轮式移动机器人课程设计
轮式机器人模块化设计

.3 控制模块
智能避障小车设计 智能机器人控制系统总体方案及分析
本系统主要实现的各个模块算法为电机驱 动算法、距离算法。 控制系统框图
模块化设计方法优点来自统化设计此机器人的功能
功能分析
功能树
功能元求解
设计方案
模块化设计
. 1 机械模块
轮式移动机器人移动机制的选择
轮式移动机器人车身整体机械设计方案的选 择 运动机制机械部分的设计方案选择 运动机制中使用的驱动电机选择标准 运动机制中驱动电机与车轮连接方案的选择
.2 感知模块
信息采集
轮式机器人模块化设计
什么是移动式机器人
移动机器人是一个集环境感知、动态决策 与规划、行为控制与执行等多种功能于一 体的综合系统,是一种具有一定智能、在一 定范围内移动且能完成各种规定任务的机 器人, 与普通机器人的主要区别是移动机 器人一般安装在可移动的平台载体上, 可 在较大地域范围内活动.
研究背景
全向移动机器人轮式移动机构设计设计

1 绪论1.1 引言移动机器人已经成为机器人研究领域的一个重要分支。
在军事、危险操作和服务业等许多场合得到应用,需要机器人以无线方式实时接受控制命令,以期望的速度、方向和轨迹灵活自如地移动[1]。
移动机器人按照移动方式可分为轮式、履带式、腿足式等,其中轮式机器人由于具有机构简单、活动灵活等特点尤为受到青睐。
按照移动特性又可将移动机器人分为非全方位和全方位两种。
而轮式移动机构的类型也很多,对于一般的轮式移动机构,都不能进行任意的定位和定向,而全方位移动机构则可以利用车轮所具有的定位和定向功能,实现可在二维平面上从当前位置向任意方向运动而不需要车体改变姿态,在某些场合有明显的优越性;如在较狭窄或拥挤的场所工作时,全方位移动机构因其回转半径为零而可以灵活自由地穿行。
另外,在许多需要精确定位和高精度轨迹跟踪的时候,全方位移动机构可以对自己的位置进行细微的调整[2]。
由于全方位轮移动机构具有一般轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要意义,成为机器人移动机构的发展趋势。
基于以上所述,本文从普遍应用出发,设计一种带有机械手臂的全方位运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。
本文是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。
1.2 国内外相关领域的研究现状1.2.1 国外全方位移动机器人的研究现状国外很多研究机构开展了全方位移动机器人的研制工作,在车轮设计制造,机器人上轮子的配置方案,以及机器人的运动学分析等方面,进行了广泛的研究,形成了许多具有不同特色的移动机器人产品。
这方面日本、美国和德国处于领先地位。
八十年代初期,美国在DARPA的支持下,卡内基·梅隆大学(Carnegie Mellon university,CUM)、斯坦福(Stanford)和麻省理工(Massachusetts Institute of Technology,MIT)等院校开展了自主移动车辆的研究,NASA下属的Jet Propulsion Laboratery(JPL)也开展了这方面的研究。
小型轮式机器人设计

南京理工大学电力系统自动装置论文学院(系):自动化学院题目: 小型轮式移动机器人控制系统设计李胜指导老师:摘要由于传统单任务顺序执行机制不能满足智能轮式移动机器人对控制系统实时性的要求,而且对于复杂系统来说可靠性不高。
所以本项目重点设计一套适用于小型轮式移动机器人的控制系统,要求其实时性好,可靠性高,具有灵活的可扩展性和可重构性,以提高它各项功能的响应速度(包括制动、加速、减速、爬坡等)。
本文设计的控制电路实现的传感器功能包括红外传感器、光敏传感器、碰撞传感器等。
控制电路实现对两个直流电机的驱动控制。
机器人采用这样的控制电路可以完成诸如自主避障、自主循迹等实验。
使得轮式移动机器人的实时性好,可靠性高,且因为外部接口具有同用性,故具有灵活的可扩展性和可重构性。
最后对电路进行了调试,证明其满足要求关键词轮式机器人控制系统调试目录1 绪言------------------------------------------------------------------031.1 机器人简单知识的介绍-----------------------------------------------03 1.2课题背景-------------------------------------------------------------------------------------------------031.3课题来源及目的---------------------------------------------------------------------------------------041.4 论文主要内容------------------------------------------------------042 小型轮式移动机器人控制电路的总体设计----------------------------------04 2. 1 需求分析-----------------------------------------------------------------------------------------------------------042.2 机器人功能的总体结构----------------------------------------------05 3 具体设计-------------------------------------------------------------053.1Protel电路设计软件简介----------------------------------------------053.2 控制电路的总体设计------------------------------------------------063.3各模块具体介绍------------------------------------------------------073.4 实验用移动机器人控制电路的PCB图----------------------------------184 机器人控制电路的调试-------------------------------------------------194.1 直流电机功能调试结果----------------------------------------------194.2 红外传感器电路调试结果--------------------------------------------224.3 光敏传感器调试结果------------------------------------------------224.4 碰撞传感器调试结果-------------------------------------------------23结论 ------------------------------------------------------------------24感谢 ------------------------------------------------------------------24附录控制电路实物图------------------------------------------------------25参考文献--------------------------------------------------------------261绪言1.1 机器人简单知识的介绍移动机器人的结构由几个主要部分组成[1],如图1.1。
轮式移动机器人结构设计

大学毕业设计说明书题目:轮式移动机器人结构设计专业:机械设计制造及其自动化学号:姓名:指导教师:完成日期: 2012年5月30日大学毕业论文(设计)任务书论文(设计)题目:轮式移动机器人结构设计学号:姓名:专业:机械设计制造及其自动化指导教师:系主任:一、主要内容及基本要求1:了解轮式移动机器人的原理及其设计:2:CAD绘图设计,要求A0图纸一张,总共达到两张A0。
3:说明书,要求6000字以上,要求内容完整,计算准确:4:外文翻译3000字以上,要求语句通顺。
二、重点研究的问题1:轮式移动机器人转向机构的设计:2:轮式移动机器人电机的选型三、进度安排四、应收集的资料及主要参考文献[1] 吕伟文.全方位轮移动机构的原理和应用[A].无锡职业技术学院学报,2005,615-17.[2] 赵东斌,易建强等.全方位移动机器人结构和运动分析[B].机器人,2003,9.[3] 李瑞峰,孙笛生,闫国荣等.移动式作业型智能服务机器人的研制[J].机器人技术与应用,2003,1:27-29.[4] 杨树风.带有机械臂的全方位移动机器人的研制. 哈尔滨工业大学硕士毕业论文,2006.[5] 田宇,吴镇炜,柳长春.开放式三自由度全方位移动机器人实验平台[J].机器人,2002,24(2):102-106.[6] 闫国荣,张海兵.一种新型轮式全方位移动机构[J].哈尔滨工业大学学报,2001,33(6):854-857.[7] 吕伟文.全方位移动机构的机构设计[A].无锡职业技术学院学报,2006.12:03-12.[8] 高光敏,张广新,王宇等.一种新型全方位轮式移动机器人的模型研究[A].长春工程学院学报,2006,12.[9] 吴玉香,胡跃明.轮式移动机械臂的建模与仿真研究[B].计算机仿真,2006,1(05).[10] 付宜利,徐贺,王树国.具有新型轮式走行部的移动机器人及其特性研究.高技术通信,2004,12.[11] 付宜利,李寒,徐贺等.轮式全方位移动机器人几种转向方式的研究.制造业自动化,2005,10:5-33.[12] 滕鹏,马履中,董学哲.具有冗余自由度的新型护理机械臂研究.机械设计与研究,2004,1:3-32.[13] 孔繁群,朱方国,周骥平.一种机械手关节联接结构的改进设计[B].机械制造与研究,2005,5:2-16.[14] 蔡自兴编著.机器人原理及其应用. 中南工业大学出版社,1988.[15] 吴广玉,姜复兴编.机器人工程导论.哈尔滨:哈尔滨工业大学出版社,1988.大学毕业设计评阅表学号姓名专业机械设计制造及其自动化毕业论文(设计)题目:轮式移动机器人结构设计大学毕业论文(设计)鉴定意见学号:姓名:陈潮专业:机械设计制造及其自动化毕业论文(设计说明书)33 页图表8 张目录第一章绪论 (1)1.1国内外相关领域的研究现状 (1)1.2移动机器人的关键技术 (2)1.3课题研究意义 (3)1.4.论文主要完成工作 (4)第二章全向移动机器人移动机构设计 (5)2.1引言 (5)2.2机械设计的基本要求 (5)2.3全方位轮式移动机构的研制 (6)2.3.1移动机器人车轮旋转机构设计 (6)2.3.2移动机器人转向机构设计 (9)2.3.3电机的选型与计算 (11)2.4移动机器人车体结构设计 (14)2.5本章小结 (15)第三章机械材料选择和零件的校核 (16)3.1机械材料选用原则 (16)3.2零件材料选择与强度校核 (17)3.3本章小结 (19)结论 (20)致谢 (21)参考文献 (22)附录一 (23)附录二 (28)第一章绪论1.1国内外可移动机器人的发展现状移动机器人是机器人学中的一个重要分支。
轮式自主移动机器人编程实战

目录分析
第2章机器人的构 成
第1章轮式机器人 的基础知识
第3章轮式机器人 的软件提升
1.1轮式机器人的定义与应用 1.2轮式机器人的结构 1.3机器人的驱动方式 1.4本章总结
2.1机器人的规划 2.2轮式机器人的转向结构 2.3轮式机器人电动机的选型 2.4机器人的驱动模块 2.5轮式机器人的大脑:控制器选型 2.6轮式机器人底盘DIY 2.7轮式机器人总结 2.8本章总结
4.1底盘控制器的对外神经元:输出PWM 4.2底盘控制器的运动神经元:驱动控制 4.3底盘控制器的捕获神经元:PWM捕获测速 4.4底盘控制器的中枢神经元:串口通信控制指令 4.5底盘控制器的触觉神经元:ADC电池电压监测 4.6底盘控制器的发光控制神经元:LED控制 4.7本章总结
5.1树莓派简介 5.2树莓派资源 5.3轮式机器人的交互窗口:树莓派Shell 5.4轮式机器人上网接口:Socket通信 5.5轮式机器人从控制器通信接口:树莓派串口 5.6轮式机器人无线联网接口:树莓派的WiFi功能 5.7机器人和手机App通信接口:树莓派蓝牙 5.8轮式机器人野外上网接口:4G模块 5.9轮式机器人的指南针:RTIMU模块开发
6.1 DS18B20温度传感器开发 6.2 GPS户外定位传感器 6.3激光雷达传感器 6.4摄像头图像传感器 6.5本章总结
7.1微型服务云平台简介 7.2搭建局域网的Server 7.3阿里云服务器 7.4 JavaScript建立简单的MQTT通信 7.5本章总结
8.1机器人路径规划 8.2机器人全局规划 8.3机器人局部决策 8.4本章总结
3.1 Keil软件 3.2 Linux基础知识 3.3网络基础知识 3.4算法 3.5本章总结
机械毕业设计1107轮式机器人结构设计

机械毕业设计1107轮式机器人结构设计
1. 引言
本文档旨在讨论机械毕业设计中的1107轮式机器人结构设计问题。
通过对机器人的结构设计,旨在实现机器人的稳定性、灵活性和可靠性。
2. 机器人结构设计要求
2.1 稳定性
设计目标是确保机器人在移动或承载负载时保持稳定,避免不必要的震动或倾斜。
2.2 灵活性
机器人应具备一定的灵活性,以适应不同的工作环境和任务需求。
2.3 可靠性
机器人的结构设计应考虑到长时间使用的可靠性,以减少故障和维修需求。
3. 结构设计方案
根据上述要求,提出以下结构设计方案:
3.1 轮式机器人底盘
采用四个轮子的底盘设计,以提供稳定性和平衡性。
每个轮子
应具备独立悬挂系统,以适应不平坦的地面。
3.2 主体结构
主体结构应采用轻量化材料,既要保证强度,又要减少机器人
的整体重量。
同时,考虑到灵活性,可以设计可拆卸的连接部件,
以便于维护和更换。
3.3 机械臂
机械臂应具备良好的运动范围和稳定性,以适应机器人的工作
任务。
采用多关节设计,以实现更灵活的操作。
4. 结论
通过以上结构设计方案,可以实现1107轮式机器人的稳定性、灵活性和可靠性。
在实践中,应结合具体需求和实际情况对结构进
行进一步的优化和调整,以达到最佳设计效果。
参考文献
[1] 参考文献1
[2] 参考文献2。
轮式机器人课程设计项目书

项目一、机器人的运动控制一、项目目标:1.熟悉MT-UROBOT 机器人的运动机构2.了解MT-UROBOT 的驱动原理3.理解调速原理4.掌握软件控制方法,学会编写自己控制程序二、项目描述:1.机器人的运动机构两个主动轮,金属铝芯、橡胶外胎。
MT-UROBOT 机器人的主动轮有能够完成向前直走,向后转弯,左转,右转,这些平地上的技术动作;驱动机构由直流电机和减速比约为30:1的齿轮箱构成,齿轮减速箱将直流电机输出的扭矩和转速转化为机器人 可以需要的扭矩和转速。
动力强劲,效率高,噪音小。
从动轮为一万向轮。
从动轮子与两个主动轮构成稳定的三角形结构支撑整个本体。
如图:图1.1在没有未经减速齿轮变速的直流电机可以运行在8000~12000转/分,MT-UROBO 机器人的直流电机的转速为8000转/分。
速度虽然高,但是驱动力很小,所以这里我们采用了减速齿轮箱,来增加转矩。
对于改变速度的传动形式来说,就有一个传动比的概念。
对于齿轮传动,传动比可以用两个齿轮的齿数来定义:21/Z Z I Z1 为主动齿轮的齿数,Z2 为被动齿轮的齿数输出的速度可表达为:IV V 动力源输出=2.驱动电路直流电机上的电压大小影响它的转速和扭矩差动方式是指将两个有差异的或独立的运动合成为一个运动。
当我们把两个电机的运动合成为一个运动时,这就成图1.2驱动芯片为LMD18200, 有3A 连续工作电流,6A 的最大电流,非常高的转换效率和纹波特性,并且具有过流、过热保护,电路原理图见用户手册图3.29。
电源芯片LM2577T —ADJ ,采用电池升压稳压电路,有效地提高了电机在电池电压变化过程中的效率和稳定性,电路图见用户手册图3.28。
再驱动板上有一个驱动电流反馈接口,把它接到扩展板上的AD 端口就可读出此刻驱动器上的电流。
3. 直流电机调速原理直流电机将轴的旋转运动输入到齿轮箱,然后齿轮箱的输出轴控制轮子转动,从而驱动整个机器人的运动。
毕业论文设计--自循迹轮式移动机器人的控制系统设计论文

摘要随着社会发展和科技进步,机器人在当前生产生活中得到了越来越广泛的应用。
尤其是一种具有道路记忆功能、使用灵活方便、应用范围较广的轮式移动机器人。
本研究是一种基于瑞萨 H8单片机的自循迹轮式智能车的设计与实现,研究具有人类认知机理的环境感知、信息融合、规划与决策、智能控制等理论与方法,本文所述的智能车控制系统可以分为两个大的子控制系统,它们分别是方向控制系统和速度控制系统。
其核心控制单元为瑞萨公司 H8 系列 8位单片机 H8/3048F-ONE,系统采用反射式红外传感器检测赛道白线,在运行过程中能够识别赛道的不同情况,并能够根据信息反馈即时控制智能车的方向和速度,在预定的路径上进行快速移动。
智能车的设计要达到竞速和巡线的目的,竞速环节主要包括动力提供,速度控制两部分;巡线环节包括路面信息,转向控制两部分。
通过对智能车运动模型的建立与分析,本文详细阐述了方向控制系统与速度控制系统等重要控制系统的实现方法,使智能车能够完整通过直道、弯道、坡道和换道的过程,快速稳定的寻白线行驶。
关键词: H8单片机自循迹运动模型控制系统AbstractWith the social development and scientific and technological progress, Robot in the current production and life has been more widely used. In particular, the wheeled mobile robotis with memory function, used of flexible, wide range of application.This study is based on RenesasH8 MCU wheeled self-tracking design and realization of intelligent vehicle, Research of the theories and methods about environmental perception, information fusion, planning and decision-making and intelligent control which like Mechanism of human cognition. This intelligent vehicle control system described can be divided into two major sub-control system, They are the direction and speed control system. The core control unit for the Renesas H8 series of 8-bit microcontroller H8/3048F-ONE. System uses infrared sensors to detect track reflective white lines, during operation to identify the different circumstances circuit. And according to the feedback control the direction and speed of smart cars real-time. Fast moving on the predetermined path. Intelligent vehicle design to achieve the purpose of racing and the transmission line. Racing links include power provided and Speed control; Transmission line links including road information and steering control. Through the movement modeling and analysis on smart vehicle. This paper describes the direction and speed control system and other important realization. So the intelligent vehicle can through the straight, curved, ramp and lane changing process. Fast and stable searching the white lane.Key words:H8MCU self-tracking motion model control system目录摘要 (I)Abstract (II)绪论 (1)1课题要求及总体设计方案 (2)1.1课题要求 (2)1.2课题主要内容及设计方案 (2)1.2.1课题主要内容 (2)1.2.2总体设计方案 (2)2系统硬件设计及实现 (4)2.1硬件组成及各部分作用 (4)2.2舵机的工作原理及驱动 (5)2.2.1舵机的工作原理 (5)2.2.2舵机的驱动 (6)2.2.3舵机的标定和修正 (7)2.3传感器的工作原理及控制 (8)2.3.1传感器的工作原理 (8)2.3.2传感器的采集及处理 (8)2.4电机的工作原理及驱动 (9)2.4.1电机的选择 (9)2.4.2电机的工作原理 (10)2.4.3电机驱动 (10)2.5车体结构 (11)2.5.1硬件电路板的功能需求分析 (11)2.5.2结构需求分析 (12)2.5.3赛道基本要求 (14)3系统软件设计 (15)3.1智能车的数学模型及其控制算法的实现目标 (16)3.2方向计算算法 (16)3.2.1弯道处理 (16)3.2.2换道处理 (17)3.2.3坡道处理 (17)3.2.4过渡处理部分 (17)3.3方向控制算法 (18)3.4速度控制算法 (20)3.4.1赛道分析 (20)3.4.2行驶策略 (20)3.4.3速度给定算法 (21)3.4.4速度闭环 (21)4智能车调试与注意事项 (22)4.1智能车的硬件调试 (22)4.2系统的软件调试 (22)4.2.1单元调试 (22)4.2.2系统的组装调试 (22)4.2.3系统调试 (22)4.3注意事项 (23)结论 (24)致谢 (25)参考文献 (26)附录 (27)绪论智能机器人具有识别、推理、规划和学习等智能机制,它可以把感知和行动智能化结合起来,因此能在非特定的环境下作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏师范大学连云港校区海洋港口学院课程设计说明书课程名称专业班级学号姓名指导教师年月日摘要轮式移动机器人是机器人家族中的一个重要的分支,也是进一步扩展机器人应用领域的重要研究发展方向。
自上世纪九十年代以来,人们广泛开展了对机器人移动功能的研制和开发,为适应各种工作环境的不同要求而开发出各种移动机构。
其中全方位轮可以实现高精确定位、原地调整姿态和二维平面上任意连续轨迹的运动,具有一般的轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要愈义。
本文主要是介绍了技术较为成熟的麦克纳姆全方位轮的运动原理结构,分析了由四个麦克纳姆轮全方位轮组成的全向移动机构的运动协调原理。
并将其运用到轮腿复合式的机器人身上,使机器人移动能力更强。
设计的主要方面包括(1)移动方式的选择;(2)机器人结构的设计;(3)机器人移动原理的分析;(4)对移动机器人控制系统的简单设计。
关键词: 轮式移动机器人,轮腿复合式,四足目录摘要 (1)1 移动机器人技术发展概况 (1)1.1 机器人研究意义及应用领域 (1)1.1.1 机器人的研究意义 (1)1.1.2 机器人的应用领域 (2)1.2 移动机器人的发展概况 (2)1.2.1 移动机器人的国内发展概况 (3)1.2.2 移动机器人的国外发展概况 (4)2 轮式移动机器人的结构设计 (7)2.1轮式移动机器人系统结构 (7)2.1.1移动方式的选择 (7)2.1.2机器人移动原理构想 (8)2.1.3机器人轮子的选择 (9)2.1.4机器人腿部结构的设计 (10)2.2轮式移动机器人主要结构 (11)3 轮式移动机器人的控制系统 (12)3.1 控制系统硬件选型与配置 (12)3.1.1 驱动电机的选型 (12)3.1.2 伺服电机的选型 (13)3.1.3 轮毂电机的选型 (14)3.2 轮式移动机器人控制系统框架 (17)4 结论和总结 (21)5 致谢 (23)参考文献 (24)1 移动机器人技术发展概况1.1 机器人研究意义及应用领域随着科学技术的发展,人类的研究活动领域已由陆地扩展到海底和空间。
利用移动机器人进行空间探测和开发,己成为21世纪世界各主要科技发达国家开发空间资源的主要手段之一。
研究和发展月球探测移动机器人技术,对包括移动机器人在内的相关前沿技术的研究将产生巨大的推动作用。
1.1.1 机器人的研究意义“机器人产业在二十一世纪将成为和汽车、电脑并驾齐驱的主干产业。
”从庞大的工业机器人到微观的纳米机器人,从代表尖端技术的仿人型机器人到孩子们喜爱的宠物机器人,机器人正在日益走近我们的生活,成为人类最亲密的伙伴。
机器人技术和产业化在中国具有一定的现实基础和广阔的市场前景。
机器人研究以科技含量高、学科跨度宽、参与面广和展示性强等特点在国际上有着很强的影响力。
它涉及人工智能、图像处理、通讯传感、精密机构和自动控制等多领域的前沿研究和技术集成。
目前已经形成了一个国际联盟的人工智能和机器人项目开发目标,被世界各国科研机构和众多高等院校所重视。
全球化的机器人产业市场也给商家带来了丰厚的利润回报。
国内的教育和科研机构也日益关注机器人事业的发展,有关科研工作在深度和规模上逐渐提高,清华大学、中国科技大学等著名高校基本形成了完整的课程体系,对推动高校的科技创新和产学研一体化产生了积极作用,也为提高我国在机器人领域的国际地位作出了积极贡献。
开展机器人研究和参与各项竞赛活动,旨在进一步加强未成年人思想道德教育,提高广大青少年的科学素养,发展自身潜能,引导更多的大中小学生关注科技、热爱科技、走进科技,涌现出更多的未来科学家和未来工程师。
在积极推进基础教育和高等教育改革的过程中,渗透科学技术教育,努力培养大中小学学生的实践能力和创新精神,造就适应21 世纪全球科技、经济发展需要的新一代。
机器人研究不但能吸引一大批电子信息产业制造商、销售商、金融投资机构和技术服务机构提供产品和服务,而且还促进了知名科研机构、高等院校与高科技企业的合作交流,共同发展。
通过大赛期间举办学术研讨等活动,众多专家学者齐聚一堂,探讨我国自动化技术和信息技术的发展趋势,为推动产业发展出谋献策,领衔助跑。
1.1.2 机器人的应用领域随着科学技术的发展,人类的研究活动领域已由陆地扩展到海底和空间。
利用移动机器人进行空间探测和开发,己成为21世纪世界各主要科技发达国家开发空间资源的主要手段之一。
研究和发展月球探测移动机器人技术,对包括移动机器人在内的相关前沿技术的研究将产生巨大的推动作用。
移动机器人是一种能够通过传感器感知外界环境和自身状态,实现在有障碍物的环境中面向目标的自主运动,从而完成一定作业功能的机器人系统。
近年来,由于移动机器人在工业、农业、医学、航天和人类生活的各个方面显示了越来越广泛的应用前景,使得它成为了国际机器人学的研究热点。
20世纪90年代以来,以研制高水平的环境信息传感器和信息处理技术,高适应性的移动机器人控制技术,真实环境下的规划技术为标志,开展了移动机器人更高层次的研究。
目前,移动机器人特别是自主机器人已成为机器人技术中一个于分活跃的研究领域[1]。
1.2 移动机器人的发展概况1.2.1 移动机器人的国内发展概况机器人技术的发展从无到有,从低级到高级,随着科学技术的进步而不断深入发展。
移动式机器人特别是自主式移动机器人已成为机器人研究领域的中心之一。
移动式机器人的研究现状主要体现在四个方面。
一是机器人的体系结构。
目前根据实现机器人感知、决策、行为等功能的不同分为分层递阶结构、行为系统、黑板系统三种体系结构。
二是信息感知,这主要来源于传感器。
目前移动式机器人主要使用的传感器有声纳、红外、激光扫描、摄像机和陀螺等,主要采用多传感器融合的技术来获得信息。
三是移动机器人的控制。
目前移动式机器人主要应用基于机器人几何中心或轮轴线中心的时间微分方程的运动学模型建模,应用推算航行法与外部传感器获得的信息进行融合的方式定位,利用神经网络的学习和容错能力对移动式机器人控制和基于规则的模糊控制机器人运动。
四是路径规划,这是导致机器人能否实现最终目标的关键。
根据规划时所利用的信息的不同路径规划可分为基于模型的规划和基于情形的规划。
移动式机器人的未来是朝着智能化,情感化发展的,影响移动式机器人发展的主要因素有:导航与定位,多传感器信息的融合,多机器人协调与控制策略等。
中国与国外相比,目前还存在一定的差距,虽然掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,但可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距。
中国的智能机器人和特种机器人也取得了不少成果。
但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面则刚刚起步。
随着社会文明程度的提高,对机器人的要求也会越来越高。
中国要做好充分的准备迎接新的技术挑战。
1.2.2 移动机器人的国外发展概况美国国家科学委员会曾预言: “20 世纪的核心武器是坦克,21 世纪的核心武器是无人作战系统, 其中2000 年以后遥控地面无人作战系统将连续装备部队,并走向战场”。
为此, 从80 年代开始, 美国国防高级研究计划局(DARPA) 专门立项, 制定了地面天人作战平台的战略计划。
从此, 在全世界掀开了全面研究室外移动机器人的序幕, 如DARPA 的“战略计算机”计划中的自主地面车辆(ALV) 计划(1983 —1990) , 能源部制订的为期10 年的机器人和智能系统计划(RIPS) (1986 —1995) , 以及后来的空间机器人计划; 日本通产省组织的极限环境下作业的机器人计划; 欧洲尤里卡中的机器人计划等。
初期的研究, 主要从学术角度研究室外机器人的体系结构和信息处理, 并建立实验系统进行验证。
虽然由于80 年代对机器人的智能行为期望过高, 导致室外机器人的研究未达到预期的效果, 但却带动了相关技术的发展, 为探讨人类研制智能机器人的途径积累了经验, 同时, 也推动了其它国家对移动机器人的研究与开发。
进入90 年代, 随着技术的进步, 移动机器人开始在更现实的基础上, 开拓各个应用领域, 向实用化进军。
由美国NASA 资助研制的“丹蒂II ”八足行走机器人, 是一个能提供对高移动性机器人运动的了解和远程机器人探险的行走机器人。
它与其他机器人, 如NavLab , 不同之处是它于1994 年在斯珀火山的火山口中进行了成功的演示, 虽然在返回时, 在一陡峭的、泥泞的路上, 失去了稳定性, 倒向了一边, 但作为指定的探险任务早己完成。
其它机器人在整个运动过程中, 都需要人参与或支持。
丹蒂计划的主要目标是为实现在充满碎片的月球或其它星球的表面进行探索而提供一种机器人解决方案。
美国NASA 研制的火星探测机器人索杰那于1997年登上火星, 这一事件向全世界进行了报道。
为了在火星上进行长距离探险, 又开始了新一代样机的研制, 命名为Rocky7, 并在Lavic 湖的岩溶流上和干枯的湖床上进行了成功的实验。
德国研制了一种轮椅机器人, 并在乌尔姆市中心车站的客流高峰期的环境和1998 年汉诺威工业商品博览会的展览大厅环境中进行了实地现场表演。
该轮椅机器人在公共场所拥挤的、有大量乘客的环境中, 进行了超过36 个小时的考验, 所表现出的性能是其它现存的轮椅机器人或移动机器人所不可比的。
这种轮椅机器人是在一个商业轮椅的基础上实现的。
从最早出现的机器人到现在涌现出的形态各异的移动小车,其移动机构的形式层出不穷,以美国、俄罗斯、法国和日本为首的西方发达国家己经研制出了多种复杂奇特的三维移动机构,有的已经进入了实用化和商业化阶段[2] [3]。
面对21世纪深空探测的挑战,对各种自主系统的研制是必须的,而移动机构又是各种自主系统的最基本和最关键的环节。
已经出现的移动机器人的移动机构主要有履带式、腿式和轮式,其中以轮式的效率最高,但其适应能力相对较差,而腿式的适应能力最强但其效率最低[4]。
履带式移动机构是将圆环状的循环轨道卷绕在若干车轮外,使车轮不直接与地面接触,利用履带可以缓和地面的凹凸不平。
它具有良好的稳定性能、越障能力和较长的使用寿命,适合在崎岖的地面上行使。
但由于沉重的履带和繁多的驱动轮使得整体机构笨重,消耗的功率也相对较大[5]。
腿式移动机构基本上是模仿人或动物的下肢机构形态而制成的。
因其出色的地面适应能力和越野能力,曾经得到很多机器人专家的广泛重视,在其开发和研制上投入了大量的时间和精力,也取得了较大的成果。
从移动的方式上来看,腿式移动机器人可分为两种:动态行走机器人和静态行走机器人。