测绘与勘查工程专业地下水动力学知识概念重点
地下水动力学

1,地下水动力学:研究地下水在孔隙岩石,裂隙岩石和岩溶(喀斯特)岩石中运动规律的科学第一章渗流理论基础2,多孔介质:在地下水动力学中,把具有孔隙的岩石称为多孔介质3有效空隙:互相连通的,不为结合水所占据的那一部分空隙4,有效孔隙度:有效孔隙体积与多孔介质总体积之比5,贮水率:又称释水率面积为一个单位,厚度为一个单位,当水头降低一个单位时所能释放出的水量贮水系数(释水系数)=贮水率乘以含水层厚度表示面积为一个单位,厚度为含水层全厚度的含水层主体中,当水头改变一个单位时弹性释放或贮存的水量贮水率与贮水系数相互关系:1,都是表示含水层弹性释水能力的参数2,对于承压含水层,只要水头不降低到隔水底板以下,水头降低只会引起弹性释水,可用贮水系数表示这种释水能力3,对于潜水含水层,当水头下降时可引起两部分水的排出(1,在上部潜水面下降引起重力排水,用给水度表示重力排水的能力2,在下部饱水部则引起弹性释水,用贮水率表示这一部分的释水能力)弹性释水和重力排水的不同点:1,影响范围不同(弹性释水影响整个承压含水层,重力释水影响潜水含水层和包气带)2,和时间有关(1 弹性释水瞬时完成不随时时间变化 2 重力释水存在滞后效应是时间的函数)3 两只大小不同(弹性释水系数多在0.001-0.00005之间重力排水参数在0.1-0.01之间)7 渗流:假设这种假想水流运动时,在任意岩石体积内所受的阻力等于真是水流所受的阻力,通过任意断面的流量及任一点的压力或水头均和实际水流相同,这种假想水流称为渗流渗流与实际水流相比相同点:阻力相同水头相同流量相同8 渗流速度:代表渗流在过水断面上的平均流速,时一种假想流速实际平均流速:在空隙中的不同地点,地下水运动的方向和速度可能不同平均速度称为实际平均速度测压管水头:H_z=z+p/r水位:一般用在野外,基准面相同(黄海水位标高)水头:基准面可任意选定水位是一种特殊的水头9 地下水头:书十页10,水力坡度:把大小等于坡度值,方向沿着等水头面的法线指向水头降低方向的矢量称为水力坡度p1111,地下水运动特征的分类p11运动要素:表征渗流运动的物理量,主要有渗流量Q,渗流速度V ,压强P,水头H等按运动要素和时间的关系分为:(1)稳定流:运动要素不随时间变化;(2)非稳定流:运动要素随时间变化按地下水运动方向和空间坐标的关系:一维运动,二维运动,三维运动12,层流:流速较小时,液体质点做有条不紊的线性运动,彼此不相掺混紊流:流速较大时,液体质点的运动轨迹曲折混乱,互相掺混13,Dacry在此处键入公式。
流体的地下水动力学

流体的地下水动力学流体的地下水动力学是研究地下水流动行为以及地下水运动规律的学科,涉及专业知识较多,包括水文地质学、地下水动力学等。
本文将介绍地下水动力学的基本概念、流体在地下的运动规律以及地下水资源管理等相关内容。
一、地下水动力学的基本概念地下水动力学是描述地下水流动行为的学科,它研究地下水的运动规律、影响因素以及地下水流体力学和传质过程等问题。
地下水动力学的研究对于水资源的合理开发和利用具有重要意义。
地下水动力学的基本概念包括:1. 地下水的来源和补给:地下水主要来源于降水的入渗和地表水的补给,其中入渗是地下水的重要补给方式。
2. 渗透率和孔隙度:地下岩层对水的渗透能力称为渗透率,而孔隙度则是描述岩层中可存储水的空隙比例。
3. 地下水流速和流量:地下水流速是单位时间内地下水通过单位面积的速度,流量是单位时间内通过某一断面的地下水体积。
4. 地下水压力和水头:地下水压力是地下水对岩层施加的压力,水头则是用来描述地下水压力差的概念。
5. 地下水流场和流线:地下水在地下岩层中的流动形态称为地下水流场,而地下水流场中各点连成的线路称为流线。
二、流体在地下的运动规律地下水动力学研究了流体在地下的运动规律,主要涉及泊松方程和达西定律等基本原理。
1. 泊松方程:泊松方程是描述地下水压力分布的方程,它描述了地下水压力与地下水位(或水头)之间的关系。
泊松方程可以帮助我们了解地下水的压力分布情况,并对地下水流动进行数值模拟和分析。
2. 达西定律:达西定律是描述地下水流速与水头梯度之间关系的定律,也称为达西-普朗克方程。
根据达西定律,地下水流速正比于水头梯度,并且与渗透率和孔隙度等因素有关。
3. 流体力学和传质过程:地下水流体力学是研究地下水流动行为的分支学科,它涉及地下水流速、流量、流体力与单位面积上岩石壁面作用力之间的关系。
此外,地下水中还存在着溶质的传质过程,即溶质在地下流体中的传输现象,它涉及浓度分布、扩散速率等问题。
地下水动力学知识点总结

地下水动力学知识点总结地下水动力学这门学科呀,可真是充满了各种有趣又实用的知识!咱们今天就来好好总结总结。
先来说说地下水的流动。
想象一下,地下水就像一群调皮的孩子,在地下的通道里跑来跑去。
它们的流动速度和方向可不是随便乱来的,这和很多因素都有关系。
比如说,含水层的渗透性就像通道的宽窄,渗透性好,地下水跑得就快;渗透性差,它们就得慢悠悠地挪。
还记得有一次,我去一个地方考察,那里有一口古老的水井。
周围的人们都说这水井的水一直都很清澈,水量也很稳定。
我就好奇呀,仔细研究了一下周围的地质情况。
发现那里的含水层渗透性不错,地下水能够稳定地补充到水井里,所以才有了这样让人称赞的好水井。
这就让我更深刻地理解了渗透性对地下水流动的重要影响。
再说说水头和水力梯度。
水头就像是地下水的“能量高度”,水力梯度则是它们流动的“动力”。
水力梯度越大,地下水流动得就越起劲。
这就好比我们爬山,山坡越陡,我们往下滑的速度可能就越快。
地下水的储存和释放在实际生活中也很重要。
含水层就像是一个大水库,能储存大量的地下水。
当我们需要用水的时候,它又能释放出来。
我曾经在一个农村地区看到,在干旱的季节里,当地居民依靠着地下含水层储存的水,度过了艰难的时期。
还有地下水向井的流动。
井就像是一个大吸盘,把周围的地下水都吸引过来。
不同类型的井,吸引地下水的能力和方式也不一样。
地下水动力学的知识在很多领域都有应用呢。
比如在水资源管理方面,了解地下水的流动规律,就能更好地规划水资源的开发和保护,避免过度开采导致地下水资源枯竭。
在地质工程中,它能帮助工程师们预测地下水流对工程建设的影响,提前做好防范措施。
总之,地下水动力学的知识点虽然看起来有点复杂,但只要我们用心去理解,多结合实际生活中的例子,就能发现其中的乐趣和实用价值。
就像我们通过那口古老的水井,明白了渗透性的重要;通过农村的用水情况,理解了储存和释放的意义。
希望大家都能掌握好这些知识,为我们更好地利用和保护地下水资源出一份力!。
《地下水动力学》复习要点

内容主要有:(1)渗流理论基础;(2)地下水向河渠的稳定运动;(3)地下水向完整井的稳定运动;(4)地下水向完整井的非稳定运动;(5)地下水向边界附近井的稳定和非稳定运动。
重点考核地下水运动的基本概念、基本原理和方法。
题目类型有名词解释、判断题、作图题和计算题等,其中计算题占试题总分数的65%。
《地下水动力学》复习要点第一章 渗流理论基础一、基本内容1、基本概念:多孔介质、贮水率、贮水系数(弹性给水度)、渗流、渗流速度及与实际速度关系、水头(位置水头、测压管水头)、水力坡度、渗透系数、渗透率、导水系数、各向异性介质、各向同性介质、均质与非均质、水流折射原理、流网、dupuit 假设、第一类边界条件、第二类边界条件等2、基本定律:达西定律及适用范围3、描述地下水运动的方程:渗流连续性方程、承压水运动的基本微分方程、潜水运动的基本微分方程、越流含水层地下水非稳定流运动方程4、定解条件(初始条件、边界条件),数值方法基本思想二、要求1、理解并掌握上述概念和理论2、用达西定律分析水头线的变化或根据流网分析水文地质条件变化;3、给定水文地质条件,能正确画出反映地下水运动特点的流网图;4、给定水文地质模型和水文地质条件,写出反映地下水运动的基本方程(给定假设条件,建立数学模型,包括初始条件、边界条件)第二章 河间地块地下水的稳定运动一、基本内容有入渗时河间地块潜水的稳定运动问题(水文地质模型、假设条件、数学模型、流网、任意过水断面流量、分水岭移动规律、水头线)、无入渗时潜水的稳定运动、承压水的稳定运动,水在承压—无压含水层中的运动,非均质含水层中水的运动问题。
二、学习要求根据给定问题的水文地质条件,用相关公式计算过水断面流量或水位。
三、常用公式 1、承压含水层(达西定律) l H H m m kq 21212++= x lH H H H 211--= 2、无入渗潜水含水层(达西定律)l h h h h k q 21212-+= x lh h h h 2122212-+= 3、有入渗时潜水 wx wl l h h k q +--=2122221 )(22122212x lx kw x l h h h h -+-+= 4、分水岭位置 l h h w k l a 222221--= 5、其它流动问题(水平层状含水层、非均质含水层、承压—无压含水层、厚度或水流厚度沿流向变化等)第三章 地下水向完整井的稳定运动一、 基本概念:完整井、不完整井、水井及周围水位(水头)、稳定井流条件(定水头边界、越流、入渗补给)、井损与水跃、影响半径与引用影响半径、叠加原理、均匀流及平面或剖面流网二、学习要求1、掌握地下水向承压水井和潜水井运动问题的假设条件、数学模型、平面或剖面流网特征2、利用有关公式计算抽水量、降深或利用抽水试验资料(已知降深或水位),求含水层参数(导水系数或渗透系数)3、应用叠加原理地下水向完整井群的稳定运动问题。
地下水动力学[2]
![地下水动力学[2]](https://img.taocdn.com/s3/m/60722df04693daef5ef73dd9.png)
1,地下水动力学:研究地下水在孔隙岩石,裂隙岩石和岩溶(喀斯特)岩石中运动规律的科学第一章渗流理论基础2,多孔介质:在地下水动力学中,把具有孔隙的岩石称为多孔介质3有效空隙:互相连通的,不为结合水所占据的那一部分空隙4,有效孔隙度:有效孔隙体积与多孔介质总体积之比5,贮水率:又称释水率面积为一个单位,厚度为一个单位,当水头降低一个单位时所能释放出的水量贮水系数(释水系数)=贮水率乘以含水层厚度表示面积为一个单位,厚度为含水层全厚度的含水层主体中,当水头改变一个单位时弹性释放或贮存的水量贮水率与贮水系数相互关系:1,都是表示含水层弹性释水能力的参数2,对于承压含水层,只要水头不降低到隔水底板以下,水头降低只会引起弹性释水,可用贮水系数表示这种释水能力3,对于潜水含水层,当水头下降时可引起两部分水的排出(1,在上部潜水面下降引起重力排水,用给水度表示重力排水的能力2,在下部饱水部则引起弹性释水,用贮水率表示这一部分的释水能力)弹性释水和重力排水的不同点:1,影响范围不同(弹性释水影响整个承压含水层,重力释水影响潜水含水层和包气带)2,和时间有关(1 弹性释水瞬时完成不随时时间变化2 重力释水存在滞后效应是时间的函数)3 两只大小不同(弹性释水系数多在0.001-0.00005之间重力排水参数在0.1-0.01之间)7 渗流:假设这种假想水流运动时,在任意岩石体积内所受的阻力等于真是水流所受的阻力,通过任意断面的流量及任一点的压力或水头均和实际水流相同,这种假想水流称为渗流渗流与实际水流相比相同点:阻力相同水头相同流量相同8 渗流速度:代表渗流在过水断面上的平均流速,时一种假想流速实际平均流速:在空隙中的不同地点,地下水运动的方向和速度可能不同平均速度称为实际平均速度测压管水头:H_z=z+p/r水位:一般用在野外,基准面相同(黄海水位标高)水头:基准面可任意选定水位是一种特殊的水头运动要素:表征渗流运动的物理量,主要有渗流量Q,渗流速度V ,压强P,水头H等按运动要素和时间的关系分为:(1)稳定流:运动要素不随时间变化;(2)非稳定流:运动要素随时间变化按地下水运动方向和空间坐标的关系:一维运动,二维运动,三维运动12,层流:流速较小时,液体质点做有条不紊的线性运动,彼此不相掺混紊流:流速较大时,液体质点的运动轨迹曲折混乱,互相掺混13,Dacry在此处键入公式。
地下水动力学

另外,在工程建设中,比如修建地铁、隧道或者大坝时,我们必须考虑地下水的影响。如果对地下水的运动情况估计不足,可能会导致工程事故,如隧道涌水等。
为了研究地下水的运动,科学家们发展了一系列的方法和模型。其中,达西定律是一个基础的理论。它描述了在层流状态下,地下水的流量与水力梯度和渗透系数之间的关系。
地下水的运动主要受到两种力的驱动。一种是重力,就像水往低处流一样,地下水在重力的作用下会从地势高的地方向地势低的地方流动。另一种是压力差,当地下水所处的区域存在压力差异时,水也会从压力高的地方流向压力低的地方。
含水层是地下水储存和运动的重要场所。根据含水层的水力性质,我们可以将其分为孔隙含水层、裂隙含水层和岩溶含水层。孔隙含水层就像一个装满细沙的容器,水在沙粒之间的孔隙中流动;裂隙含水层则像是一块布满裂缝的石头,水沿着这些裂缝运动;岩溶含水层则如同一个巨大的溶洞系统,水在其中复杂地穿梭。
地下水动力学
地下水动力学是研究地下水在含水层中运动规律的科学。它对于合理开发利用地下水资源、解决与地下水有关的环境和工程问题具有重要意义。
想象一下,大地就像一个巨大的海绵,而地下水就藏在这个海绵的孔隙和裂缝中。地下水动力学要研究的,就是这些水是如何流动的,受到哪些因素的影响,以及我们如何去预测和控制它们的运动。
除了达西定律,还有一些更复杂的模型,如泰斯模型、裘布依模型等。这些模型可以帮助我们更准确地预测地下水的动态变化。
然而,地下水动力学的研究也面临着一些挑战。例如,自然界ቤተ መጻሕፍቲ ባይዱ的地下水系统非常复杂,很难用简单的模型完全准确地描述。而且,人类活动对地下水的影响日益加剧,使得地下水的运动规律变得更加难以捉摸。
地下水动力学

地下⽔动⼒学地下⽔动⼒学要点总结By Zero渗流:地下⽔在岩⽯空隙中或是多孔介质中的流动有效空隙:地下⽔动⼒学中将互相连通的,不为结合⽔所占据的部分空隙叫做有效空隙储⽔系数:表⽰⾯积为1个单位,厚度为整个承压含⽔层的含⽔层柱体,当⽔头改变⼀个单位时,所储存或是释放的⽔量,⽆量纲。
储⽔率:表⽰⾯积为1个单位的承压含⽔层,当厚度为1个单位的时候,⽔头下降⼀个单位时所能释放的⽔量。
给⽔度:是含⽔层的释⽔能⼒。
表⽰单位⾯积的含⽔层,当潜⽔⾯下降⼀个单位长度时在重⼒作⽤下能释放出⽔量。
地下⽔的总⽔头:即地下⽔的总机械能H=Z+P/r⽔⼒坡度:地下⽔动⼒学中,⼤⼩等于梯度值,⽅向沿等⽔头⾯法线所指向的⽔头下降⽅向的⽮量称⽔⼒坡度。
地下⽔流态:包括[层流]、[紊流],判别流态⽤[雷诺数RE判别]Darcy定律的适⽤范围:[在雷诺数RE<1~10之间的某个数值时,即粘滞⼒占优势的层流运动]渗透系数(K):表⽰岩⼟透⽔性能的数量指标。
亦称⽔⼒传导度。
可由达西定律求得:q=KI影响渗透系数的因素:空隙⼤⼩、岩⽯的⾃⾝的性质、渗透液体的物理性质(容重、黏滞性等)渗透率:是表征⼟或岩⽯本⾝传导液体能⼒的参数导⽔系数:即T=KM,它的物理含义是⽔⼒坡度等于1时,通过整个含⽔层厚度的单宽流量。
导⽔系数的概念只能⽤于⼆维的地下⽔流动不能⽤于三维。
岩层透⽔特征的分类:均质、⾮均质、各向同性、各向异性均质:在渗流场中,所有点都具有相同的渗透系数,则称该岩层是均质的,反之为⾮均质。
各向同性:在渗流场中,某⼀点的渗透系数不取决于⽅向,即不管渗流的⽅向如何都具有相同的渗透系数,则称为各向同性,反之为各向异性。
越流系数:当主含⽔层和供给越流的含⽔层间的⽔头差为1个长度单位时,通过主含⽔层和弱透⽔层间单位⾯积上的⽔流量。
定解条件:稳定流的定解条件:基本微分⽅程+边界条件⾮稳定流的定解条件:基本微分⽅程+初始条件+边界条件边界条件的分类:定⽔头边界、定流量边界、混合边界条件稳定流需要的定解条件:基本微分⽅程+边界条件⾮稳定流定解条件:基本微分条件+边界条件+初始条件渗流和空隙中的真实⽔流的区别;⼟壤孔隙度⼩于1,所以渗流流量1、流速⽅⾯渗流速度和地下⽔实际运动速度⽅向不同,速度之间的关系如:v=nu(v渗流速度、n含⽔层的空隙度、u实际评价流速)2、流速⽅向渗流是假象的⽔流,⽽真实⽔流的运动是杂乱⽆章的3、流量⽅⾯渗流流量⼩于实际流量4、⽔头⽅⾯地下⽔总⽔头H=Z+P/r+u^2/(2g) u为地下⽔的流速5、过⽔断⾯完整井:完全贯穿整个含⽔层的井,且在全部含⽔层厚度上都装有过滤器,能全⾯进⽔的井不完整井:未完全贯穿整个含⽔层,只有井底或是井壁含⽔层部分厚度上能进⽔的井不完整井的三种类型:井底进⽔、井壁进⽔、井底和井壁同时进⽔降落漏⽃:在井抽⽔井,以井为中⼼最⼤,离井越远,降深越⼩,总体上形成漏⽃状的⽔头下降去区称为降落漏⽃Dupuit中井径和流量的关系:1】当降深相同时,井径增加同样的幅度,k(渗透系数)⼤的,抽⽔流量⼤2】当对于同⼀岩层(k同),井径增加同样的幅度,⼤降深抽⽔的流量增加的多3】对于同样的岩层和降深,井径越⼤的,再增加井径,抽⽔的流量增⼤的幅度不明显流量和⽔位降深的经验公式类型:直线型(Q=qSw)、抛物线型(Sw=aQ+bQ^2)、幂函数型(Q=qSw^(1/m))、对数型(Q=a+blgSw)对于直线型经验公式,外推降深最⼤范围不能超过抽⽔试验时最⼤降深的1.5倍对于抛物线型、幂函数型和对数曲线型的⽅程,不能超过1.75~3.0倍运⽤叠加原理(线性定解问题)的条件:1】各个边界条件的作⽤彼此独⽴,即边界条件的存在不影响其他边界条件存在时得到的结果2】各抽⽔井的作⽤是独⽴的。
地下水动力学重点

1494247821第一章1多孔介质(Porous medium):地下水动力学中具有空隙的岩石。
广义上包括孔隙介质、裂隙介质和岩溶不十分发育的由石灰岩和白云岩组成的介质,统称为多孔介质。
2多孔介质的性质(1) 孔隙性:有效孔隙和死端孔隙。
孔隙度:是多孔介质中孔隙体积与多孔介质总体积之比(符号为n),n=Vv/V ,可表示为小数或百分数。
有效孔隙:是多孔介质中相互连通的、不为结合水所占据的那一部分孔隙。
有效孔隙度:是多孔介质中有效孔隙体积与多孔介质总体积之比(符号为ne),ne=V e/V 。
死端孔隙:是多孔介质中一端与其它孔隙连通、另一端是封闭的孔隙。
(2) 压缩性:固体颗粒和孔隙的压缩系数推导。
多孔介质中固、液、气三相可共存。
其中固相的成为骨架,气相主要分布在非饱和带中,液相的地下水可以吸着水、薄膜水、毛管水和重力水等形式存在。
3理想渗流等效简化原则:质量等效能量等效4渗流的运动要素:流速压强与水头水力坡度5过水断面:垂直于所有流线的断面,称为渗流断面(过水断面)。
单位时间内通过渗流断面的地下水体积称为渗透流量。
6渗流分类:(1).按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流(2).按渗流速度在空间上变化的特点,分一维流、二维流、三维流(3).按地下水质点运动状态的混杂程度,分:层流、紊流与过渡区流态(4).按地下水有无自由表面,分为:承压流、无压流、承压—无压流(5).按岩层透水性以及对地下水所起作用,分隔水层、含水层、透水层(弱透水层)7水力坡度:(1)沿等水头面(线)法线方向的水头变化率,称为水力坡度,(2):大小等于梯度值(dH/dn),方向沿着等水头线的法线方向指向水头降低的方向的矢量定义为水力坡度,记为J。
8:影响渗透系数大小的因素:①岩层空隙性质(孔隙大小、多少);②流体的物理性质决定;渗透率k:表征岩层透水性能的常数,仅仅取决于岩石的性质而与液体的性质无关。
9尺度效应:是指渗透系数与试验范围有关,随着试验范围的增大而增大的现象,K=K(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测绘与勘查工程专业地下水动力学知识概念重点目录概念名词解释 (1)绪论 (1)地下水动力学 (1)第1章 (1)渗流 (1)越流 (1)贮水系数 (1)导水系数 (1)非均质介质 (1)各向异性介质 (2)达西定律 (2)渗流速度 (2)稳定流 (2)非稳定流 (2)层流 (2)紊流 (2)边界条件 (2)初始条件 (2)数值解 (2)解析解 (2)多孔介质 (2)孔隙介质 (2)裂隙介质 (3)岩溶介质 (3)骨架 (3)孔隙度 (3)有效孔隙 (3)有效孔隙度 (3)死端孔隙 (3)压缩系数 (3)贮水率 (3)重力疏干 (3)延迟给水 (3)渗流场 (4)典型单元体 (4)过水断面 (4)渗流量 (4)渗流速度 (4)实际平均流速 (4)测压管水头 (4)压力水头 (4)1速度水头 (4)总水头 (4)等水头面 (4)等水头线 (4)水力坡度 (5)渗流运动要素 (5)一维流 (5)二维流 (5)三维流 (5)单宽流量 (5)渗透系数 (5)渗透率 (5)尺度效应 (5)非线性渗流定律 (5)渗流折射定律 (5)渗透系数张量 (6)流网 (6)流线 (6)流线方程 (6)流函数 (6)地下水状态方程 (6)渗流的连续方程 (6)渗流的基本微分方程 (6)半承压含水层 (7)越流含水层 (7)越流 (7)越流系数 (7)越流因数 (7)渗出面 (8)越流 (8)越流系统 (8)定解条件 (8)定解问题 (8)数学模型 (8)第2章 (8)潜水回水 (8)河渠引渗回水 (8)浸润曲线 (8)浸润曲线方程 (8)单宽流量公式 (8)第3章 (9)完整井 (9)非完整井 (9)管井 (9)2筒井 (9)潜水井 (9)承压水井 (9)水位降深 (9)降落漏斗 (9)拟稳定流 (9)有效井半径 (9)影响半径 (9)Dupuit公式 (10)Thiem公式 (10)注水井 (10)修正降深 (10)承压-无压井 (10)承压-无压井公式 (10)Hantush-Jacob 公式 (10)叠加原理 (10)均匀流 (11)井损 (11)含水层损失 (11)井损常数 (11)第4章 (11)泰斯影响半径 (11)导压系数 (11)配线法 (11)直线图解法 (11)水位恢复法 (11)拐点法 (11)定降深流量公式 (12)第一越流系统 (12)第二越流系统 (12)第三越流系统 (12)Boulton模型 (12)Neuman模型 (12)延迟系数 (13)泰斯井流公式(Theis 公式) (13)Theis井函数 (13)Jacob公式 (13)第5章 (13)实井 (13)虚井 (14)映射法 (14)隔水边界 (14)弱透水边界 (14)透水边界 (14)3无限含水层 (14)半无限含水层 (14)扇形含水层 (14)条形含水层 (14)第6章 (14)饱和度 (14)田间持水量 (15)机械弥散 (15)分子扩散 (15)水动力弥散 (15)纵向弥散系数 (15)横向弥散系数 (15)对流一弥散方程(水动力弥散方程) (15)简述题 (16)绪论 (16)第1章 (16)多孔介质具有哪些性质? (16)假想水流的特点有哪些? (16)典型单元体有何性质? (16)稳定流与非稳定流的区别? (17)一维流、二维流和三维流如何区分? (17)渗流速度与实际平均流速的区别 (17)什么是达西定律?其使用条件是什么? (18)渗透系数的影响因素有哪些? (18)岩层透水特征分类有哪些? (18)怎样理解尺度效应? (19)水流平行岩层、垂直岩层时其等效渗透系数有何差异? (19)突变界面的水流应符合什么定律?能否证明? (19)突变界面的水流折射定律 (19)流网有哪些性质? (19)如何绘制流网?流网有什么用途? (19)含水层的状态方程 (20)第2章 (20)地下水向河渠运动的研究意义 (20)河渠间地下水稳定运动的水头公式(浸润曲线公式) (20)河渠间地下水运动的稳定流公式能分析哪些水文地质问题? (20)第3章 (21)第4章 (23)写出泰斯井流公式的表达形式及各项符号的含义 (23)简要说明泰斯公式的适用条件及可能解决的问题。
(23)Theis配线法求参的原理、步骤及优缺点 (23)直线图解法求参的原理、步骤及优缺点 (23)水位恢复法求参的原理、步骤及优缺点 (23)越流含水层中的水流特点 (23)4Neuman 公式的适用条件; (24)Boulton 公式的适用条件 (24)第5章 (24)试分析不完整井的井流特点,镜像法的原理。
(24)第6章 (26)非饱和带水运动的基本方程 (26)水动力弥散现象的机理 (27)一维弥散问题的解及其应用 (28)5地下水动力学知识概念重点---- King Of Black Spider说明:带下划线的是重点,重点116个,次重点22个,共138个。
概念名词解释绪论地下水动力学Groundwater dynamics研究地下水在孔隙岩石、裂隙岩石和岩溶(喀斯特)岩石中运动规律的科学,它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量上和质量进行定量评价和合理开发利用,以及兴利除害的理论基础。
主要研究重力水的运动规律。
第1章渗流Seepage flow是一种代替真实地下水流的、充满整个岩石截面的假想水流,其性质(密度、粘滞性等)与真实地下水相同,充满整个含水层空间(包括空隙空间和岩石颗粒所占据的空间),流动时所受的阻力等于真实地下水流所受的阻力,通过任一断面及任一点的压力或水头均与实际水流相同。
越流Leakage 当承压含水层与相邻含水层存在水头差时,地下水便会从水头高的含水层流向水头低的含水层的现象。
对于指定含水层来说,水流可能流入也可能流出该含水层。
贮水系数storativity又称释水系数或储水系数,指面积为一个单位、厚度为含水层全厚度M的含水层柱体中,当水头改变一个单位时弹性释放或贮存的水量,无量纲。
μ* = μs M。
既适用于承压含水层,也适用于潜水含水层。
导水系数Transmisivity 是描述含水层出水能力的参数;水力坡度等于1时,通过整个含水层厚度上的单宽流量;亦即含水层的渗透系数与含水层厚度之积,T=KM。
它是定义在一维或二维流中的水文地质参数。
单位:m2/d。
非均质介质如果在渗流场中,所有点不都具有相同的渗透系数,则称该岩层是非均质的。
第 1 页共 29 页各向异性介质渗流场中某一点的渗透系数取决于方向,渗透系数随渗流方向不同而不同。
达西定律Darcy’s Law 是描述以粘滞力为主、雷诺数Re< 1~10的层流状态下的地下水渗流基本定律,指出渗流速度V与水力梯度J成线性关系,V=KJ,或Q=KAJ,为水力梯度等于1时的渗流速度。
又称线性渗透定律。
它反映了渗流场中的能量守恒与转换定律。
渗流速度Specific discharge/seepage velocity又称渗透速度、比流量,是渗流在过水断面上的平均流速。
它不代表任何真实水流的速度,只是一种假想速度。
记为v,单位m/d。
稳定流steady flow在一定的观测时间内水头、渗流速度等渗透要素不随时间变化的地下水运动。
非稳定流unsteady flow 水头、渗透速度等任一渗透要素随时间变化的地下水运动。
层流laminar flow水流流束彼此不相混杂、运动迹线呈近似平行的流动。
紊流turbulent flow 水流流束相互混杂、运动迹线呈不规则的流动。
边界条件Boundary conditions渗透区边界所处的条件,用以表示水头H(或渗流量q)在渗流区边界上所应满足的条件,也就是渗流区内水流与其周围环境相互制约的关系。
初始条件Initial conditions 某一选定的初始时刻(t=0)渗流区内水头H的分布情况。
数值解Numerical solution 用数值方法求得的数值解,是一种近似解。
解析解Analytic solution 精确解,用解析方法求解数学问题所得到的解析表达式。
多孔介质porous medium 指地下水动力学中具有孔隙的岩石,能够赋存流体且流体可在其中运动,包括孔隙和裂隙岩层,也包括一些岩溶化比较均匀的岩层。
孔隙介质pore medium 含有孔隙水的岩层;赋存流体且流体可在其中运动的孔隙岩层。
第 2 页共 29 页裂隙介质fissure medium含有裂隙水的岩层;赋存流体且流体可在其中运动的裂隙岩层。
岩溶介质karst medium 含有岩溶水的岩溶化岩层;赋存流体且流体可在其中运动的岩溶化若层。
骨架Matrix 多孔介质中固体部分(固相)。
孔隙度Porosity 多孔介质中孔隙体积与多孔介质总体积之比(符号为n),可表示为小数或百分数。
有效孔隙Effective pores多孔介质中相互连通的、不为结合水所占据的那一部分孔隙。
有效孔隙度Effective Porosity 多孔介质中有效孔隙体积与多孔介质总体积之比(符号为n e),可表示为小数或百分数。
死端孔隙Dead-end pores 多孔介质中一端与其它孔隙连通、另一端是封闭的孔隙。
压缩系数贮水率Specific storativity指当水头下降(或上升)一个单位时,由于含水层内骨架的压缩(或膨胀)和水的膨胀(或压缩)而从单位体积含水层柱体中弹性释放(或贮存)的水量,量纲1/L。
μs = ρg (α+nβ)。
重力疏干gravity drainage /yield 在无压含水层中抽水或排水时,空隙中的水在重力作用下排出而使部分含水层疏干的现象。
延迟给水delayed drainage(滞后给水)在潜水含水层中抽水时潜水位下降后其上部新形成的包气带重力水缓慢逐渐排出的现象。
第 3 页共 29 页渗流场Flow domain假想水流所占据的空间区。
典型单元体REV/ Representative Elementary V olume 又称代表性单元体,是渗流场中其物理量的平均值能够近似代替整个渗流场的特征值的代表性单元体积。
过水断面Cross-sectional area渗流场中垂直于渗流方向的任意一个岩石截面,包括空隙面积和固体颗粒所占据的面积。
渗流平行流动时为平面。
弯曲流动时为曲面。
渗流量Seepage discharge 流量,单位时间内通过过水断面的水体积,同Q表示,单位m3/d。
渗流速度Specific discharge/seepage velocity又称渗透速度、比流量,是渗流在过水断面上的平均流速。
它不代表任何真实水流的速度,只是一种假想速度。
记为v,单位m/d。
实际平均流速Mean actual velocity多孔介质中地下水通过空隙面积的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断面上的空隙面积,量纲为L/T。