单相桥式整流电路实验
单相桥式全控整流电路实验

一.实验目的:1,熟悉Matlab 仿真软件和Simulink 模块库。
模块库。
2,掌握单相桥式全控整流电路的工作原理、工作情况和工作波形。
形。
二.实验器材:MATLAB 仿真软件仿真软件三.实验原理:VT1 VT3 VT2 VT4触发器1 触发器2 四.实验步骤: 电阻负载:一、仿真步骤一、仿真步骤1.启动MATLAB MATLAB,进入,进入SIMULINK 后新建一个仿真模型的新文件。
并布置好各元器件。
器件。
2.参数设置。
.参数设置。
各模块参数的设置基本与上一实验相同,各模块参数的设置基本与上一实验相同,但要注意触发脉冲的给定。
但要注意触发脉冲的给定。
但要注意触发脉冲的给定。
互为对角的互为对角的两个示波器的控制角设置必须相同,否则就会烧坏晶闸管。
二、模型仿真二、模型仿真设置好后,即可开始仿真。
设置好后,即可开始仿真。
点击开始控件。
点击开始控件。
点击开始控件。
仿真完成后就可以通过示波器来观察仿真完成后就可以通过示波器来观察仿真的结果。
仿真的结果。
电阻电感负载:带电阻电感性负载的仿真与带电阻性负载的仿真方法基本相同,但须将RLC 的串联分支设置为电阻电感负载。
本例中设置的电阻R =1,L =0.01H 0.01H,电容为,电容为inf inf。
五.实验数据:v +-Voltage Measurement1v+-Voltage MeasurementSeries RLC BranchScopePulse Generator3Pulse Generator2Pulse Generator1Pulse GeneratorDetailed Thyristor3Detailed Thyristor2Detailed Thyristor1Detailed Thyristori+-Current MeasurementAC Voltage Source电源电压触发信号1触发信号1触发信号2触发信号2流过晶闸管电流负载电流晶闸管端电压负载电压电阻负载:α=0度α=60度α=120度阻感负载:α=30度α=60度。
单相桥式全控整流电路实验心得体会

单相桥式全控整流电路实验心得体会篇一:单相桥式全控整流电路实验单相桥式全控整流电路实验一、实验目的一、了解单相桥式全控整流电路的工作原理二、研究相桥式全控整流电路在电阻负载、电感性负载的工作二、实验线路及工作原理图一、单相全控桥式整流器图和工作波形(电阻性负载)二、单相全控桥式整流器图和工作波形(电感性负载)三、实验(转载于: 小龙文档网:单相桥式全控整流电路实验心得体会)分析一、实验波形(上图所示,纯电阻)注意:大体数量关系及公式(1)输出电压平均值Ud为1?22U21?cos?1?cos?U2U2sin?td??t??? d???ππ22(2)输出电流平均值Id为UdU21?cos?Id??(3)输出电压有效值U21?1π??U??2Usin?td??t??U2sin2??2π?2ππ2实验波形(上图所示,感性负载)(1) 输出电压平均值Ud1???22U2Ud??2U2sin?td??t??cos???π?π(2) 输出电流平均值Id和变压器副边电流I2Id?Ud?I2R(3) 晶闸管的电流平均值IdT由于晶闸管连番导电,因此流过每一个晶闸管的平均电流只有负载上平均电流的一半。
1IdT?Id2四、实验心得体会自己完成。
篇二:上海交大电力电子技术实验+单相桥式全控整流电路实验电力电子技术基础实验报告实验一单相桥式全控整流电路实验一、实验目的一、了解单相桥式全控整流电路的工作原理。
二、研究单相桥式全控整流电路在电阻负载,电阻-电感性负载时的工作。
3、熟悉MCL-05锯齿波触发电路的工作。
二、实验线路三、实验内容一、单相桥式全控整流电路供电给电阻负载。
二、单相桥式全控整流电路供电给电阻-电感性负载。
四、实验设备一、MLC系列教学实验台主操纵屏。
二、MLC-01组件。
3、MLC-02组件。
4、MEL-03可调电阻器。
五、MEL-02芯式变压器。
六、二踪示波器。
7、万用表。
五、实验数据和波形单相桥式全控整流电路供电给电阻负载。
单相桥式全控整流电路

单相桥式全控整流电路一、原理图1.1为单相桥式全控整流带电阻电感性负载,图中DJK03是装置上的晶闸管触发装置。
假设电路已工作于稳态。
在u2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。
负载中有电感存在时负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id连续且波形近似为一水平线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。
至ωt=π+α时刻,给VT3和VT2加触发脉冲,因VT3和VT2本已承受正电压,故两管导通。
VT3和VT2导通后,u2通过VT3和VT2分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT3和VT2上,此过程成为换相,亦称换流。
至下一周期重复上述过程,如此循环下去,其平均值为Ud=0.9U2。
图1.2为单相桥式有源逆变电路实验原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。
图中的电阻Rp、电抗Ld和触发电路与单相桥式整流电路相同。
产生有源逆变的条件如下:(1)要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。
(2)要求晶闸管的控制角α>π/2.,使Ud为负值。
两者必须同时具备才能实现有源逆变。
二、实验内容(1)单相桥式全控整流电路带电阻性负载。
(2)单相桥式有源逆变电路带电阻电感性负载。
(3)有源逆变电路逆变颠覆现象的观察。
(4)单相桥式整流、单相桥式有源逆变电路带电阻电感性负载时MATLAB的仿真。
三、实验仿真1.带电阻电感性负载的仿真启动MATLAB,进入SIMULINK后新建文档,绘制单相桥式全控整流电路模型,如图1.3所示。
双击各模块,在出现的对话框内设置相应的参数。
注意:触发脉冲“Pulse”和“Pulse2”的控制角设置必须相同,“Pulse1”和“Pulse3”的控制角设置必须相同,否则就会烧坏晶闸管。
实验一-单相桥式全控整流电路

实验一-单相桥式全控整流电路实验一单相桥式全控整流电路姓名:王栋班级:15级自动化(2)班学号:1520301081一、实验目的1.加深理解单相桥式全控整流电路的工作原理2.研究单相桥式变流电路整流的全过程3.掌握单相桥式全控整流电路MATLAB的仿真方法,会设置各模块的参数。
二、预习内容要点1. 单相桥式全控整流带电阻性负载的运行情况2. 单相桥式全控整流带阻感性负载的运行情况3. 单相桥式全控整流带具有反电动势负载的运行情况三、实验仿真模型图 1.1 单相桥式阻性负载整流电路四、实验内容及步骤1.对单相桥式全控整流带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
以延迟角30°为例(1)器件的查找以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources 中查找;其他一些器件可以搜索查找(2)连接说明有时查找出来的器件属性并不是我们想要的例如:变压器可以双击变压器进入属性后,取消three windings transformer就是单相变压器。
(3)参数设置1.双击交流电源把电压设置为311V,频率为50Hz;2.双击脉冲把周期设为0.02s,占空比设为10%,延迟角设为30度,由于属性里的单位为秒,故把其转换为秒即,30×0.02/360;3.双击负载把电阻设为1Ω;4.双击示波器把Number of axes设为7;5.在“Power Electronics”库中选择‘Universal Bridge’模块,选择桥臂数为2,器件为晶闸管,晶闸管参数保持默认即可(4)仿真波形及分析当α=30°时,当α=60°时,当α=90°时,2. 对单相桥式全控整流带阻感性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
将阻性负载改为阻感负载,即参数设置,双击负载把电阻设为1Ω,电感设为0.01H仿真波形及分析当α=30°时,电感设为0.01H,此时电流处于连续状态图:阻感负载且电流连续时波形将电感值改为0.001H,可以看到电流不连续时的波形如下:图:阻感负载且电流不连续时波形当α=60°时,电感设为0.01H,此时电流处于连续状态将电感值改为0.001H,可以看到电流不连续时的波形如下:当α=90°时,电感设为0.01H,此时电流处于连续状态将电感值改为0.001H,可以看到电流不连续时的波形如下:3. 对单相桥式全控整流带具有反电动势负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
单相桥式全控整流电路实验报告

竭诚为您提供优质文档/双击可除单相桥式全控整流电路实验报告篇一:实验五单相桥式全控整流电路实验实验五单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉mcL—05锯齿波触发电路的工作。
二.实验线路及原理参见图4-7。
三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器1.mcL系列教学实验台主控制屏。
2.mcL—18组件(适合mcL—Ⅱ)或mcL—31组件(适合mcL—Ⅲ)。
3.mcL—33组件或mcL—53组件(适合mcL—Ⅱ、Ⅲ、Ⅴ)4.mcL—05组件或mcL—05A组件5.meL—03三相可调电阻器或自配滑线变阻器。
6.meL—02三相芯式变压器。
7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自mcL-05挂箱,故mcL-33(或mcL-53,以下同)的内部脉冲需断x1插座相连的扁平带需拆除,以免造成误触发。
2.电阻Rp的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.mcL-05面板的锯齿波触发脉冲需导线连到mcL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变(:单相桥式全控整流电路实验报告)变压器采用meL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告实验目的:通过实验,了解单相全控桥式整流电路的工作原理,掌握其控制特性和输出特性,加深对电力电子器件的认识。
实验设备和器件:1. 单相变压器。
2. 电阻箱。
3. 电容器。
4. 交流电压表。
5. 直流电压表。
6. 电压调节器。
7. 全控桥式整流电路实验箱。
8. 示波器。
9. 电流互感器。
10. 电阻负载。
11. 电感负载。
12. 电容负载。
13. 三通电压表。
14. 三通电流表。
15. 三通功率表。
16. 三相交流电源。
17. 直流电源。
18. 电子开关管(可控硅)。
实验原理:单相桥式全控整流电路是一种能够实现交流电能转换为直流电能的电路。
其工作原理是通过控制可控硅的导通角来控制整流电路的输出电压和电流。
当可控硅导通角为0时,整流电路输出电压和电流为最大值;当可控硅导通角为π时,整流电路输出电压和电流为0。
通过不同的控制方式,可以实现对输出电压和电流的精确控制。
实验步骤:1. 将实验箱连接好,接通交流电源和直流电源。
2. 调节电压调节器,使得交流电源输出额定电压。
3. 调节电阻箱和电容器,接入电路,使得整流电路工作在不同的负载条件下。
4. 调节可控硅的触发脉冲,观察输出电压和电流的变化。
5. 使用示波器观察整流电路的输入和输出波形,并记录数据。
6. 尝试不同的控制方式,比较输出特性的变化。
实验结果分析:通过实验,我们观察到了单相桥式全控整流电路在不同控制条件下的输出特性。
当可控硅的导通角变化时,输出电压和电流呈现出不同的变化规律。
在不同负载条件下,整流电路的输出特性也有所不同。
通过实验数据的记录和分析,我们可以得出结论,单相桥式全控整流电路可以实现对输出电压和电流的精确控制,适用于不同的负载条件。
实验总结:通过本次实验,我们深入了解了单相桥式全控整流电路的工作原理和特性。
掌握了实验中所用到的各种设备和器件的使用方法,加深了对电力电子器件的认识。
同时,通过实验数据的记录和分析,我们对单相桥式全控整流电路的特性有了更深入的理解。
单相桥式全控整流电路实验报告.

实验报告实验项目:单相桥式全控整流电路专业班级:自动化1305班姓名:夏锟学号: ********* 实验室号:402 实验组号:一组实验时间:2015.12.20 批阅时间:指导教师:朱冬梅成绩:一.实验目的:1.熟悉Matlab 仿真软件和Simulink模块库。
2.掌握单相桥式全控整流电路的工作原理、工作情况和工作波形。
二.实验器材:1.Matlab仿真软件2.Simulink模块库三.实验原理:电路由交流电源u1、整流变压器T、晶闸管VT1-4、负载R以及触发电路组成。
在变压器二次电压u2的正半周触发晶闸管VT1和VT3,在u2的负半周触发晶闸管VT2和VT4,由于晶闸管的单向可控性能,在负载上可以得到方向不变的直流电,改变晶闸管的控制角,可以调节输出直流电压和电流的大小。
晶闸管触发电路输出脉冲与电源同步是电路工作的重要条件。
四.实验步骤:分为建立仿真模型,设置模型参数和仿真参数,观测仿真结果等几个主要步骤。
1、建立仿真模型(1)打开Simulink仿真平台(2)提取电路元件模块(3)将电路元器件模块按单项整流电路的原理连接起来组成仿真电路2、设置模块参数(1)、交流电压源AC,电压为220V,频率为50Hz,初始相位为0。
(2)、变压器参数:一次电压为2200V(有效值),二次电压为100V(有效值)。
(3)、晶闸管VT1-4直接使用模型参数。
(4)、负载RLC的参数设置。
(5)、脉冲发生器Synchronized 6-pulse generator参数设置。
同步频率为50Hz,脉冲宽度取10。
3、设置仿真参数4、启动仿真,仿真计算完成后,通过示波器观察仿真的结果。
五.实验数据:1、u2电压波形,VT1触发脉冲波形,VT2触发脉冲电阻负载a=0uVT iVTudida=60uVT iVTUdIda=120uVT iVTUdId阻感负载a=30UdIda=60UdId六.数据处理及分析七.实验总结:。
单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告实验目的:
1.了解单相桥式全控整流电路的原理和工作方式
2.学习使用半导体器件的控制技术
3.掌握实验操作的方法和技巧
实验材料:
1.单相桥式全控整流电路板
2.数字万用表
3.直流电源
4.交流电源
实验步骤:
1.将单相桥式全控整流电路板连接到交流电源上,注意正负极的正确连接。
2.将数字万用表连接到电路板上,测量电路板的交流电压和输出电压。
3.通过控制半导体器件的指令输入,分别实验控制电路板的直流输出电流和电压。
4.通过观察电路板的反馈信号,了解整个控制过程及其影响因素,并优化电路板的性能。
实验结果:
1.我们成功实现了单相桥式全控整流电路的输出,可以实现正负半周期的控制,提高了能量利用效率。
2.通过对控制电流和电压的实验,我们发现电路板的控制灵活性很强,可以满足不同场合的应用要求。
3.通过对反馈信号的观察,我们优化了电路板的输出特性,提高了电路板的效率和稳定性。
实验思考:
1.单相桥式全控整流电路的实际应用很广泛,常见于电动机驱动、电源稳定等领域。
2.电路板的控制比较复杂,需要进一步学习和练习。
3.在实验的过程中,需要注意安全措施,避免因操作不当导致危险发生。
结论:
我们通过对单相桥式全控整流电路的实验,深入了解了其原理和应用,掌握了使用半导体器件进行控制的技术,提高了实验操作的技能。
希望今后能继续深入学习和研究,为提高能源利用效率和电力质量做出更大贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附:教学内容: 【导入部分】
使用万用表测量IN4007、IN4148、IN4004二极管的极性,复习PN 结、二极管的单向导电性,投放投影作进一步的复习,引出“理想二极管”的特性(如图1所示:理想二极管伏安特性)——二极管导通时,所承受的正向电压趋近于0,承受反向电压时,流过二极管电流趋近于0。
使用双踪通用示波器,测量单向半波、单向全波二极管整流电路整流波形的变化,复习这种变化的“好处”(——提高变压器的利用率,减小输出信号的脉动程度)和缺陷(——变压器利用率低、二极管承受反压过大),导入本教学单元内容“单向二极管桥式整流”电路(——提高变压器的利用率,保证有较好的脉动直流输出,同时二极管承受的反向电压与电源电压的最大值保持一致)。
(如图2所示:二极管整流电路性能趋优转化过程)
+ V o -
图2 二极管整流电路性能趋优转化过
+
V o -
图1 理想二极管伏安特性
【新课部分】
在二极管整流电路示范装置的四个桥臂上分别安装红、绿、黄、白四个颜色的发光二极管(如图3所示:桥式二极管整流电路),正确地接入交流电源装置,观察发光二极管的发光情况,用万用表测试输入、输出电压的数值,
调节电源装置的输出电压大小,重复测量每次调节后输入、输出电压数值并记录于下表中,
表:输出电压与输入电压的关系记录
记录10组数据后,调节电源装置的频率,观察发光管的闪烁情况,总结管子交替变化与频率的关系,并将观察的现象记录于表中,以便分析。
将双踪通用示波器接入输入信号、输出信号端,相邻、相对两桥臂,测得整流桥的信号如图4所示:二极管桥式整流电路波形。
综合图3、图4的分析我们发现:◆该电路具有将双向的交变电压变换为单向的脉动电压的功能。
◆对波形的进一步观察发现,二极管上承载电压的情况, V 1、3管、V 2、4管分别承受不同周期的反向电压,但管子承受的最大反向电压与电源最大反向电压相同。
以上两点满足了我们提高变压
+
V o -
R 图3 桥式二极管整流电路
器利用率并降低整流管最大反向电压的要求,实现了二极管整流输出的最佳性能。
对比图3与表的记录数据,发现近似于单向全波整流电路的输入与输出间的关系,并且发现当调节电源的频率时,随着频率的增高,二极管发光闪烁不明显。
参考教材已有的公式,获得二极管桥式整流电路输入、输出之间的数量关系及二极管选择的条件:
输出电压、电流与输入电压的关系:
V O=2×0.45V2=0.9V2
I O=0.9×(V O/R L)
二极管所承受的电流及耐压值
I V=I O/2=0.45×(V O/R L)
V RM=V2m
单向桥式整流电路二极管选择条件:
I VZ≥I O/2=0.45×(V O/R L)
V RM≥V2m
举例:按要求选择整流二极管,并安装该整流电路。
有一直流负载,需要直流电压Vo=60V,直流电流Io=4A。
若采用单相桥式整流电路,求电源变压器次级电压U2,并选择整流二极管。
≈66.7(V)
变压器次级电压:V
2
流过二极管的平均电流为:I
=2(A);
V
≈94(V)
二极管承受的反向峰值电压为:V
RM
查手册可选型号为2CZ12A(3A/100V)二极管四只,或符合要求的桥堆。
将选择好的二极管按图3连接,注意在连接时交流侧、直流侧的特征——顺串,阳阳-阴阴,并且在测量输出电压时也要注意二极管直流侧输出电压的极性。
【课堂总结及作业布置部分】
◆从电路结构和信号波形上看,该整流电路相对单向半波整流电路变压器利用率提高一倍,相对单向全波整流电路,二极管承受的反向电压降低一倍,降低了整流管的耐压要求。
但是,该电路输出的脉动直流电,在电源要求较高的场合,脉动的电压会使运行中的电器设备振动,容易使电器设备机械受损,因此,能够输出平稳直流电压的电源成为我们的理想选择,试想一想,怎样改进这个电路可以使输出电压接近于理想状态?(思考作业)
◆本教学单元电路中若有一个二极管反接、或虚焊、或烧毁,有何现象?说明原因。
(课堂问答)
◆根据实际情况设计并制作一个单相桥式整流电路。
(格式要求:写出设计的主要参数,选择元件的名称和主要参数,选择某元件的原因,电路构成图及连接好的电路,你对电路的测试情况及分析,书面作业)
【教学后记(即教学反思)】
本教学案例是为实践任务导向教学而亲历设计,本教案的设计首先考虑到中职学生行为的反复性特征,“喜新厌旧”直到“新不喜旧仍厌”,因此教学的导入显得非常重要,本教案在导入上面就抛出了本教学单元的核心——PN结构成的二极管器件的应用,用相应的仪器、设备引起同学们的感官刺激,随后的教学组织在反复测试的刺激中,验证已有的结论规律(考虑到很少同学预习功课,这样设计是让学生在练习中发现事物已有的规律),以加深对规律的感官认识。
同时,通过同学们的反复测试,不断引发学生的思考,从而规范学生的职业行为能力,进而提高职业能力。
教案的设计紧扣学生发展的主题,以思考促发展,让学生在整个教学过程中,形成学生与老师、学生与学生、学生与书本的交往与互动,这种伴随思考的互动,使学生在获得教学单元主题“知识”学习的同时,职业行为能力和职业能力也得到了锻炼和不同程度的提高。
本教案实施时,有经过训练的课代表作为助手,接通、调节预设的各环节,以提高有效教学时间,在进入输入输出测试阶段,学生个体差异体现特别明显,同学之间的互动也在这个时候达到高潮,在这个43人组成的教学班,基本上7人一组,组长都是经过挑选和接受过提前训练的,主要纠正同组同学不良的职业行为——不符合职业规范的行为,负责整个测试的节奏控制和常规现象(已掌握)的解释及非常规现象(新发现)的记录、督促。
预计10分钟的测试时间,5分钟的讨论时间,同学们基本上能够按照节奏推进课堂学习,遗憾的是,对于发现的非常规现象,通过课堂观察发现,同学们善于从课本上寻找已有的“答案”,而很少有同学去对照电路去分析,关于这方面的教学,还有待在今后的教学中探寻更适切的教学方法来替代。
就设计的初衷,本教案的实施,个人认为效果明显,学生能够将课堂的讨论和练习延伸,将思考持续,这似乎又回到了促进学生发展的课堂教学主题……。