大学物理作业解答
大连理工大学大学物理作业及答案详解1-22

[解] 取半径为 r 、 厚度为 dr 的球壳。 认为球壳内电荷分 布是均匀的
dQ 4 r 2 dr (r ) 4A r 3 dr
R Q0 4r 2 (r )dr
A 4r 3 dr R 4 A
0
R
6.如图所示,一质量 m 1.6 10 kg 的小球,带电量 q 2 10
作业 2
1. 如图所示, 把点电荷 q 从高斯面外 P 移到 R 处 OP OR , ] O 为 S 上一点,则[ A. 穿过 S 的电通量 e 发生改变, O 处 E 变
B. e 不变, E 变。 C. e 变, E 不变。 D. e 不变, E 不变。
答案: 【B】 [解]闭合面外的电荷对穿过闭合面的电通量无贡献,或者说, 闭合面外的电荷产生的电场,穿过闭合面的电通量的代数和为零;移动点电荷,会使电荷重 新分布,或者说改变电荷的分布,因此改变了 O 点的场强。 2.半径为 R 的均匀带电球面上,电荷面密度为 ,在球面上取小面元 S ,则 S 上的电 荷受到的电场力为[ ]。
y a/ 2
y a / 2 处电场最强。
4. 如图所示, 在一无限长的均匀带点细棒旁垂直放置一均匀带电的细棒 MN 。 且二棒共面, 若二棒的电荷线密度均为 ,细棒 MN 长为 l ,且 M 端距长直细棒也为 l ,那么细棒 MN 受到的电场力为 。
答案:
[解] 坐标系建立如图: MN 上长为 dx 的元电荷 dq dx 受力 dF Edq 。 无限长带电直线场强 E
2 2 dx ln 2 ;方向沿 x 轴正向。 2 0 x 2 0
根据叠加原理, 圆心处场强可以看成是半径为 R ,电荷线密度为 的均匀带电园环 (带 电量为 Q1 2R ) 在圆心处产生的场强 E1 与放在空隙处长为 l , 电荷线密度为 的均 匀带电棒(可以看成是点电荷 q l )在圆心产生的场强 E 2 的叠加。即:
大学物理学 大作业参考解答

静电场中的导体和电介质
大作业参考解答
选择题1:当一个带电导体达到静电平衡时, (A)导体表面上电荷密度较大处电势较高; (B)导体表面曲率较大处电势较高; (C)导体内部的电势比导体表面的电势高; (D)导体内任一点与表面上任一点的电势差等于零。
NIZQ 第1页
大学物理学
静电场中的导体和电介质
d a
a
E dx
x
d a d ln ln 0 a 0 a
0 q 1 C U U A U B ln d a
NIZQ 第18页
大学物理学
静电场中的导体和电介质
计算题3:如图所示,在一不带电的金属球旁,有一点电荷 +q,金属球半径为R,点电荷+q与金属球球心的间距为d, 试求: (1)金属球上感应电荷在球心处产生的电场强度。 (2)若取无穷远处为电势零点,金属球的电势为多少?
-σ1 σ1 σ2 -σ2
d1 (A) d2 (C) 1
d2 (B) d1 d2 (D) 2 d1
2
d1
d2
1 2 d1 d2 0 0
NIZQ 第8页
大学物理学
静电场中的导体和电介质
填空题1:如图所示,两同心导体球壳,内球壳带 电量+q,外球壳带电量 -2q . 静电平衡时,外球壳 的内表面带电量为 ;外表面带电量 -q 为 。 -q
q CU r C 0U r q 0
U E E0 d
1 1 1q 2 W qU CU r E0 2 2 2C
NIZQ 第16页
2
计算题1:两块相互平行的导体板a和b ,板面积均为S,
大学物理学
静电场中的导体和电介质
大学物理作业(解答)

《大学物理III 》课后作业(解答)第一部分:力学简答题:1. 用文字描述牛顿第一定律。
它的另一个名称是什么?解答:任何物体在不受外力作用时,将保持静止或匀速直线运动状态。
另一个名称是“惯性定律”。
2.用文字描述牛顿第三定律。
作用力和反作用力有什么特点?解答:当物体A 以力1作用在物体B 上时,B 同时也有力2作用在A 上,这两个力大小相等,方向相反,在同一条直线上,即12-=。
作用力和反作用力有如下三个特点:(1)它们成对出现,关系一一对应;(2)它们分别作用在两个不同物体上,因而不是一对平衡力;(3)它们的性质相同,比如同为引力、摩擦力、弹力,等等。
3.假设雨滴从1000米的高空云层中落到地面。
请问可否用自由落体运动描述雨滴的运动?并简述理由。
解答:不能。
如果我们用自由落体运动来描述雨滴运动(即忽略空气阻力),那么雨滴从1000米高空落到地面时,它的速度将达到m/s 1402==gH v !这个速度已经达到普通手枪的子弹出射速度,足以对地面上的人畜造成致命伤害。
而生活经验告诉我们,雨滴落到我们头上并不会造成严重伤害,所以它落到地面的速度远远小于140m/s 。
事实上,因为空气阻力的存在(通常跟雨滴的速度大小成正比),雨滴将有一个收尾速度,它落到地面时做匀速直线运动,速度约为10-20m/s ,不会对地面生物造成致命伤害。
4.用文字描述质点系的动量守恒定律。
解答:当一个质点系所受合外力为零时,系统内各质点间动量可以交换,但系统的总动量保持不变。
5. 如图,一根质量为m 、长l 的刚性杆子竖直悬挂,顶点固定在天花板O 点,杆子可绕O 点自由转动。
一个质量也为m 的物块(质点)以水平速度0v跟杆子的下端碰撞,并粘在一起。
在这个碰撞过程中,物体和杆子组成系统的动量是否守恒?角动量是否守恒?并简述理由。
解答:动量不守恒,因为在碰撞瞬间物体和杆子系统在O 点受到很大外力,其产生的冲量不可忽略;角动量守恒,因为系统所受一切力的对O 点力矩为零,包括上述的巨大外力。
大学物理力学一、二章作业答案

大学物理力学一、二章作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。
当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。
A .a ;B .a 2;C .2c ;D .224c a +。
2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。
3、一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。
A .2R ;B .R π;C . 0;D .ωπR 。
4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v=2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。
A .22t i +2j m ; B .j t i t2323+m ;C .j t i t343243+; D .条件不足,无法确定。
二、填空题1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。
质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。
2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。
该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22m /5s π 。
3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。
4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。
T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45º角时角位移是 38rad 。
大学物理标准化作业答案

x)
Acos 2p( t x 2 L)
, 则入射波的表达式为y1 = __________________.
O
L
Bx
三、1(5519)在绳上传播的入射波表达式为 y1 Acos(t 2p
,入射波在x = 0处绳端反射,反射端为自由端.设反射波不
x
)
衰减,求驻波表达式.
解:入射波在x = 0处引起的振动方程为 y10 Acost
2
22
波节:
2π x
p
2
(2n 1) p
2
xn
2
n 0,1,2,3
3 如图所示,一平面简谐波沿x轴正方向传播,BC为波密媒
质的反射面.波由P点反射,OP = 3 /4, DP 6在t = 0时,O处质
(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零[ C ]
二、填空题 3、在同一媒质中两列频率相同的平面简谐波的强度之比I1 / I2 = 16,
则这两列波的振幅之比是A1 / A2 = _______4__________.
一、选择题
(1) 反射波的表达式; (2) 合成的驻波的表达式;
(3) 波腹和波节的位置.
解: (1)
y10
A cos 2π t T
y20
A cos(2π t T
p)
y2
A cos[2π( t T
x)p]
(2)
xp
tp
y
y1
y2
2 A cos(2π
) cos(2π
2
T
) 2
(3) 波腹: 2π x p np x (n 1) n 1,2,3,4
大学物理第3章作业解答

第三章刚体的定轴转动选择题3-1 如图所示,四个质量相同、线度相同而形状不同的物体,它们对各自的几何对称轴的转动惯量最大的是( A )(A) (B) (C) (D)3-2 在上题中,它们对各自的几何对称轴的转动惯量最小的是( C )3-3 如图所示,P、Q、R、S是附于刚体轻细杆上的四个质点,它们的质量分别为4m、3m、2m和m,PQ QR RS l===,该系统对O O'轴的转动惯量为( A )(A) 29m l.10m l; (D) 214m l; (C) 250m l; (B) 23-4 均匀细棒O A,可绕通过点O与棒垂直的光滑水平轴转动,如图所示.如果使棒从水平位置开始下落,在棒到竖直位置的过程中,下列陈述正确的是( A )(A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.3-5 几个力同时作用在一个具有固定转轴的刚体上.如果这几个力的矢量和为零,则下列陈述正确的是( D )(A) 刚体必然不会转动; (B) 刚体的转速必然不变;(C) 刚体的转速必然会变; (D) 刚体的转速可能变,也可能不变.3-6 在光滑的桌面上开一个小孔,把系在绳的一端质量为m的小球置于桌面上,绳的另一端穿过小孔而执于手中.设开始时使小球以恒定的速率v 在水平桌面上作半径为1r 的圆周运动,然后拉绳使小球的轨道半径缩小为2r ,新的角速度2ω和原来的角速度1ω的关系为( B ) (A) 1212r r ωω⎛⎫ ⎪⎝⎭=; (B) 21212r r ωω⎛⎫⎪⎝⎭=;(C) 2211r r ωω⎛⎫ ⎪⎝⎭=; (D) 22211r r ωω⎛⎫⎪⎝⎭=.3-7 在上题中,新的动能和原来的动能之比为 ( A )(A) 212r r ⎛⎫ ⎪⎝⎭; (B) 12r r ; (C) 21rr ; (D) 221r r ⎛⎫ ⎪⎝⎭.3-8 刚体绕定轴高速旋转时,下列陈述正确的是 ( D )(A) 它受的外力一定很大; (B) 它受的外力矩一定很大;(C) 它的角加速度一定很大; (D) 它的角动量和转动动能一定很大. 3-9 芭蕾舞演员绕通过脚尖的竖直轴旋转,当她伸长手臂时的转动惯量为J ,角速度为ω.她将手臂收回至前胸时,转动惯量减小为3J ,此时她的角速度为 ( A )(A) 3ω; (D) 13ω.3-10 三个完全相同的转轮绕一公共轴旋转.它们的角速度大小相同,但其中一轮的转动方向与另外两个轮相反.今沿轴的方向施力,将三者靠在一起,使它们获得相同的角速度.此时靠在一起后系统的动能与原来三转轮的总动能相比是 ( B )(A) 减少到13; (B) 减少到19;(C) 增大到3倍; (D) 增大到9倍.计算题3-11 一电动机的电枢转速为11800r min -⋅,当切断电源后,电枢经20s 停下.求:(1) 切断电源后电枢转了多少圈;(2) 切断电源后10s 时,电枢的角速度以及电枢边缘上一点的线速度、切向加速度和法向加速度(设电枢半径为10cm ).解 (1) 切断电源时,电枢的转速为11018002πrad s60πrad s60ω--⨯=⋅=⋅电枢的平均角加速度为22060πrad s3.0πrad s20tωα----==⋅=-⋅∆由2202ωωαθ-=∆,且0ω=,可得切断电源后电枢转过的角度为()()22060πrad 600πrad 223πωθα--∆===⨯-转过的圈数为600πr 300r 2π2πN θ∆===(2) 切断电源后10s 时,电枢的角速度为()11060π 3.0π10rad s30πrad s t ωωα--=+=-⨯⋅=⋅此时电枢边缘上一点的线速度、切向加速度和法向加速度分别为()111222t 222222n 0.1030πm s3.0πm s9.42m s0.10 3.0πm s0.30πm s0.942m s0.1030πm s90πm s888m sr a r a r ωαω---------==⨯⋅=⋅=⋅==-⨯⋅=-⋅=-⋅==⨯⋅=⋅=⋅v3-12 一飞轮由直径为0.30m 、厚度为22.010m -⨯的圆盘和两个直径为0.10m 、长为28.010m -⨯的圆柱体组成.设飞轮的密度为337.810kg m -⨯⋅,求飞轮对转轴的转动惯量.解 飞轮上的圆盘的半径为10.15m r =,圆柱体的半径为20.05m r =. 飞轮上的圆盘质量为2322111π7.810π0.15 2.010kg 11.0kg m r h ρ-==⨯⨯⨯⨯=圆柱体的质量为2322222π7.810π0.058.010kg 4.90kgm r h ρ-==⨯⨯⨯⨯⨯=飞轮的转动惯量是圆盘和两个圆柱体的转动惯量之和为22222211221111.00.15 4.900.05kg m 0.136kg m 22J m r m r ⎛⎫=+=⨯⨯+⨯⋅=⋅ ⎪⎝⎭3-13 如图所示,质量分别为2m 、3m 和4m 的三个小球,用长均为l 、质量均为m 的三根均匀细棒相连,如图所示(小球的半径r l <<,可视为质点).求该物件对通过点O 垂直于图面的转轴的转动惯量.解 该物件的转动惯量是三个小球和三根细棒的转动惯量之和为2222212343103J m l m l m l m l m l =+++⨯=3-14 细棒长为l ,质量为m ,设转轴通过棒上离中心为h 的一点并与棒垂直.求棒对此轴的转动惯量.解 由平行轴定理,细棒的转动惯量为22222c 111212J J m h m l m h m l h ⎛⎫=+=+=+ ⎪⎝⎭3-15 一个半径为R 质量为m 的均匀圆盘,挖去直径为R 的一个圆孔,如图所示.求剩余部分对通过圆心O 且与盘面垂直的轴的转动惯量.解 开孔圆盘的转动惯量等于完整圆盘的转动惯量减去位于圆孔部位的被挖去的小圆盘的转动惯量:2222111322424232m R m R J m R m R ⎡⎤⎛⎫⎛⎫=-+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 3-16 如图所示,某飞轮的直径为0.50m 、转动惯量为22.4k g m ⋅、转速为311.010r min-⨯⋅.如果制动时闸瓦对轮的压力为490N ,闸瓦与轮之间的滑动摩擦因数为0.4,求制动后飞轮转多少圈才停止.解 制动前,飞轮的转速为31102π 1.010rad s105rad s60ω--⨯⨯=⋅=⋅飞轮所受的制动力矩为n 0.44900.25N m 49N m M F R μ=-=-⨯⨯⋅=-⋅根据转动定律,M J α=,可得制动后飞轮的角加速度为2249rad s20.4rad s2.4M J α---==⋅=-⋅由2202ωωαθ-=∆,且0ω=,可得制动后飞轮转过角度为220105rad 270rad 22(20.4)ωθα--∆===⨯-转过的圈数为270r 43.0r 2π2πN θ∆===3-17 如图所示,一物体质量为5kg ,从一倾角为o 37的斜面滑下,物体与斜面的摩擦因数为0.25.一滑轮装在固定轴O 处,轻绳的一端绕在滑轮上,另一端与物体相连.若滑轮可视为是实心圆盘,其质量为20kg 、半径为0.2m ,绳与轮间无相对滑动,且轮轴的摩擦阻力矩忽略不计.求:(1) 物体沿斜面下滑的加速度; (2) 绳中的张力.解 物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T T F F '=.O x 轴沿斜面向下,Oy 垂直于斜面.设物体的质量为1m ,滑轮的质量为2m ,滑轮的半径为r .对物体,根据牛顿第二定律,在O x 和Oy 方向分别有o1T r 1sin 37m g F F m a --=oN 1cos 370F m g -=重力2P 和轮轴对滑轮的压力N 2F 均通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T T M F r F r '=⋅=⋅.对滑轮,根据转动定律,有T F r J α⋅=而a r α=r N F F μ=2212J m r =联立解以上方程,可得物体沿斜面下滑的加速度和绳中的张力分别为()oo11222sin 37cos 3712345 0.259.8 m s 1.31 m s1555202m a gm m μ--=-+⎛⎫=-⨯⨯⨯⋅=⋅ ⎪⎝⎭+⨯T 21120 1.31 N 13.1 N 22F Jm a rα===⨯⨯=3-18 如图所示,长为l 、质量为m 的均匀细棒可绕点O 转动.此棒原先静止在竖直位置,受微小扰动而倒下.若不计摩擦和空气阻力,求细棒倒至与竖直位置成θ角时的角加速度和角速度.解 细棒的倒下,可看成定轴转动,其转轴通过地面上细棒端点,垂直于细棒的转动平面.在细棒倒下的过程中,细棒与地球组成的系统机械能守恒.以地面为势能零点,设细棒倒至与竖直方向成θ角时,角速度为ω,有21cos 222l l J m gm gωθ+=而213J m l =由此可得,角速度为ω=只有细棒所受的重力对转轴有力矩.以垂直纸面向里为正方向,细棒倒至与竖直方向成θ角时,重力对转轴的力矩为sin 2l M m g θ=.设此时的角加速度为α,则对细棒,根据转动定律,有sin 2l m gJ θα= 将213J m l =代入上式,可得角加速度为3sin 2g lαθ=3-19 如图所示,两个物体质量分别为1m 和2m .定滑轮的质量为m 、半径为R ,可视为圆盘.已知2m 与桌面间的摩擦因数为μ.设轻绳与轮间无相对滑动,且可不计滑轮轴的摩擦力矩,求1m 下落的加速度和滑轮两边绳中的张力.解 两个物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T1T1F F '=,T 2T 2F F '=.O x 轴水平向右,Oy 轴竖直向下.两个物体的加速度虽方向不同,但大小相同,12a a a ==.对物体1m ,根据牛顿第二定律,在Oy 方向有1T 11m g F m a -=对物体2m ,根据牛顿第二定律,在O x 方向有T 2r 2F F m a -=滑轮所受的重力和转轴对滑轮的压力都通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T 1T 2M F R F R =-.对滑轮,根据转动定律,有T 1T 2F R F R J α-=而212J m R =a R α=r 2F m gμ=联立解以上方程,可得物体的加速度与绳中的张力分别为()1212222m m a g m m mμ-=++()2T 11122122m m F m gm m m μ++=++()1T 22122122m m F m gm m mμ++=++3-20 一圆盘状的均匀飞轮,其质量为100kg 、半径为0.5m ,绕几何中心轴转动.在30s 内,由起始转速13000r m in-⋅均匀地减速至11000r m in -⋅.求阻力矩所做的功.解 飞轮初、末角速度分别为1102π3000rad s100πrad s60ω--⨯=⋅=⋅112π1000100rad sπrad s603ω--⨯=⋅=⋅飞轮的转动惯量为2222111000.5kg m 12.5kg m 22J m R ==⨯⨯⋅=⋅根据动能定理理,外力矩对飞轮所做的功等于飞轮转动动能的增量,可得在飞轮减速的过程中,阻力矩对飞轮所做的功为()222200225111()2221100π 12.5100πJ 5.4810J23A J J J ωωωω=-=-⎡⎤⎛⎫=⨯⨯-=-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3-21 质量为m '、半径为R 的转台,可绕过中心的竖直轴转动.质量为m 的人站在转台的边缘.最初人和转台都静止,后来人在转台的边缘开始跑动.设人的角速度(相对于地面)为ω,求转台转动的角速度(转台可看成质量均匀分布的圆盘,并忽略转轴处的摩擦力矩和空气的阻力).解 人和转台组成的系统对中心轴角动量守恒.以人的角速度的方向为正方向,设转台的角速度为1ω,有210J m R ωω+=而212J m R '=由此可得12m m ωω-='式中的负号表明,转台的转动方向与人的转动方向相反.3-22 如图所示,一个转动惯量为J 、半径为R 的圆木盘,可绕通过中心垂直于圆盘面的轴转动.今有一质量为m 的子弹,在距转轴2R 的水平方向以速度0v 射入,并嵌在木盘边缘.求子弹嵌入后木盘转动的角速度.解 子弹和木盘组成的系统,对转轴角动量守恒.以垂直于纸面向外为正方向,设子弹嵌入后,木盘转动的角速度为ω,有2()2R J m R m ω+=v由此可得022()m R J m R ω=+v3-23 如图所示,一均匀细棒长为l 、质量为m ,可绕经过端点O 的水平轴转动.棒被拉到水平位置由静止轻轻放开,下落至竖直位置时,下端与放在地面上的静止物体相撞.若物体的质量也为m ,物体与地面间的摩擦因数为μ,物体滑动s 距离后停止.求: (1) 棒与物体碰撞后,物体的速度;(2) 棒与物体碰撞后,棒的角速度.解 (1)根据动能定理,摩擦力对滑块所做的功等于滑块动能的增量.设物体因碰撞而获得的速度为v ,有2102m gs m μ-=-v由此可得=v (2) 细棒下落的过程中,细棒与地球组成的系统机械能守恒定律.以地面为势能零点,设细棒下落至竖直位置时的角速度为0ω,有20122l J m gω=而213J m l =由此可得0ω=.碰撞过程中角动量守恒.以垂直纸面向外为正方向,设碰撞后,细棒的角速度为ω,有0J m l J ωω+=v将213J m l =、=v 和0ω=代入上式,可得lω=若0ω>,碰撞后细棒继续向右转动, 若0ω<,碰撞后细棒向左转动.。
大学物理规范作业20电场强度

电荷A、C在B点产生的场强大小相等方向相反。
依题意有: AB 1
q
4
0
2
AB
5q
4
0
B
2
C
AB
C
BC 5
2
2.点电荷Q被闭合曲面S所包围,从无穷 远处引入另一点电荷q至曲面外一点, 如图所示,则引入前后:【 D 】
(A)通过曲面S的电通量及曲面上各点的场强均 不变。
(B)通过曲面S的电通量变化,而曲面上各点场强 不变。
解: 如图所示作边长为a的立方体,电荷位于立方体 的中心。
由高斯定理,通过立方体的总的电通量为:
E dS
q
s
0
则通过每一个面的电通量为:
q
6 0
4
二、填空:(1)如图,有一段长度为L的均匀带电直线,
电荷线密度为λ,在其中心轴线上距O为r处有一带电
量为q的点电荷。
Lq
①当r>>L时,q所受库仑力大小F1= 40r 2
大学物理规范作业 解答
总(20)
1
一、选择题
1、有三个带同号电荷的小球A、B、C , 它们的电量
之比为1: 3 : 5,放在一条直线上,相互间距离比小球
大得多。若A、C固定不动,而当B受力为0时,AB
与BC之比为[ C ]。
1
1
(A)5 (B) 5
(C) 5
(D) 5
解:B受力为零时,电荷A、C在B点的合场强为零,即
线为轴线作匀速率圆周运动,该质点的速率v(= q ) 1。2 2 0 m
解:质点作匀速率园周运动所受的向 心力为:
F Eq q 2 0r
m v2 r
ห้องสมุดไป่ตู้
大学物理规范作业解答(全)

2.一子弹水平地射穿两个前后并排放在光滑水平桌面上 的木块。木块质量分别为m1和m2,测得子弹穿过两木块 的时间分别为Δ t1和Δ t2,已知子弹在木块中受的阻力 为恒力F。求子弹穿过后两木块各以多大的速度运动。 解:两个木块受到子弹给它们的力均为F 穿过木块1 Ft1 ( m1 m2 )v1 0
骑车人速度为u(车对地),人看到雨的速度为v’ (雨对车) 、雨对地的速度v如右图: v u v ' 加速后骑车人速度为u1,人看到 u1 u 雨的速度为v’1 。可得: 60 30 v' v ° v = u1 + v1 ' v '1 u 由图中的关系得: v = = 36km / h cos 60° 方向与竖直方向成30度角偏向西方。
2.一小环可在半径为R的大圆环上无摩擦地滑动,而 大圆环能以其竖直直径为轴转动,如图所示。当圆 环以恒定角速度ω 转动,小环偏离圆环转轴而且相 对圆环静止时,小环所在处圆环半径偏离竖直方向 的角度θ B ( 为 ) (A) θ =π /2 (B)θ =arccos(g/Rω 2) (C)θ =arccos(Rω 2 / g)(D)须由小珠质量决定 解:环受力N的方向指向圆心,mg向下, 法向加速度在水平面内 N sin θ = ma n = ml ω2 N N cos θ = mg 由于 l=Rsinθ
v 抛出后竖直方向的速度为: y v sin gt
x
落地前经过的时间为 t 2v sin g 水平方向做匀速直线运动,抛出的距离为 2v 2 sin cos x v cost v 2 sin 2 / g g x v2 / g 易见:θ=45° 时抛得最远,距离为
I mv mv0 1 1 3 m v0 i m( v 0 i v0 j ) 2 2 2 3 mv0 j 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
候下垂的长度为x
x m gxdx 1 mv2 0
al
2
1 g( x2 a2 ) 1 lv2
2
2
dx v g ( x2 a2 )
dt
l
vl
g (l2 a2 ) l
第2页/共4页
(2)考虑摩擦情况下:
x[m gx m g(l x)]dx 1 mv2 0
al
l
2
x [(1
解:子弹与木块碰撞,弹 簧来不及发生形变,子弹
v0
与木块达到同样的速度,
碰撞整个过程动量守恒
m0v0 (m0 m)v
随后弹簧压缩,整个过程能量守恒,动能转化为弹性势能 及摩擦力所做的功
1 2
(m0
m)v 2
1 2
k x 2
(m0
m) gx
代入数值,得到: v0 319m / s
第4页/共4页
)
m
gx
mg]dx
1
mv 2
a
l
2
1 g( x2 a2 ) 2g( x a) v l
当x=l时
vl
1 g(l 2 a2 ) 2g(l a) l
第3页/共4页
2-23 已知子弹质量m0=0.02kg,木块质量m为 8.98kg,弹簧的劲度系数是100N/m,子弹以v0射入 木块后,弹簧被压缩10cm。求v0的大小。设木块与 平面间的滑动摩擦系数为0.2.
作业(5) 动能定理 功能原理、
机械能守恒
第1页/共4页
2-18、 一根长为l,质量为m的柔软的链条,开始时 链条静止,放在桌面上,长为 a 的一段铅直下垂。链
条下滑。试用动能定理计算下面两种情况下链条刚好
全部离开桌面时的速度; (1)不计摩擦(2)设链条与桌
面摩擦因数为
(1)不计摩擦情况下:设某时