七年级数学分式测试题

合集下载

初一数学分式方程试题答案及解析

初一数学分式方程试题答案及解析

初一数学分式方程试题答案及解析1.解方程:.【答案】x=10【解析】解分式方程的一般步骤:先去分母化分式方程为整式方程,再解这个整式方程即可,注意解分式方程最后一步要写检验.方程两边都乘以(x﹣2)(x+2)得,x(x+2)-3(x-2)=(x+2)(x-2)x2+2x-3x+6=x2-4-x=-10x=10经检验,x=10是原方程的解,所以,原分式方程的解是x=10.本题涉及了解分式方程,解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.2.先化简,然后从-1、1、2三个数中选取一个你认为合适的数作为x的值代入求值.【答案】,当时,原式=2【解析】先对小括号部分通分,同时把除化为乘,然后约分,最后选择一个合适的x的值代入求值.原式当时,原式.【考点】分式的化简求值点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.3.解分式方程:.【答案】【解析】先去分母得到整式方程,再解所得的整式方程即可,注意解分式方程最后要写检验.去分母得解得经检验是原方程的增根∴原方程无解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.4.若为常数,当为时,方程有解.【答案】【解析】有解,即x-3≠0,则x≠3.把方程去分母得x-2(x-3)=m,即-x+6-m=0,所以x=6-m,则6-m≠3,解得m≠3【考点】分式方程点评:本题难度中等,主要考查学生对分式方程知识点的掌握,求出分母x-3的取值范围为解题关键.5.【答案】(增根)【解析】解分式方程的一般步骤:先去分母化分式方程为整式方程,再解这个整式方程即可,注意解分式方程最后一步要写检验.两边同乘得解这个方程得经检验是增根,所以原方程无解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.6.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】甲,乙两种玩具分别是15元/件,25元/件;因为y是整数,所以y取20,21,22,23.共有四种方案.【解析】解:设甲种玩具进价x元/件,则乙种玩具进价为(40-x)元/件,,经检验x=15是原方程的解.∴5.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48-y)件,解得.因为y是整数,所以y取20,21,22,23.共有四种方案.【考点】分式方程和不等式组应用点评:本题难度中等,主要考查学生对分式方程和不等式组解决实际问题的应用。

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。

求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。

甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。

已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。

设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。

初中数学-分式与分式方程测试题(含答案)

初中数学-分式与分式方程测试题(含答案)

初中数学-分式与分式方程测试题(含答案)初中数学-分式与分式方程测试题一、选择题1.分式﹣A.﹣2.在可变形为()B.C.﹣D.中,分式的个数是()A. 2B. 3C. 4D. 53.下列算式中,你认为错误的是()A.4.化简B.C.D.的结果为()D.A.﹣1 B. 1 C.5.分式方程﹣2=的解是()C. x=2D. x=﹣1A. x=±1B. x=﹣1+6.设m﹣n=mn,则A.的值是()B. 0C. 1D. -1的值为零,那么的值是()XXX.如果分式A.B.8.假如分式A.9.解方程A.C.的值为负数,则的x取值范围是()XXX.去分母得()B.D.的值是()10.若m+n﹣p=0,则A. -3B. -1C. 1D. 3二、填空题11.方程12.若分式方程的解为________.=a无解,则a的值为________13.若分式14.分式方程15.化简:16.17.计较:的值为零,则=________。

﹣=0的解是________.=________.________=________ .=3的解是正数,则m的取值范围是________.18.已知关于x的方程三、解答题19.解方程:20.解分式方程:..21.计较:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣22.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?)÷.参考谜底一、选择题DBBBDDCDCA二、填空题11.x=﹣112.1或﹣113.-314.1515.x+y16.a2-b²17.18.m>-6且m≠-4三、解答题19.解:2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣120.解:去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x ﹣x2+1=2,解得:x=1,经检修x=1是增根,分式方程无解21.解:(1)原式=2xy﹣y2+x2+2xy+y2=4xy+x2;(2)原式==.•=1+,22.解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.。

初中数学计算专练—分式计算(100题)

初中数学计算专练—分式计算(100题)

七年级下册+分式计算一.解答题(共60小题)1.(2022秋•永城市校级期末)先化简,再求值,其中x=﹣1.2.(2022秋•门头沟区期末)先化简,再求值:,其中.3.(2022秋•泸县校级期末)计算:.4.(2022秋•密山市校级期末)先化简,再求值:(1),其中x=2tan45°.5.(2022秋•平南县期末)先化简,再求值:÷(+x﹣2),其中x=﹣1.6.(2022秋•荆门期末)先化简,再求值:,其中a.b满足.7.(2022秋•番禺区校级期末)先化简,再求值:(1),其中x=5,y=3.5.(2),并从3,2,1,0这四个数中取一个合适的数作为x的值代入求值.8.先化简,再求值:(1+)÷,其中x=﹣1.9.(2020秋•宿城区校级月考)计算:(1);(2).10.化简:(1)÷;(2)()2÷.11.(2020秋•任城区校级月考)计算:(1)+;(2)﹣a﹣1.12.(2022秋•哈巴河县期末)先化简:(﹣)÷,然后从﹣3<m<0的范围内选取一个合适的整数作为m的值代入求值.13.(2022秋•甘井子区校级期末)分式计算:(1);(2).14.(2022秋•和平区校级期末)计算:(1);(2).15.(2022秋•顺义区期末)先化简,再求值:,其中.16.(2022秋•涪陵区月考)计算:(1)(x+y)2﹣x(x+2y);(2).17.(2022秋•单县期中)计算:(1);(2).18.(2021秋•集贤县校级期末)先化简,再求值,其中x=﹣2.19.(2022秋•周村区期中)计算:(1);(2).20.(2022秋•洞口县期中)先化简:÷(a﹣1﹣);再请从﹣2,﹣1,0,1,2中选择一个合适的数值代入求值.21.(2022•南岗区校级开学)先化简,再求值:÷(x﹣1﹣),其中x=+(﹣π)0.22.(2022秋•大兴区期末)计算:﹣.23.(2022秋•大连期末)计算:1+()÷.24.(2022秋•房山区期末)计算:.25.(2022秋•莱州市期末)先化简,然后在2,﹣2,﹣1中选一个你认为合适的a 值,代入求值.26.(2022秋•丰台区期末)计算:.27.(2022秋•朝阳区期末)先化简,再求值:,其中a=.28.(2022秋•昌平区期末)先化简,再求值:,其中.29.(2022秋•和平区校级期末)计算:(1);(2).30.(2022秋•海淀区校级期末)计算:(1);(2).31.(2022秋•海淀区期末)化简:.32.(2022秋•滨海新区校级期末)(1);(2).33.(2022秋•北京期末)求代数式的值,其中a=﹣1.34.(2022秋•河北区期末)先化简,再求值:,其中a是8的立方根.35.(2021秋•荷塘区校级期末)先化简,再求值:()÷,其中a=+1,b=−1.36.(2022秋•河西区期末)计算:(1);(2).37.(2022秋•桂平市期中)先化简,再求值:(﹣)÷,其中x﹣2=0.38.(2022春•庐江县月考)先化简,再求值:,其中m=1.39.(2022春•碑林区校级月考)化简求值,并在﹣3,﹣2,2,3这四个数中取一个合适的数为的a值代入求值.40.(2022秋•巴彦县校级期末)先化简,再求值,其中a=﹣1.41.(2022秋•辛集市校级期末)化简,然后从1,2,3,中选一个你喜欢的数代入求值.42.(2022秋•长春期末)先化简,再求值:÷(1﹣),其中a=3.43.(2022秋•定陶区期中)(1)先化简,再求值,其中x=﹣5.(2)若,求值.44.(2022秋•定陶区期中)化简下列分式:(1);(2).45.(2021秋•雷州市校级期末)先化简,再求值:(a+1﹣)÷,其中a是4的平方根.46.(2022秋•莱西市期末)计算:(1)(+)÷(﹣);(2)÷﹣.47.(2022秋•阳春市校级期末)先化简,再求值:,其中x=3.48.(2022秋•光山县期中)化简:.49.(2022•金华模拟)已知a2+2a﹣1=0,求代数式÷的值.50.(2022春•吴中区校级月考)先化简,再求值:÷(a+2﹣),其中a=﹣.51.(2022秋•绥宁县期中)先化简,再求值:,其中a=﹣3.52.(2021秋•镇安县期末)化简:1﹣.53.(2022•赣州模拟)先化简,再求值:,其中a=3.54.(2022秋•鼓楼区校级期中)先化简,再求值,其中x=﹣2.55.(2022秋•海安市月考)先化简代数式÷﹣1,然后选一个你喜欢的值代入.56.(2021秋•汉川市期末)先化简,再求值:﹣(),其中x=2022.57.(2021秋•普陀区期末)计算:÷.58.(2022春•庐阳区校级月考)先化简,若分式的值是负数,求a的取值范围.59.(2022春•九龙坡区校级月考)先化简,再求值:÷,其中|x﹣2|=1.60.(2022春•碑林区校级月考)先化简(﹣a﹣1)÷然后从﹣1,0,1,2中选一个合适的数a的值代入求值.七年级下册+分式计算参考答案与试题解析一.解答题(共60小题)1.(2022秋•永城市校级期末)先化简,再求值,其中x=﹣1.【解答】解:原式=÷=•=(x+2)(x+3)=x2+5x+6,当x=﹣1时,原式=1﹣5+6=2.2.(2022秋•门头沟区期末)先化简,再求值:,其中.【解答】解:原式=•=•=x2﹣x,∵,∴x2﹣x=,∴原式=.3.(2022秋•泸县校级期末)计算:.【解答】原式=+===.4.(2022秋•密山市校级期末)先化简,再求值:(1),其中x=2tan45°.【解答】解:(1)=[﹣1]•=(﹣1)•=•=•=﹣,当x=2tan45°=2×1=2时,原式=﹣=﹣1.5.(2022秋•平南县期末)先化简,再求值:÷(+x﹣2),其中x=﹣1.【解答】解:÷(+x﹣2)=÷=•=•=,当x=﹣1时,原式==1.6.(2022秋•荆门期末)先化简,再求值:,其中a.b满足.【解答】解:=[﹣]•=()•=•∵.∴a﹣=0,b+1=0,解得a=,b=﹣1,当a=,b=﹣1时,原式==﹣.7.(2022秋•番禺区校级期末)先化简,再求值:(1),其中x=5,y=3.5.(2),并从3,2,1,0这四个数中取一个合适的数作为x的值代入求值.【解答】解:(1)==,当x=5,y=3.5时,原式===﹣;(2)=[﹣]•=(﹣)•=•=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠±2且x≠3,∴当x=1时,原式=1+2=3.8.先化简,再求值:(1+)÷,其中x=﹣1.【解答】解:原式=(+)÷=x﹣2,当x=﹣1时,原式=﹣1﹣2=﹣3.9.(2020秋•宿城区校级月考)计算:(1);(2).【解答】解:(1)原式===.(2)原式====.10.化简:(1)÷;(2)()2÷.【解答】解:(1)原式=•=.(2)原式=•=.11.(2020秋•任城区校级月考)计算:(1)+;(2)﹣a﹣1.【解答】解:(1)原式=﹣=﹣===;(2)原式=﹣(a+1)=﹣===.12.(2022秋•哈巴河县期末)先化简:(﹣)÷,然后从﹣3<m<0的范围内选取一个合适的整数作为m的值代入求值.【解答】解:原式=(﹣)•=•﹣•=2(m﹣2)﹣(m+2)=2m﹣4﹣m﹣2=m﹣6.当m=﹣1时,原式=﹣1﹣6=﹣7.13.(2022秋•甘井子区校级期末)分式计算:(1);(2).【解答】解:(1)原式=÷==;(2)原式====﹣2(3+m)=﹣6﹣2m.14.(2022秋•和平区校级期末)计算:(1);(2).【解答】解:(1)==;(2)=÷=•=﹣.15.(2022秋•顺义区期末)先化简,再求值:,其中.【解答】解:原式=•﹣=﹣===,当x=﹣2时,原式===.16.(2022秋•涪陵区月考)计算:(1)(x+y)2﹣x(x+2y);(2).【解答】解:(1)原式=x2+2xy+y2﹣x2﹣2xy=4xy.(2)原式=••==.17.(2022秋•单县期中)计算:(1);(2).【解答】解:(1)==2x;(2)===1.18.(2021秋•集贤县校级期末)先化简,再求值,其中x=﹣2.【解答】解:==﹣,当x=﹣2时,原式=﹣=﹣4.19.(2022秋•周村区期中)计算:(1);(2).【解答】解:(1)原式=====;(2)原式====.20.(2022秋•洞口县期中)先化简:÷(a﹣1﹣);再请从﹣2,﹣1,0,1,2中选择一个合适的数值代入求值.【解答】解:÷(a﹣1﹣)=﹣÷=﹣•=﹣=﹣=,∵当a=﹣2,﹣1,2时,原分式无意义,∴a=0,1,当a=0时,原式==1.21.(2022•南岗区校级开学)先化简,再求值:÷(x﹣1﹣),其中x=+(﹣π)0.【解答】解:原式===;当x=+(﹣π)0=时,原式=.22.(2022秋•大兴区期末)计算:﹣.【解答】解:﹣=﹣==.23.(2022秋•大连期末)计算:1+()÷.【解答】解:原式=1+•=1+==.24.(2022秋•房山区期末)计算:.【解答】解:原式=••=.25.(2022秋•莱州市期末)先化简,然后在2,﹣2,﹣1中选一个你认为合适的a 值,代入求值.【解答】解:====,∵a﹣2≠0,a+1≠0,∴a≠2,a≠﹣1,∴当a=﹣2时,原式=.26.(2022秋•丰台区期末)计算:.【解答】解:=•=•=.27.(2022秋•朝阳区期末)先化简,再求值:,其中a=.【解答】解:=+•(a﹣2)=+==,当a=时,原式==3.28.(2022秋•昌平区期末)先化简,再求值:,其中.【解答】解:=﹣•=﹣==﹣,当时,原式=﹣=﹣.29.(2022秋•和平区校级期末)计算:(1);(2).【解答】解:(1)原式=;(2)原式=()2•=•=.30.(2022秋•海淀区校级期末)计算:(1);(2).【解答】解:(1)原式=+=+=;(2)原式=÷=•=.31.(2022秋•海淀区期末)化简:.【解答】解:原式=÷=•=x.32.(2022秋•滨海新区校级期末)(1);(2).【解答】解:(1)原式==;(2)原式=====.33.(2022秋•北京期末)求代数式的值,其中a=﹣1.【解答】解:=[+]÷=(+)•a(a﹣1)=•a(a﹣1)=3a,当a=﹣1时,原式=3×(﹣1)=﹣3.34.(2022秋•河北区期末)先化简,再求值:,其中a是8的立方根.【解答】解:==.∵a==2,把a=2代入.35.(2021秋•荷塘区校级期末)先化简,再求值:()÷,其中a=+1,b=−1.【解答】解:原式=(+)•=•=,当a=+1,b=﹣1时,原式===.36.(2022秋•河西区期末)计算:(1);(2).【解答】解:(1)=﹣===﹣;(2)=÷[﹣(a﹣1)]=÷=•=﹣.37.(2022秋•桂平市期中)先化简,再求值:(﹣)÷,其中x﹣2=0.【解答】解:(﹣)÷=[﹣]•=(﹣)•=•=,∵x﹣2=0,∴x=2,当x=2时,原式=.38.(2022春•庐江县月考)先化简,再求值:,其中m=1.【解答】解:=•==﹣m﹣9,当m=1时,原式=﹣1﹣9=﹣10.39.(2022春•碑林区校级月考)化简求值,并在﹣3,﹣2,2,3这四个数中取一个合适的数为的a值代入求值.【解答】解:原式=[﹣]•=(﹣)•=•=a+3,由题意得:a≠2和±3,则当a=﹣2时,原式=﹣2+3=1.40.(2022秋•巴彦县校级期末)先化简,再求值,其中a=﹣1.【解答】解:=•=•=,当a=﹣1时,原式=.41.(2022秋•辛集市校级期末)化简,然后从1,2,3,中选一个你喜欢的数代入求值.【解答】解:=•=•=,由分式有意义的条件可知:x≠2,±3,0,∴x=1,当x=1时,,原式=.42.(2022秋•长春期末)先化简,再求值:÷(1﹣),其中a=3.【解答】解:原式=÷=•=2a,当a=3时,原式=2×3=6.43.(2022秋•定陶区期中)(1)先化简,再求值,其中x=﹣5.(2)若,求值.【解答】解:(1)∵===,∴当x=﹣5时,原式==4;(2)∵,∴b﹣a=4ab,即a﹣b=﹣4ab,∴====.44.(2022秋•定陶区期中)化简下列分式:(1);(2).【解答】解:(1)====;(2)=()÷==x﹣1.45.(2021秋•雷州市校级期末)先化简,再求值:(a+1﹣)÷,其中a是4的平方根.【解答】解:(a+1﹣)÷=÷,=×=,由题意知a==±2,又a≠1且a≠2,∴a=﹣2,则原式==0.46.(2022秋•莱西市期末)计算:(1)(+)÷(﹣);(2)÷﹣.【解答】解:(1)(+)÷(﹣)===;(2)÷﹣=﹣=﹣=.47.(2022秋•阳春市校级期末)先化简,再求值:,其中x =3.【解答】解:=•===x (x +1)=x 2+x ,当x =3时,原式=32+3=12.48.(2022秋•光山县期中)化简:.【解答】解:原式=÷﹣=×﹣=﹣==1.49.(2022•金华模拟)已知a2+2a﹣1=0,求代数式÷的值.【解答】解:原式=[]•a(a﹣1)=(+)•a(a﹣1)=•a(a﹣1)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1.50.(2022春•吴中区校级月考)先化简,再求值:÷(a+2﹣),其中a=﹣.【解答】解:÷(a+2﹣)=÷=•=﹣=﹣,当a=﹣时,原式=﹣=﹣=﹣.51.(2022秋•绥宁县期中)先化简,再求值:,其中a=﹣3.【解答】解:原式===,当a=﹣3时,原式=.52.(2021秋•镇安县期末)化简:1﹣.【解答】解:1﹣=1﹣=1﹣==.53.(2022•赣州模拟)先化简,再求值:,其中a=3.【解答】解:=+•=+==,当a=3时,原式==2.54.(2022秋•鼓楼区校级期中)先化简,再求值,其中x=﹣2.【解答】解:===,当x=﹣2时,原式=.55.(2022秋•海安市月考)先化简代数式÷﹣1,然后选一个你喜欢的值代入.【解答】解:原式=﹣1=x﹣1,∵要使分式有意义,∴x不能取﹣1,1,0,当x=2时,原式=2﹣1=1,(答案不唯一,只要x不取﹣1,1,0均可).56.(2021秋•汉川市期末)先化简,再求值:﹣(),其中x=2022.【解答】解:原式=•﹣(+)=﹣=,当x=2022时,原式==.57.(2021秋•普陀区期末)计算:÷.【解答】解:÷=÷=•==.58.(2022春•庐阳区校级月考)先化简,若分式的值是负数,求a的取值范围.【解答】解:∵=•=•=,∴当a﹣2<0,a≠0,且a﹣1≠0时的值是负数,即a的取值范围是a<2且a≠1,a≠0.59.(2022春•九龙坡区校级月考)先化简,再求值:÷,其中|x﹣2|=1.【解答】解:÷=﹣•=﹣===,∵|x﹣2|=1,∴x﹣2=±1,∴x=3或x=1,∵x2﹣1≠0,x(x﹣2)≠0,∴x≠±1,x≠0,x≠2,∴当x=3时,原式===.60.(2022春•碑林区校级月考)先化简(﹣a﹣1)÷然后从﹣1,0,1,2中选一个合适的数a的值代入求值.【解答】解:(﹣a﹣1)÷=[﹣(a+1)]÷=•=•=a﹣2;∵a≠2且a≠﹣1,∴当a=0时,原式=﹣2,当a=1时,原式=﹣1.。

浙教版七年级下数学第五章分式好题精选及答案

浙教版七年级下数学第五章分式好题精选及答案

浙教版七年级下数学第五章分式好题精选一.选择题(共15小题)1.下列分式中,是最简分式的是()A.B.C.D.2.计算(x﹣1)÷(1﹣)•x的结果是()A.﹣x2B.﹣1 C.x2D.13.某项工程,甲队完成需要a小时,乙队完成需要b小时,则甲、乙两队合作1小时可完成该工程的()A.B.C.D.1÷()4.如果分式中的a,b都同时扩大2倍,那么该分式的值()A.不变B.缩小2倍C.扩大2倍D.扩大4倍5.市政府决定对一块面积为2400m2的区域进行绿化,根据需要,该绿化工程在实际施工时增加了施工人员,每天绿化的面积比原计划增加了20%,结果提前5天完成任务.设计划每天绿化xm2,则根据意可列方程为()A.+5=B.=﹣5C.﹣5=D.=+56.某项工程,x人做需a天完成,若增加y人,则完成此工程所需天数是()A.ax+y B.ax﹣y C.D.7.如果x2﹣4x+1=0,那么的值为()A.B.C.D.8.寒假到了,为了让同学们过一个充实而有意义的假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x页,则根据题意可列出方程()A.B.C.D.9.已知+=3,则代数式的值为()A.3 B.﹣2 C.﹣D.﹣10.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为m克,再称得剩余电线的质量为n克,那么原来这卷电线的总长度是()A.米B.(+1)米C.(+1)米D.(+1)米11.关于x的方程=2+有增根,则k的值为()A.±3 B.3 C.﹣3 D.212.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个13.有一大捆粗细均匀的钢筋,现要确定其长度.先称出这捆钢筋的总质量为m千克,再从其中截取5米长的钢筋,称出它的质量为n千克,那么这捆钢筋的总长度为()A.米B.米C.米D.()米14.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣15.若a,b是两个正数,且,则()A.B.C.D.二.填空题(共10小题)16.在分式,,,中,最简分式有个.17.分式与的最简公分母是.18.若分式的值为0,则x的值是.19.小明暑假外出旅行时,准备给朋友们些土特产作为礼物.预先了解到当地最富盛名的A、B两种特产的价格之和为140元,小明计划购买B特产的数量比A特产的数量多5盒,但一共不超过60盒,小明在土特产商店发现A正打九折销售,而B的价格提高了10%,小明决定将A、B特产的购买数量对调,这样,实际花费只比计划多20元,已知价格和购买数量均为整数,则小明购买土特产实际花费为元.20.已知y1=,且y2=,y3=,y4=…y n=,请计算y2018=.(用含x的代数式表示)21.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程.22.当a=2016时,分式的值是.23.若分式的值为3,则x=.24.如果≠0,那么代数式•(2m+n)的值是.25.若=2,则=三.解答题(共15小题)26.计算(1)(2)()27.计算:(1)()2•()3(2)﹣x﹣128.先化简,再求值:(x﹣2+)÷,其中x=﹣.29.刘阿姨到超市购买大米,第一次按原价购买,用了90元,几天后,遇上这种大米8折出售,她用120元又买了一些,两次一共购买了40kg.求这种大米的原价.30.先化简,再求值:÷(﹣1),其中x=﹣2018.31.计算:(1)(3a+2b)(a﹣2b)(2)32.解方程:﹣=1.33.关于x的分式方程﹣=1+无解,则a的值是多少.34.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?35.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.36.列分式方程解应用题某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.37.(1)已知A=,B=,若A=B,求a、b之间的关系式;(2)已知a、b、c都是正数,P=,Q=,若P=Q,那么a、b、c之间有什么关系?试证明你的结论.38.阅读材料:小华像这样解分式方程=解:移项,得:﹣=0通分,得:=0整理,得:=0分子值取0,得:x+5=0即:x=﹣5经检验:x=﹣5是原分式方程的解.(1)小华这种解分式方程的新方法,主要依据是;(2)试用小华的方法解分式方程﹣=139.在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)40.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?参考答案与试题解析一.选择题(共15小题)1.下列分式中,是最简分式的是()A.B.C.D.【分析】根据最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.【解答】解:A.=,不符合题意;B.=,不符合题意;C.=,不符合题意;D.是最简分式,符合题意;故选:D.【点评】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,然后进行约分.2.计算(x﹣1)÷(1﹣)•x的结果是()A.﹣x2B.﹣1 C.x2D.1【分析】先计算括号内的减法,再将除法转化为乘法,最后约分即可得.【解答】解:原式=(x﹣1)÷•x=(x﹣1)••x=x2,故选:C.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.3.某项工程,甲队完成需要a小时,乙队完成需要b小时,则甲、乙两队合作1小时可完成该工程的()A.B.C.D.1÷()【分析】根据题意列出代数式即可.【解答】解:因为某项工程,甲队完成需要a小时,乙队完成需要b小时,所以甲、乙两队合作1小时可完成该工程的,故选:A.【点评】本题考查了列代数式,注意代数式的正确书写:数字应写在字母的前面,数字和字母之间的乘号要省略不写.4.如果分式中的a,b都同时扩大2倍,那么该分式的值()A.不变B.缩小2倍C.扩大2倍D.扩大4倍【分析】依题意分别用2a和2b去代换原分式中的a和b,利用分式的基本性质化简即可.【解答】解:∵分式中的a,b都同时扩大2倍,∴=,∴该分式的值扩大2倍.故选:C.【点评】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.5.市政府决定对一块面积为2400m2的区域进行绿化,根据需要,该绿化工程在实际施工时增加了施工人员,每天绿化的面积比原计划增加了20%,结果提前5天完成任务.设计划每天绿化xm2,则根据意可列方程为()A.+5=B.=﹣5C.﹣5=D.=+5【分析】设计划每天绿化xm2,根据“结果提前5天完成任务”列出方程.【解答】解:设计划每天绿化xm2,则实际每天绿化的面积为(1+20%)xm2,则根据意可列方程:﹣5=.故选:C.【点评】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.6.某项工程,x人做需a天完成,若增加y人,则完成此工程所需天数是()A.ax+y B.ax﹣y C.D.【分析】设该项工程总量为1,(x+y)人完成这项工程所需的天数=1÷(x+y)人的工作效率【解答】解:每人的工作效率=,则(x+y)个人完成这项工程的工作效率是(x+y)•.故(x+y)个人完成这项工程所需的天数是1÷[(x+y)•]=(天).故选:D.【点评】考查了列代数式(分式),解决问题的关键是读懂题意,找到所求的量的等量关系.7.如果x2﹣4x+1=0,那么的值为()A.B.C.D.【分析】把已知条件两边都除以x,得到x+=4,然后两边平方,利用完全平方公式展开,求出x2+的值,再把所求代数式分子分母都除以x2,然后整体代入计算即可得解.【解答】解:把x2﹣4x+1=0方程两边都除以x得,x+=4,两边平方得,x2++2=16,所以,x2+=14,===.故选:C.【点评】本题考查了完全平方公式的应用,把已知条件与所求代数式进行变形出现x互为倒数的和的形式是解题的关键.8.寒假到了,为了让同学们过一个充实而有意义的假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x页,则根据题意可列出方程()A.B.C.D.【分析】关键描述语为:“小芳看80页书所用的天数与小荣看70页书所用的天数相等”;等量关系为:小芳看80页书所用的天数=小荣看70页书所用的天数.【解答】解:小芳看80页书所用的天数为:,小荣看70页书所用的天数为:.所列方程为:=.故选D.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.9.已知+=3,则代数式的值为()A.3 B.﹣2 C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b=6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.10.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为m克,再称得剩余电线的质量为n克,那么原来这卷电线的总长度是()A.米B.(+1)米C.(+1)米D.(+1)米【分析】根据题意列出代数式即可.【解答】解:原来这卷电线的总长度是(+1)米,故选:B.【点评】本题考查了列代数式,注意代数式的正确书写:数字应写在字母的前面,数字和字母之间的乘号要省略不写.11.关于x的方程=2+有增根,则k的值为()A.±3 B.3 C.﹣3 D.2【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出k的值.【解答】解:∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,方程两边都乘(x﹣3),得:x﹣1=2(x﹣3)+k,当x=3时,k=2,符合题意,故选:D.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个【分析】由分式的值是正整数知m﹣2=1、2、3、6,据此可得.【解答】解:∵分式的值是正整数,∴m﹣2=1、2、3、6,则m=3、4、5、8这四个数,故选:A.【点评】本题考查分式的值,解题的关键是理解题意,学会用转化的思想思考问题,属于基础题,中考常考题型.13.有一大捆粗细均匀的钢筋,现要确定其长度.先称出这捆钢筋的总质量为m千克,再从其中截取5米长的钢筋,称出它的质量为n千克,那么这捆钢筋的总长度为()A.米B.米C.米D.()米【分析】解:此题要根据题意列出代数式.可先求1千克钢筋有几米长,即米,再求m千克钢筋的长度.【解答】解:这捆钢筋的总长度为m•=米.故选:C.【点评】用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.14.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣【分析】把所给等式整理为2个完全平方式的和为0的形式,得到m,n的值,代入求值即可.【解答】解:由m2+n2=n﹣m﹣2,得(m+2)2+(n﹣2)2=0,则m=﹣2,n=2,∴﹣=﹣﹣=﹣1.故选:C.【点评】考查分式的化简求值,把所给等式整理为2个完全平方式的和为0的形式是解决本题的突破点;用到的知识点为:2个完全平方式的和为0,这2个完全平方式的底数为0.15.若a,b是两个正数,且,则()A.B.C.D.【分析】由已知去分母得到ab=(a+b)(a+b﹣1),判断a+b的范围,再由完全平方公式得到(a+b)2≥4ab,即可得到a+b≤,从而得到选项.【解答】解:由,去分母得:a2﹣a+b2﹣b+ab=0,整理得:a2+ab+b2=a+b,∴(a+b)2﹣ab=a+b,∴ab=(a+b)2﹣(a+b)=(a+b)(a+b﹣1),①∵a,b是两个正数,∴ab>0,a+b>0,∴a+b﹣1>0,即:a+b>1.∵(a+b)2=(a﹣b)2+4ab≥4ab,结合①式可得:,∴.因此,1<a+b.故选:C.【点评】本题主要考查了分式的混合运算,完全平方公式,分式的基本性质等知识点,利用完全平方公式和分式的基本性质进行变式是解此题的关键.二.填空题(共10小题)16.在分式,,,中,最简分式有3个.【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:是最简分式,是最简分式,==,不是最简分式,是最简分式,故答案为:3.【点评】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.17.分式与的最简公分母是12x2y2.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为两个个分母中的常数项系数的最小公倍数是12,x的最高次幂是2,y的最高次幂是2,所以两个分式的最简公分母是12x2y2.故答案为:12x2y2.【点评】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.18.若分式的值为0,则x的值是﹣1.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由分式的值为0,得x+1=0且x﹣1≠0.解得x=﹣1,故答案为:﹣1.【点评】本题考查了分时值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.19.小明暑假外出旅行时,准备给朋友们些土特产作为礼物.预先了解到当地最富盛名的A、B两种特产的价格之和为140元,小明计划购买B特产的数量比A特产的数量多5盒,但一共不超过60盒,小明在土特产商店发现A正打九折销售,而B的价格提高了10%,小明决定将A、B特产的购买数量对调,这样,实际花费只比计划多20元,已知价格和购买数量均为整数,则小明购买土特产实际花费为3120元.【分析】设A特产的单价为x元/盒,则B特产的单价为(140﹣x)元/盒,计划购买A特产a盒,则B特产为(a+5)盒,根据等量关系:实际花费只比计划多20元,列出方程,再根据整数的性质求解即可.【解答】解:设A特产的单价为x元/盒,则B特产的单价为(140﹣x)元/盒,计划购买A特产a盒,则B特产为(a+5)盒,0.9x(a+5)+(140﹣x)(1+10%)a﹣[ax+(140﹣x)(a+5)]=20,解得x==+70,∵x和a都是整数,550=2×5×11,∴95﹣2a=5,11,55,当95﹣2a=5时,a=45;当95﹣2a=11时,a=42;当95﹣2a=55时,a=20;∵a+a+5≤60,解得a≤27.5,∴a=20,95﹣2a=55,∴x=+70=80,小明实际花费ax+(a+5)(140﹣x)+20=20×80+(20+5)×(140﹣80)+20=1600+1500+20=3120答:小明购买土特产实际花费为3120元.故答案为:3120.【点评】考查了分式方程的应用,列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.20.已知y1=,且y2=,y3=,y4=…y n=,请计算y2018=.(用含x的代数式表示)【分析】先根据分式的混合运算顺序和运算法则计算出y2、y3、y4,据此得出其循环规律,再进一步求解可得.【解答】解:∵y1=,∴y2===,y3===2﹣x,y4==,∴这列式子的结果以,,2﹣x为周期,每3个数一循环,∵2018÷3=672…2,∴y2018=y2=,故答案为:.【点评】本题主要考查数字的变化规律与分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则及数列的循环规律.21.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程﹣=20.【分析】关键描述语是:“每个同学比原来少分摊了20元车费”;等量关系为:原有的同学每人分担的车费﹣实际每人分担的车费=20.【解答】解:原有的同学每人分担的车费应该为,而实际每人分担的车费为,方程应该表示为:﹣=20.故答案是:﹣=20.【点评】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.22.当a=2016时,分式的值是2017.【分析】首先化简分式,然后把a=2016代入化简后的算式,求出算式的值是多少即可.【解答】解:当a=2016时,=﹣===a+1=2016+1=2017.故答案为:2017.【点评】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.23.若分式的值为3,则x=6.【分析】根据分式的值为3,可得:=3,据此求出x的值是多少即可.【解答】解:∵分式的值为3,∴=3,∴3(x﹣4)=6,解得x=6,当x=6时,x﹣4=6﹣4=2≠0,∴x=6.故答案为:6.【点评】此题主要考查了分式的值的求法,要熟练掌握,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.24.如果≠0,那么代数式•(2m+n)的值是.【分析】先化简该分式,再设=k,则m=3k、n=2k,代入化简后的分式计算可得.【解答】解:原式=•(2m+n)=,设=k,则m=3k、n=2k,所以原式===,故答案为:.【点评】本题主要考查分式的乘除法,解题的关键是熟练掌握分式的乘除运算顺序和法则.25.若=2,则=【分析】由=2,得x+y=2xy,整体代入所求的式子化简即可.【解答】解:由=2,得x+y=2xy则===.故答案为.【点评】解题关键是用到了整体代入的思想.三.解答题(共15小题)26.计算(1)(2)()【分析】(1)先将分子和分母因式分解,再约分即可得;(2)先计算括号内的加法,同时将除式分母和分子因式分解,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=•=1;(2)原式=[+]÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.27.计算:(1)()2•()3(2)﹣x﹣1【分析】(1)先计算乘方,同时将除法转化为乘法,继而约分即可得;(2)先通分,再计算减法即可得.【解答】解:(1)原式=••(﹣)=﹣;(2)原式=﹣=.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.28.先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.29.刘阿姨到超市购买大米,第一次按原价购买,用了90元,几天后,遇上这种大米8折出售,她用120元又买了一些,两次一共购买了40kg.求这种大米的原价.【分析】设这种大米的原价是每千克x元,根据两次一共购买了40kg列出方程,求解即可.【解答】解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=6.经检验,x=6是原方程的解.答:这种大米的原价是每千克6元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.30.先化简,再求值:÷(﹣1),其中x=﹣2018.【分析】先根据分式的混合运算和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=÷(﹣)=÷(﹣)=•[﹣(x+1)]=﹣(x﹣1)=1﹣x,当x=﹣2018时,原式=1﹣(﹣2018)=2019.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.31.计算:(1)(3a+2b)(a﹣2b)(2)【分析】(1)根据多项式乘多项式的运算法则计算,再合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=3a2﹣6ab+2ab﹣4b2=3a2﹣4ab﹣4b2;(2)原式=•+=+==1.【点评】本题主要考查多项式乘多项式与分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.32.解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.33.关于x的分式方程﹣=1+无解,则a的值是多少.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.【解答】解:去分母得:x2﹣ax﹣3x+3=x2﹣x+a,即﹣ax﹣2x+3=a,即(a+2)x=3﹣a,当a+2=0,即a=﹣2时,整式方程无解;当a+2≠0时,由分式方程无解,得到x(x﹣1)=0,即x=0或x=1,把x=0代入整式方程得:a=3;把x=1代入整式方程得:a=,综上,a的值是﹣2或3或.【点评】此题考查了分式方程的解,始终注意分母不为0的条件.34.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?【分析】设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,根据2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时列出分式方程,求出答案即可.【解答】解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.【点评】本题考查了分式方程的应用;解这类问题时要注意分析题中的等量关系,由时间关系列出方程是解决问题的关键.35.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.【分析】设每套《水浒传》连环画的价格是x元.则《三国演义》连环画的价格是(x+60)元.根据“用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍”列出方程并解答.注意要验根.【解答】解:设每套《水浒传》连环画的价格为x元,则每套《三国演义》连环画的价格为(x+60)元.由题意,得=2×解得x=120经检验,x=120是原方程的解,且符合题意.答:每套《水浒传》连环画的价格为120元.【点评】本题考查分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.36.列分式方程解应用题某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.【分析】设甲车的平均速度是x千米/时,则乙车的平均速度是1.2x千米/时,根据甲车行驶的时间=乙车行驶的时间+小时路程方程,求解即可.【解答】解:设甲车的平均速度是x千米/时,则乙车的平均速度是1.2x千米/时,根据题意,得=+,解得x=60.经检验,x=60是原方程的解,此时1.2x=72.答:乙车的平均速度是72千米/时.。

七年级数学下册《第五章分式》练习题-附答案(浙教版)

七年级数学下册《第五章分式》练习题-附答案(浙教版)

七年级数学下册《第五章分式》练习题-附答案(浙教版)一、选择题1.若分式x +12-x有意义,则x 满足的条件是( ) A.x ≠-1 B.x ≠-2 C.x ≠2 D.x ≠-1且x ≠22.若分式2x +63x -9的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-33.与分式﹣11-x的值相等的是( ) A.﹣1x -1 B.﹣11+x C.11+x D.1x -14.下列约分正确的是( ) A.B. =﹣1C. =D. =5.下列分式中,最简分式是( )A.x 2-1x 2+1B.x +1x 2-1C.x 2-2xy +y 2x 2-xyD.x 2-362x +126.下列运算结果为x -1的是( )A.1-1xB.x 2-1x ·x x +1C.x +1x ÷1x -1D.x 2+2x +1x +17.化简a 2a -1-1-2a 1-a的结果为( ) A.a +1a -1B.a -1C.aD.1 8.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-39.施工队要铺设1 000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务,设原计划每天施工x 米,所列方程正确的是( )A.1 000x -1 000x +30=2B.1 000x +30-1 000x =2C.1 000x -1 000x -30=2D.1 000x -30-1 000x=2 10.若﹣2<a ≤2,且使关于y 的方程y +a y -1+2a 1-y =2的解为非负数,则符合条件的所有整数a 的和为( )A.﹣3B.﹣2C.1D.2二、填空题11.要使分式1x -1有意义,x 的取值应满足 . 12.当x =1时,分式x x +2的值是________. 13.把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________. 14.方程2x +13-x =32的解是 . 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如,=. 类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么 (B +1)﹣(A +1)= .三、解答题17.化简:x -2x -1·x 2-1x 2-4x +4-1x -2.18.化简:(1-2x -1)·x 2-xx 2-6x +9.19.解分式方程:xx -1﹣2x =1;20.解分式方程:32x -4﹣xx -2=12.21.化简(xx -1 - 1 x 2-1 )÷x 2+2x +1x 2 ,并从-1,0,1,2中选择一个合适的数求代数式的值。

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在﹣3x、、﹣、、﹣、、中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个【答案】A【考点】分式的定义【解析】【解答】解:、、是分式,其余都是整式。

故答案为:A【分析】根据分母中含有字母的有理式是分式,逐个判断即可。

2.下列运算正确的是()A. B. C. D.【答案】C【考点】分式的约分,分式的加减法【解析】解答: A、分式的分子和分母同时乘以一个不为0的数时,分式的值才不改变,故A错误。

B、分式的分子和分母同时加上一个不为0的数时,分式的值改变,故B错误,C、,故C正确,D、,故D错误,故选C.分析: 根据分式的基本性质对前三项进行判断,D是同分母的分式加减运算,分母不变,分子直接相加即可.3.若分式的值为0,则的取值范围为()A. 或B.C.D.【答案】B【考点】分式的值为零的条件【解析】【解答】解:由题意得:(x+2)(x-1)=0,且∣x∣-2≠0,解得:x=1;故答案为:B。

【分析】根据分子为0,且分母不为0时分式的值为0,列出混合组,求解即可。

4.计算的结果为()A. 1B. xC.D.【答案】A【考点】分式的加减法【解析】【解答】解:原式==1故答案为:A.【分析】根据同分母分式的减法,分母不变,分子相减,并将计算的结果约分化为最简形式。

A. x=1B. x=2C. 无解D. x=4【答案】C【考点】解分式方程【解析】【解答】方程两边都乘以x-2得:1=x-2+1,解这个方程得:-x=-2+1-1-x=-2,x=2,检验:∵把x=2代入x-2=0,∴x=2是原方程的增根,即原方程无解,故答案为:C.【分析】方程两边都乘以最简公分母x-2,化分式方程为整式方程,解这个整式方程求出x的值,把x的值代入最简公分母中检验,若最简公分母不为0,则x的值是原分式方程的解,若最简公分母为0,则x的值是原分式方程的增根,原分式方程无解.6.计算的结果是()A. ﹣yB.C.D.【答案】B【考点】分式的乘除法【解析】解答: 原式=故选B.分析: 在计算过程中需要注意的是运算顺序.分式的乘除运算实际就是分式的约分7.已知公式(),则表示的公式是()A. B. C. D.【答案】D【考点】解分式方程【解析】【解答】解:∵,∴,∴,∴,∴∴,∵,∴;故答案为:D。

2022年浙教版初中数学七年级下册第五章分式专项练习试题(含详解)

2022年浙教版初中数学七年级下册第五章分式专项练习试题(含详解)

初中数学七年级下册第五章分式专项练习(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分) 1、若22224n n n n +++=,则n 的值为( ) A .0B .1C .2D .32、甲种细胞直径用科学记数法表示为68.0510-⨯,乙种细胞直径用科学记数法表示为68.0310-⨯,若甲、乙两种细胞直径的差用科学记数法表示为10n a ⨯,则n 的值为( ) A .﹣5B .﹣6C .﹣7D .﹣83、已知实数,,x y z 满足x y xy z +==,则下列结论:①若0z ≠,则412723x xy y x xy y -+=-++;②若3x =,则6y z +=;③若0z ≠,则()()1111x y x y--=+;④若6z =,则2224x y +=,其中正确的个数是( ) A .1 B .2 C .3 D .44、当分式22xx-的值为0时,x 的值为( ) A .0 B .2 C .0或2D .125、新冠疫苗载体腺病毒的直径约为0.000085毫米,将数0.000085用科学记数法表示为( ) A .85×10-6B .8.5×10-5C .8.5×10-6D .0.85×10-46、新型冠状病毒属冠状病毒属,冠状病毒科,体积很小,最大直径不超过140纳米(即0.00000014米).用科学记数法表示0.00000014,正确的是( ) A .1.4×107B .1.4×10﹣7C .0.14×10﹣6D .14×10﹣87、对于正数x ,规定f (x )=11x +,例如f (4)=11145=+,114()14514f ==+,则f (2021)+f (2020)+…+f (2)+f (1)+f (12)+…11()()20202021f f ++的结果是( ) A .40392B .4039C .40412D .40418、若 21364x =,则 13x -=( ) A .18-B .18C .180D .15129、已知212m -⎛⎫= ⎪⎝⎭, ()32n =-, 012p ⎛⎫=-- ⎪⎝⎭,则m , n , p 的大小关系是( )A .m < p < nB .n < m < pC .p < n < mD .n < p < m10、冠状病毒的一个变种是非典型肺炎的病原体,某种球形冠状病毒的直径是120纳米,1纳米=10﹣9米,则这种冠状病毒的半径用科学记数法表示为( ) A .1.2×10﹣7米 B .1.2×10﹣11米C .0.6×10﹣11米 D .6×10﹣8米二、填空题(5小题,每小题4分,共计20分) 1、若0<a <1,-2<b <-1,则1212a b a b -+--+=_____.2、计算:276a b •22127b a=________________.3、30÷3﹣1×(13)﹣2=___.4、若2x <,则2121x x xx x x---+--的值是______. 5、计算:0113()22-⨯+-=______.三、解答题(5小题,每小题10分,共计50分)1、列分式方程解应用题.某商场新进一种商品,第一个月将此商品的进价提高20%作为销售价,共获利600元.第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了40件,并且商场第二个月比第一个月多获利150元.问此商品的进价是多少元?商场第二个月销售多少件? 2、计算:20200231(2021)|311|(2)π-++--+- 3、解下列方程(组):(1)3324x y x y -=⎧⎨+=⎩;(2)311x xx x++--=2. 4、某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个摊位的占地面积A 类比B 类多2平方米.建A 类,B 类摊位每平方米的费用分别为40元,30元.若用60平方米建A 类或B 类摊位,则A 类摊位的个数恰好是B 类摊位个数的35. (1)求每个A ,B 类摊位的占地面积.(2)已知该社区规划用地70平方米建摊位,且刚好全部用完. ①请写出建A ,B 两类摊位个数的所有方案,并说明理由. ②请预算出该社区建成A ,B 两类摊位需要投入的最大费用.5、计算:()11253-⎛⎫-+--- ⎪⎝⎭---------参考答案----------- 一、单选题 1、A 【分析】由题意可得:244n ⨯=,通过整理得:21n =,则可求得0n =. 【详解】解:22224n n n n +++=,244n ⨯=,21n =,0n =.故选:A . 【点睛】本题主要考查了零指数幂法则,解答的关键是明确非0实数的0次方等于1. 2、D 【分析】先求出甲、乙两种细胞直径的差,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:8.05×10﹣6﹣8.03×10﹣6=0.02×10﹣6=2×10﹣8. 故选:D . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 3、D 【分析】①4272x xy y x xy y -+++转化为()()442727x y xy z zx y xy z z+--=+++,即可求解;②先求出y ,再求出z ,即可得到答案;③将()()11x y --变形求出值为1,再将11x y +变形求出值也为1,即可得到答案;④将2224x y +=进行变形为()2222x y x y xy +=+-,再将x y xy z +==整体代入,即可得到答案.【详解】解:①因为x y xy z +==,0z ≠所以,()()4441=27227273x y xy x xy y z z x xy y x y xy z z +--+-==-+++++,故此项正确;②因为,3x =,则x y xy +=. 所以,33y y +=解得:32y =;所以,313+422z x y =+==所以,31+4=622y z +=,故此项正确; ③因为0z ≠,x y xy z +==所以,()()()1111+=11x y y x xy x y xy z z --=--+=-+-+=;11=1y x x y z x y xy xy xy z+++===; 所以,()()1111x y x y--=+,故此项正确; ④因为6z =,x y xy z +==所以,()222222361224x y x y xy z z +=+-=-=-=,故此项正确; 故选D . 【点睛】本题考查完全平方公式、分式的加法以及整体代入方法,解答本题的关键是明确题意,求出学会整体代入.4、A【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式22xx-值为0,∴2x=0,20x-≠,解得:x=0.故选:A.【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零是解题的关键.5、B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可.【详解】解:0.000085=8.5×10-5,故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、B【分析】根据题意,运用科学计数法的表示方法可直接得出答案,要注意绝对值小于1的数字科学计数法的表示形式为:10n a -⨯,其中110a ≤<,n 为正整数,n 的值由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000014用科学记数法表示为71.410-⨯, 故选:B . 【点睛】本题考查了科学计数法的表示方法,属于基础题,正确确定10n a -⨯中a 和n 的值是解决本题的关键. 7、C 【分析】根据已知规定,可得1()()1f x f x+=,进而可以解决问题. 【详解】解:∵f (x )=11x+,111()1111xf x x x xx===+++,∴111()()1111x x f x f x x x x ++=+==+++, ∴f (2021)+f (2020)+…+f (2)+f (1)+f (12)+…11()()20202021f f ++ =111(2021)()(2020)()()(2)(1)202120202f f f f f f f +++++++=120202+=40412, 故选:C .本题考查了规律型:数字的变化类,分式的加法.解决本题的关键是根据数字的变化寻找规律. 8、B 【分析】先利用213x 的值,求出13x ,再利用负整数指数幂的运算法则,得到13-x 的值. 【详解】 解:21364x =,138∴=x 或138x =-(舍去), 1131318x x -∴==, 故选:B . 【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:1x xa a -=,是解决本题的关键. 9、D 【分析】根据零指数幂、负指数幂以及乘方的运算求得m n p 、、,比较即可. 【详解】解:2412m -⎛⎫⎪⎝⎭==,()328n =-=-,0121p ⎛⎫=-- ⎪⎭=-⎝∵814-<-< ∴n p m << 故选D此题考查了零指数幂、负指数幂以及乘方的运算,涉及了有理数大小的比较,解题的关键是根据有关运算,正确求出m n p、、的值.10、D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:120÷2(纳米)=60×10﹣9米=6×10﹣8米.故选:D.【点睛】考核知识点:科学记数法.理解科学记数法的规则是关键.二、填空题1、﹣2【分析】先根据题意得出a﹣1<0,b+2>0,再根据绝对值的性质化简即可解答.【详解】解:∵0<a<1,-2<b<-1,∴a﹣1<0,b+2>0,∴1212 a ba b-+--+=(1)212 a ba b--+--+=﹣1﹣1故答案为:-2. 【点睛】本题考查有理数的减法运算、绝对值的性质,会利用绝对值的性质化简是解答的关键. 2、2a【分析】根据分式的乘法运算法则计算即可 【详解】276a b •22127b a 2a= 故答案为2a【点睛】本题考查了分式的乘法运算,掌握分式的乘法法则是解题的关键. 3、27 【分析】原式先计算零指数幂和负整数指数幂,再计算乘法运算,即可得到结果. 【详解】解:30÷3﹣1×(13)﹣2=1193÷⨯ =139⨯⨯ =27故答案为:27【点睛】本题考查了零指数幂、负整数指数幂以有理数的乘除运算,熟练掌握运算法则是解答本题的关键. 4、1或1-或3-【分析】对x 进行分类讨论,0x <,01x <<、12x <<三种情况,分别求解即可.【详解】解:当0x <时,20x -<,10x -<, ∴22x x -=-,11x x -=-,x x =-2111(1)321x x x x x x---+=--+-=--- 当01x <<时,20x -<,10x -< ∴22x x -=-,11x x -=-,x x =2111(1)121x x x x x x---+=--+=--- 当12x <<时,20x -<,10x -> ∴22x x -=-,11x x -=-,x x =211(1)(1)121x x x x x x---+=---+=-- 综上所述,2121x x x x x x---+--的值为1,1-,3- 故答案为1或1-或3-【点睛】此题考查了绝对值的性质以及有理数的有关运算,解题的关键是对x 的范围进行分类讨论,分别求解.【分析】根据零指数幂,负指数幂的运算法则以及绝对值,求解即可.【详解】解:原式122224=⨯+=+=.故答案为:4.【点睛】此题考查了零指数幂、负指数幂以及绝对值的计算,解题的关键是掌握他们的运算法则.三、解答题1、50元,100件【分析】设此商品进价是x元,然后根据等量关系为:第二个月的销售量-第一个月的销售量=40,算出后可得到此商品的进价,列出方程求解即可.【详解】解:设此商品进价是x元,则:60015060040 15%20%x x+-=,解得:50x=经检验:x=50是方程的根.则60015010015%50+=⨯(件),答:商品进价为50元,商场第二个月共销售100件.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确根据题意列出方程求解.【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算.【详解】解:20200231(2021)|311|(2)π-++--+-,1128=-+-- ,10=- .【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值.3、(1)21x y =⎧⎨=-⎩;(2)52x = 【分析】(1)根据加减消元法解二元一次方程组即可;(2)先左右两边同时乘以最简公分母(1)x -,将分式方程转化为整式方程,进而求解即可,最后检验.【详解】(1)3324x y x y -=⎧⎨+=⎩①②①×2+②,得:510x =;解得2x =,将2x =代入①,解得1y =-∴原方程组的解为21 xy=⎧⎨=-⎩(2)311x xx x++--=232(1) x x x+-=-解得52 x=经检验52x=是原方程的解.【点睛】本题考查了加减消元法解二元一次方程组,解分式方程,掌握解方程(组)的方法是解题的关键.4、(1)每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)①见解析;②2650元【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意:若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的35.列出分式方程,解方程即可;(2)①设建A类摊位a个,B类摊位b个,由题意:该社区规划用地70平方米建摊位,且刚好全部用完.列出二元一次方程,求出正整数解即可;②求出建成A、B两类摊位需要投入的费用为-30b+2800,b越小,费用越大,即可求解.【详解】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意得:6036025x x=⨯+,解得:x=3,经检验,x=3是原方程的解,则x+2=5,答:每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)①有4个方案,理由如下:设建A类摊位a个,B类摊位b个,由题意得:5a+3b=70,则a=14-35 b,∵a、b为正整数,∴115ab=⎧⎨=⎩或810ab=⎧⎨=⎩或515ab=⎧⎨=⎩或220ab=⎧⎨=⎩,∴共有4个方案:A类摊位11个,B类摊位5个;A类摊位8个,B类摊位10个;A类摊位5个,B类摊位15个;A类摊位2个,B类摊位20个;②建成A、B两类摊位需要投入的费用为:40×5a+30×3b=200(14-35b)+90b=-30b+2800,∵b越小,费用越大,∴当b=5时,费用最大值=-30×5+2800=2650(元),即该社区建成A、B两类摊位需要投入的最大费用为2650元.【点睛】本题考查了分式方程的应用、二元一次方程的应用等知识;找准等量关系,列出分式方程和二元一次方程是解题的关键.5、5.【分析】先化简绝对值、计算零指数幂、负整数指数幂、去括号,再计算加减法即可得.【详解】解:原式2153=++-,5=.【点睛】本题考查了零指数幂、负整数指数幂等知识点,熟练掌握各运算法则是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学分式水平测试题
一、选择题:(每小题3分,共30分)
1.下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m
-,分式有( ) A.1个 B.2个 C.3个 D.4个
2.分式3
92+-x x 的值为0时,x 的值是( ) A.3 B.0 C.-3 D.± 3
3.下列各式正确的是( )
A .11++=++b a x b x a
B .22x y x y =
C .()0,≠=a ma na m n
D .a m a n m n --=
4.化简2293m
m m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m
m -3 5.若把分式xy
y x 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 6. 计算:211(1)1m m m
+÷⋅--的结果是( ) A .221m m --- B .221m m -+- C .221m m --
D .21m - 7. 下列各式中正确的是( )
.
...a b a b a b a b
A B a b
a b a b a b a b
a b
a b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 8.已知
2
111=-b a ,则b a ab -的值是 A .21 B .-21
C .2
D .-2 9. 化简a
a ---1111的结果为( ) A . 0 B .a -12 C .12-a D .1
2--a
10.设m >n >0,mn n m 42
2=+,则mn n m 2
2-的值等于
A. D.3
二、填空题:(每小题3分,共15分)
11.若分式112-=-x x x x
,则x 的取值范围为_______,当x ______时,分式x
x 2121-+有意义. 12.利用分式的基本性质填空:
(1)())0(,10 53≠=a axy xy a (2)()
1422=-+a a 13.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度__________.
14.分式21x ,x x x -+21,1
212+-x x 的最简公分母是_______. 15.已知51=+a
a ,则=++2241a a a _______________. 三、解答题:(共55分)
16.计算(每小题4分,共16分)
(1)ax y b by x a 692222-⋅- (2)3xy 2÷x
y 2
6
(3))2(216322b a a bc a b -⋅÷2 (4)9
3234962
22-⋅+-÷-+-a a b a b a a
17. 计算(每小题4分,共8分)
(1)168422+--x x x x (2)m n n n m m m n n m -+-+--2
18. 先化简,后求值:(8分) 222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-
19. (8分)若0106222=+-++b b a a ,求
b a b a 532+-的值.
20. (10分)观察以下式子:1
112122132+→=+>,5527544264+→=+<,3354355555
+→=+>, 773722232
+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.
附加题(10分)
如果记 2
21x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12
)表示当x=12时y 的值,即f(12)=221()1215
1()2
=+. (1)填空:)3(-f =____________.
(3)求出f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n
)(结果用含n 的代数式表示).。

相关文档
最新文档