋅⨯=⨯⨯== ⎪⨯⨯⋅⋅⋅⨯⎝⎭144444444444424444444444443个
即:n
f g ⎛⎫
= ⎪⎝⎭
____.
用语言怎么表达呢
分式乘方等于分子、分母分别乘方. 三 应用迁移,巩固提高 1 分式乘方公式的应用
例1 计算:
()()3
4
2
241;23x x y y w ⎛⎫⎛⎫- ⎪
⎪⎝⎭⎝⎭
强调每一步运用了哪些公式. 2 除法形式改为分式形式进行计算. 例2 计算:
()()()()()()
2
3
344224222162;2534x y xy x y x y x y x y -÷--+÷-.
强调:除法形式改为分式,利用分式的运算性质进行计算给计算带来了方便. 3 分式乘方与分式乘法、除法的综合运用.
例3 计算:2
4
322x y z y x xy ⎛⎫
⎛⎫--⎛⎫⋅÷ ⎪
⎪ ⎪-⎝⎭⎝⎭
⎝⎭
4 整体思想
例4 已知:45b a =,求2009
2008
a b a a b a -⎛⎫
⎛⎫
⋅ ⎪ ⎪-⎝⎭
⎝⎭
的值.
四 课题练习,巩固提高 1.完成 P12练习 2.补充:
先化简,再求值.()2
222121442x x x x x x ++⎛⎫
÷⋅+ ⎪+++⎝⎭
,其中x=1.
五 反思小结,拓展提高 这几课你有什么收获?
(1) 分式乘法法则,(2)分式乘方法则与分式乘除运算法则综合运用时的顺序. 作业:P12 A 组第2题选做P13 B 组: 4,5,6 六.反思。

相关文档
最新文档