Self-Assembling Nanofibers Inhibit Glial Scar Formation and

合集下载

抗氧化剂阿魏酸自组装金纳米颗粒的体外抗氧化

抗氧化剂阿魏酸自组装金纳米颗粒的体外抗氧化

抗氧化剂阿魏酸自组装金纳米颗粒的体外抗氧化张晗;李砚超;姜玉刚;杜立波;施维;刘扬【期刊名称】《华侨大学学报(自然科学版)》【年(卷),期】2015(000)001【摘要】The antioxidant protection effects of ferulic acid nanoantioxidant on macrophage cells were studied and the free radical-inhibiting activities of ferulic acid nanoantioxidant were determined at the cellular level using electron spin reso-nance-spin trapping and UV-spectrum method.The results illustrates that the nanoantioxidant could eliminate the reactive oxygen species stimulated by t-BuOOH in cells more effectively than that of antioxidants monomers.Meanwhile,the lipid peroxide detection of malondialdehyde by spectrum method also proved that the nanoantioxidant have a high antioxidant activity on t-BuOOH stimulated macrophage cells.Therefore,it could be concluded that the self-assembled nanoantioxi-dant have a potential for the enhancement of antioxidant activity.%对纳米阿魏酸抗氧化剂在巨噬细胞上的抗氧化保护作用进行检测,并采用电子顺磁-自旋捕获技术和光谱法对纳米阿魏酸在细胞水平上清除自由基的能力进行检测。

表面增强拉曼光谱用于细胞核的检测

表面增强拉曼光谱用于细胞核的检测

表面增强拉曼光谱用于细胞核的检测谢微,沈爱国,胡继明*(武汉大学,化学与分子科学学院,武汉430072)近年来,随着纳米材料科学的发展,表面增强拉曼光谱在生物医学领域的应用越来越广泛,它适用于水溶液体系,又克服了普通拉曼光谱所需检测浓度高的缺点,十分适合用来进行细胞内的信息研究[1]。

细胞是组成生命体的基本单元,它包含了生命体的几乎所有信息,怎样获取细胞内的信息是生物医学检测的根本问题。

细胞核是细胞中最重要的部分,也是生物医学工作者关注最多的部分。

而细胞是一个复杂的生命体系,如何在庞大的信息海洋中提取我们所需要的部分是广大生命分析工作者共同面对的难题[2]。

纳米金在生物体系中具有很好的惰性,对细胞的活性影响较小,本文以粒径为20nm的金粒子为表面增强基底。

首先通过巯基羧酸在纳米金表面修饰羧基,再利用羧基与核定位肽上氨基反应,从而将核定位肽连接在纳米金上,成为具有核靶向功能的纳米探针。

将细胞与这种探针共培养后,我们采用mapping 技术检测了活细胞的拉曼信号。

谱图左上角为两个Hela 细胞与核靶向探针共培养后得到的拉曼mapping ,图中红色代表拉曼信号的总强度,结果显示这种探针定位在细胞核上。

我们对从细胞核上获取的信号进行了初步的归属,这些信号主要来自蛋白质(或氨基酸)和核酸分子。

如图1所示的谱图中,1115cm -1处的峰是蛋白质中的C-N 伸缩振动峰,1000cm -1附近为苯丙氨酸上苯环环呼吸振动峰,而1507cm -1的峰来自核酸中的腺嘌呤(A )。

图2(略)为纳米金颗粒在修饰核定位肽之前和之后的TEM 图像,在修饰了肽之后金表面出现了阴影,这是蛋白轻原子在电子束的照射下形成的,证明肽链已经成功的连接在纳米金上。

这种以亚细胞结构为靶标的纳米探针能实时检测到特定细胞器上的分子振动光谱,能帮助我们揭示细胞各种生命活动过程,包括生长、病变、凋亡时细胞器上分子结构的变化规律,具有十分广阔的发展前景。

生物大分子自组装

生物大分子自组装

2.姜黄素
20个氨基酸 组成,赖氨 酸和缬氨酸 交替组成两 个臂,由于 赖氨酸带电 性质,静电 斥力作用多 肽折叠成一 个发夹,缬 氨酸具有疏 水性,发夹 与发夹之间 通过疏水性 与横向氢键 得到延伸。
3.海藻酸钠

由古洛糖醛酸(记为G酸)及其立体异构体甘露 糖醛酸(记为M酸)两种结构单元以三种方式 (MM段、GG段和MG段)通过α(1-4)糖苷键链接 而成的一种无支链的线性共聚物
2.生物大分子作为自组装材料有其天然的优越性,如 碱基互补配对、氨基酸识别等等,但目前为止,相关 研究并不充分,真正能应用的工业生产的材料几乎没 有

谢谢
生物大分子自组装
目录



1.引言 2. 原理 3.影响因素 4.表征手段 5.研究进展 6.应用 7.展望
引言

自组装(self-assembly):是指基本结 构单元(分子,纳米材料,微米或更大 尺度的物质)自发形成有序结构的一种 技术 。
在自组装的过程中,基本结构单元在基于非共价键的 相互作用下自发的组织或聚集为一个稳定、具有一定 规则几何外观的结构。
应用

主要用于纳米药物载体制备
主要包含蛋白质( 如明胶、白蛋白、丝蛋 白等) 和多糖( 如壳聚糖、海藻酸钠、环 糊精、果胶等) 两大类。

1.自组装肽/鞣质酸
双(N-乙酰氨基-苏氨酸) -1,5 - 戊烷二羧酸二甲酯
庚二酸(0.15克,0.94毫摩 尔),EDAC(0.05克,0.32 毫摩尔)和1 - 羟基苯并三唑 (0.05克,0.37毫摩尔)溶 解在DMF中,该混合物被冷却 至5℃并振摇1小时。然后加 入苏氨酸甲酯盐酸盐(0.3克 ,1.8毫摩尔),和三乙胺( 5升),5 ℃下搅拌24小时

酸敏感阿霉素前药纳米粒的合成及其在治疗脑胶质瘤中的作用

酸敏感阿霉素前药纳米粒的合成及其在治疗脑胶质瘤中的作用

酸敏感阿霉素前药纳米粒的合成及其在治疗脑胶质瘤中的作用刘金剑;张玉民;杨翠红;褚丽萍;黄帆;高红林;刘鉴峰【期刊名称】《天津医药》【年(卷),期】2016(044)001【摘要】Objective To synthesize a new kind of acid-sensitive doxorubicin prodrug nanoparticles and to evaluate its anti-brain glioma effect and efficiency through blood-brain barrier (BBB). Methods The prodrug acid-sensitive poly-ethylene glycol (PEG)-doxorubicin (PEG-DOX) copolymer was synthesized by Schiff base reaction, and PEG-DOX pro-drug nanoparticles (PEG-DOX NPs) were prepared by self-assembling. The character of PEG-DOX copolymer was detected by dynamic light scattering (DLS) instrument and 1H NMR. The morphology of PEG-DOX NPs was observed by transmission electron microscopy (TEM). The character of drug release was detected by UV mothed. The cellular uptake efficiency of glio-ma cells to PEG-DOX NPs was observed by inverted fluorescence microscope. The anti-brain glioma effects of PEG-DOX NPs and Free DOX were studied by MTT mothed. PS80-PEG-DOX NPs were gained by the modification of PEG-DOX NPs with Tween 80. Nine BALB/c mice were separated into Free DOX, PEG-DOX NPs and PS80-PEG-DOX NPs groups by ran-dom drawing lots. The mean fluorescence intensity of brain and main organs were observed by in vivo imaging system. Re-sults The copolymer of PEG-DOX can self-assemble into nanoparticles with thediameter of 100 nm. PEG-DOX NPs can quickly release DOX in acid environment. Although PEG-DOX NPs had slow cancer cell uptake than Free DOX, it had lon-ger accumulation. MTT results showed that PEG-DOX NPs had concentration dependent anti-brain glioma effect. Indepen-dent samples t-test indicated that the efficiency through BBB was significantly higher in PS80-PEG-DOX NPs group than that of Free DOX group and PEG-DOX NPs group. Conclusion PEG-DOX NPs show well anti-brain glioma effect in vi-tro, and can across BBB with high efficiency after modification, which make it possible for a potential therapeutic prodrug for brain glioma.%目的合成一类新的具有酸敏感性能的阿霉素前药纳米粒(PEG-DOX NPs),对其结构进行表征,并研究其在体外抗脑胶质瘤中的作用和透过血脑屏障的效率.方法通过席夫碱反应合成具有酸敏感的聚乙二醇-阿霉素(PEG-DOX)单体,通过自组装制备PEG-DOX NPs.利用动态光散射(DLS)和核磁对单体进行结构表征,通过透射电镜(TEM)对纳米粒的微观形貌进行观察,紫外检测法测定PEG-DOX NPs在酸性条件下的释放行为,荧光显微镜观察脑胶质瘤细胞对PEG-DOX NPs的摄取行为.利用MTT法测定PEG-DOX NPs与阿霉素(DOX)对脑胶质瘤细胞的杀伤作用.PEG-DOX NPs修饰吐温80(PS-80)获得PS80-PEG-DOX NPs.将9只BALB/c小鼠随机均分为Free DOX组、PEG-DOX NPs组和PS80-PEG-DOX NPs组,利用小动物活体成像系统比较其修饰前后脑及主要脏器内DOX的荧光强度.结果 PEG-DOX能够自组装成直径100 nm左右的纳米粒;在酸性条件下PEG-DOX NPs能够快速释放DOX,肿瘤细胞对PEG-DOX NPs的摄取虽然比DOX慢,但蓄积时间更长;PEG-DOX NPs和Free DOX对C6细胞的增殖抑制均呈现浓度依赖性,PEG-DOX NPs组细胞增殖抑制率在各个浓度下均低于Free DOX组.PS-80修饰后,PS80-PEG-DOX NPs透过血脑屏障的效率显著高于DOX和PEG-DOXNPs组.结论 PEG-DOX NPs具有良好的体外抗肿瘤作用,修饰后可高效透过血脑屏障,使其体内治疗脑胶质瘤成为可能.【总页数】5页(P33-37)【作者】刘金剑;张玉民;杨翠红;褚丽萍;黄帆;高红林;刘鉴峰【作者单位】中国医学科学院&北京协和医学院放射医学研究所;天津市放射医学与分子核医学重点实验室 300192;中国医学科学院&北京协和医学院放射医学研究所;天津市放射医学与分子核医学重点实验室 300192;中国医学科学院&北京协和医学院放射医学研究所;天津市放射医学与分子核医学重点实验室 300192;中国医学科学院&北京协和医学院放射医学研究所;天津市放射医学与分子核医学重点实验室 300192;中国医学科学院&北京协和医学院放射医学研究所;天津市放射医学与分子核医学重点实验室 300192;中国医学科学院&北京协和医学院放射医学研究所;天津市放射医学与分子核医学重点实验室 300192;中国医学科学院&北京协和医学院放射医学研究所;天津市放射医学与分子核医学重点实验室 300192【正文语种】中文【中图分类】R318.08【相关文献】1.载阿霉素pH敏感磁性纳米粒的合成及表征 [J], 乐李敬;詹洁琼;李新方;康安锋;马志强;杨峰2.阿霉素前药纳米粒/姜黄素联合递送系统的构建及其抗肿瘤研究 [J], 褚丽萍;刘金剑;杨翠红;黄帆;刘鉴峰;张玉民3.载阿霉素和顺铂的透明质酸纳米粒子对小鼠移植性乳腺癌的抑制作用 [J], 马鸿云;庄新明;许维国;刘一4.负载阿霉素的透明质酸修饰还原敏感纳米粒子对乳腺癌细胞株MDA-MB231的靶向杀伤及生物学意义 [J], 周春艳;钟伊南;刘文婷;王雪峰;钟志远;谢芳5.碳量子点-四价铂前药纳米粒子的合成及抗肿瘤活性研究 [J], 王忠瑞;刁永兴;赵聪;陈杨;朱晏;孙源;孙铁东因版权原因,仅展示原文概要,查看原文内容请购买。

用于抗癌载药系统的自组装脂质体聚合物复合微球

用于抗癌载药系统的自组装脂质体聚合物复合微球

用于抗癌载药系统的自组装脂质体聚合物复合微球摘要:通过多种物质的连续吸附得到的聚电解质多分子层对于像抗癌药物这种小分子的运载是非常有用的。

在本研究中,层层自组装(LbL)纳米结构通过以下方法制得:将天然壳聚糖和透明质酸自然沉积到带负电的固态混合脂质体纳米微球(SLNs)上。

阿霉素/葡聚糖硫酸酯的复合物被包在SLNs中。

这使得球形纳米微粒的直径在265nm左右,Zeta电位大约为-12mV。

纳米微球较为稳定,且表现出阿霉素(DOX)的可控释放。

进一步的药代动力学研究表明,相比单纯的DOX以及未经修饰的载DOX-SLNs,LBL功能化SLNs明显提高了循环半衰期,并降低了药物的消除率。

综上,结果表明这种具有pH响应外壳和分子靶向性的新型LBL修饰系统,有着作为肿瘤靶向性的药物释放载体的潜质。

1.简介固体脂质纳米粒(SLNs)因其能够运载亲水和疏水治疗药物的特性而受到广泛关注。

SLNs 是结合了聚合物胶体和脂质体微粒优点的胶体载体。

它们拥有极好的生物相容性,延展性和稳定性,有着高载药率。

然而,SLNs的使用总是和突释以及体内的过早释放联系在一起,主要是因为微粒总是倾向于结晶,使得药物从内核中释放出来。

此外,通过网状内皮组织(RES)的活动,SLN基结构会很迅速的从内循环中除去。

如果想用这类纳米微粒有效的运输抗肿瘤药物,那么通过制备出一种简单定制,经过表面修饰的控释运载系统来克服这些缺点是相当有必要的。

一种表现出良好性质的新系统是利用带有相反电荷的聚合物层层自装载(LBL)形成的多层聚电解质(PEM)涂层。

这种聚电解质自沉积的方法作为功能化微粒表面或制备核-壳结构微粒的新方法。

PEM在药物运载领域中可以运用于许多治疗方法中。

越来越多的证据表明,LBL结构能够延长血液循环,并且对肿瘤间隙的被动扩散和渗透有促进作用。

另外,因为层状材料本身的靶向性质,这些结构的肿瘤靶向能力也得到了提升。

这种核-壳微球的另一个关键优点包括粒径,高载药率,可控药物释放,以及也许最重要的,可调节的较长的体内血液循环。

Self-Assembled Nanostructures-----翻译精品文档17页

Self-Assembled Nanostructures-----翻译精品文档17页

半导体纳米材料的光学性质1.吸收:直接和间接跃迁半导体的光学吸收由其电子结构决定,经常作为检测其光电性质的手段。

光吸收是材料和光相互作用的结果,当光的频率和态间能量相隔一致时,由选择定则决定的跃迁是允许的或部分允许的,声子被材料吸收。

这通过材料的透射光减少,吸收光增加反映出来。

通过测量样品的透射或吸收作为光频率的函数,可以获得样品的吸收谱,他是材料的特性。

图示显示了CdS(直接带隙半导体)和Si(间接带隙半导体)纳米粒子的电子吸收谱和发射谱的比较,对CdS,在430nm附近的吸收峰对应激子峰,那样的激子特征在间接带隙的材料如Si中是不存在的。

如前所述,纳米粒子与块体材料相比一个最显著的特征是由于量子尺寸限域造成的吸收谱蓝移,对许多半导体,都观察到这种现象,其中CdSe 最受关注。

如图所示CdSe纳米粒子的吸收谱随尺寸减小显示出明显的蓝移,人们对高质量CdSe样品做了许多研究来测量其依赖于尺寸的光学谱。

吸收和发射谱的测量经常在低温(约10K)进行,以减少由于热效应引起的不一致的拓展宽。

研究表明,在CdSe纳米晶体的吸收谱里,直到10激发态的尺寸依赖性可以用非耦合多带有效质量理论来描述,包括价带简并性而非价带和导带间耦合。

态的确认,为讨论半导体纳米粒子的电子结构提供了基础。

非耦合多带有效质量理论最近扩展到包括价带-导带耦合,并应用到描述InAs纳米晶体依赖于尺寸的电子结构。

与CdSe相似,人们也广泛研究了CdS的吸收性质,并观察到蓝移现象。

相比CdSe,CdS吸收谱的蓝移主要由于S比Se具有更轻的质量和更低的电子密度。

其他金属硫化物纳米粒子如PbS的光学性质也被研究,PbS粒子的形状可以很容易通过改变合成条件而改变。

而且,由于PbS的波耳激子半径相对较大(18nm),其带隙较小(0.41eV),容易制备出小于波耳半径的粒子,而显示强的量子限域效应,吸收仍在可见光的波段,在不同形状的PbS 粒子中电子弛豫对表面和形状的依赖性也被研究,结果观察到,通过改变表面聚合物而将粒子形状由球形变化到针形和立方形时,基态电子吸收谱发生显著变化。

高分子棒状纳米粒子复合物的分子动力学模拟

高分子棒状纳米粒子复合物的分子动力学模拟

Vol.42 2021年3月No.3875~883 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES高等学校化学学报高分子/棒状纳米粒子复合物的分子动力学模拟刘爱清1,2,徐文生2,徐晓雷2,陈继忠2,3,安立佳2,3(1.吉林大学化学学院,长春130012;2.中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室,长春130022;3.中国科学技术大学应用化学与工程学院,合肥230026)摘要采用非平衡态分子动力学模拟研究了剪切场下棒状纳米粒子对高分子基体的结构、动力学和流变性质的影响.通过比较多种体积分数(0.8%~10%)的纳米复合物及纯熔体的模拟结果发现,随着纳米粒子的增加,高分子链的扩散和松弛逐渐受到抑制,而链尺寸几乎保持不变.从Weissenberg number(W i)角度看,在剪切流场下,高分子链的结构性质(如归一化的均方回转半径、回转张量和取向抑制参数)几乎与纳米粒子的体积分数无关,而高分子链的Tumbling运动受到抑制.研究还发现,纳米复合物与纯熔体的剪切黏度曲线趋势基本一致,即W i=1将曲线分为平台区和剪切变稀区.纳米棒的加入仅定量地改变了流体的剪切黏度.关键词纳米复合物;分子动力学模拟;剪切流场中图分类号O631文献标志码A聚合物纳米复合材料(PNC)是指将纳米粒子(球、柱、盘形)分散在高分子基体中而形成的新型功能材料,在近几十年来引起了学术界和工业界的广泛关注.研究发现,不同大小、形状和功能的纳米粒子对材料的力学、光学、电学、热学和流变性质有显著的影响[1~7],除了这些性能的改善,聚合物纳米复合材料还在生物医学[8,9]、液体传感[10,11]、燃料电池[12,13]、包装[14,15]及靶向药物输送[16]等领域有广阔的应用前景.纳米粒子对于材料性能的改变多样且不易调控,基于对聚合物纳米复合新材料的开发需求,理解纳米粒子对于高分子基体的结构、动力学和流变性质的影响尤为重要[17].科研人员采用实验[18~22]、模拟[23~31]和理论[25~27,32,33]研究了纳米粒子对高分子流体的力学、电学及流变性质等的影响.通常,加入的纳米粒子分为对称性(金纳米粒子和富勒烯)和非对称性(棒、管、碟及多面体等).实际上,通常认为高度非对称纳米粒子(如层状硅酸盐、碳纳米管和棒状纳米粒子)在改变高分子基体的性质方面比球形(或近球形)纳米粒子更具潜力.研究表明,非球形纳米粒子如碳纳米管(CNT)、纳米棒(NRs)[20]和纳米线(NWs)极大地提高了所合成复合材料的机械强度[34,35]、电导率[36,37]、热导率[38]和光学性能[39].此外,纳米棒/纳米管填充聚合物的研究取得了重要的应用,如高导电性碳纳米管[40]和金属纳米线复合材料[41]、光学活性金纳米棒复合材料[41]和集光半导体纳米棒复合材料[36]等.棒状纳米粒子最受关注的特点之一是,在比传统球形纳米粒子浓度低得多的情况下,可以使材料的特性增强(如力学强度、阻燃性和电导率).Balazs等[42]模拟了将球状和棒状纳米粒子加入高分子中,研究发现,当含量相同时,与球形纳米粒子相比,棒状纳米粒子提供了更好的力学性质.Starr等[43]研究了非平衡态下纳米粒子形状对材料的剪切黏度和拉伸强度的影响,发现类棒状纳米粒子对体系黏度的增doi:10.7503/cjcu20200593收稿日期:2020-08-23.网络出版日期:2020-12-28.基金项目:国家自然科学基金(批准号:21873092,21774127,21790341,21790342)、中国科学院前沿科学重点研究项目(批准号: QYZDY-SSW-SLH027)和吉林省科技发展计划项目(批准号:20190103115JH)资助.联系人简介:徐文生,男,博士,研究员,主要从事高分子模拟方面的研究.E-mail:************.cn徐晓雷,男,博士,副研究员,主要从事高分子模拟方面的研究.E-mail:************.cn陈继忠,男,博士,研究员,主要从事高分子模拟方面的研究.E-mail:**************.cnVol.42高等学校化学学报加更大,而片状纳米粒子更大程度提高了材料的拉伸强度.此外,棒状纳米粒子通常作为探针,为探究体系的微流变学提供了独特的方法,通过追踪其运动轨迹来探测材料的纳米尺度动力学和结构[44,45].Clarke 等[46]研究了纳米复合材料中纳米棒扩散和高分子动力学,发现细纳米棒在高分子溶液中扩散得更快,而在缠结熔体中扩散达到一个平台,并发现纳米棒减慢了非缠结高分子链的运动.另外,Composto 等[17]探究了纳米棒在体系中的的运动状态对高分子链扩散的影响.Composto 等[47]也对聚合物在纳米复合材料中的扩散进行了研究.他们发现球形和短各向异性纳米粒子均使聚合物扩散系数随纳米粒子浓度的增加而单调下降.然而,聚合物扩散在低纳米粒子浓度时减慢,在长各向异性纳米粒子网络形成的临界浓度以上时恢复.无论是作为改变基体性能的掺杂剂还是作为探测体系性质的探针,纳米粒子的引入对高分子基体的结构、动力学及流变性质的影响亟待阐明.基于此,本文构建了非缠结柔性高分子链加入不同体积分数纳米棒的高分子纳米粒子复合物模型.采用非平衡态分子动力学模拟研究了剪切场中不同体积分数的纳米棒对高分子链的结构、动力学和流变性质的影响.1模型和方法在所研究的模型体系中,柔性高分子链和棒状纳米粒子均采用Kremer -Grest 模型[48].柔性高分子链内和链间的排除体积相互作用为纯排斥的Lennard -Jones 势能:U rep =4εéëêê(σr )12-(σr )6ùûúú+ε,Θ(216σ-r )(1)链内相邻粒子间的键势能为有限拉伸(FENE )势能[48]:U FENE =-k 2r 2bond ln éëê1-(r r bond )2ùûú,r <r bond (2)采用经典参数弹性系数为k =30εσ2,最大键长为r bond =1.5σ,保证了链不能互相穿越.对于棒状纳米粒子的排除体积相互作用及链内相邻粒子间键势能与柔性高分子链相同.纳米棒具有另外的一种键角势能,通过控制键角势能参数(K )来控制其刚性,势能函数如下:U bend (r )=K [cos θ-cos θ0]2(3)式中:θ0=180°,K =800.高分子链与纳米棒粒子间的排除体积相互作用为Lennard -Jones 势能:U LJ =4εéëêê(σr )12-(σr )6ùûúúΘ(2.5σ-r )(4)式中:r =|r i -r j |,r i 和r j 分别为空间中两粒子i 和j 的坐标;Θ(x )为赫维赛德函数;当x <0,Θ(x )=0时,x ≥0,Θ(x )=1.其中柔性链与纳米棒粒子之间的吸引使纳米棒分散均匀.本文模拟了纯熔体和不同体积分数纳米复合物的平衡态和稳态剪切场的性质,所有的物理量都用标准的Lennard -Jones 势能约化单位表达,即质量m ,能量尺度ε,空间尺度σ,温度T =εk B ,这里k B 为玻尔兹曼常数,k B =m =σ=ε=1.0.模拟盒子为立方体,寸效应.模拟时间步长为0.01,采用NVT 系综,耗散粒子动力学(DPD )热浴保证体系恒温,Lees -Ed⁃wards 边界条件用来产生流场,这里x 为流场方向,y 为涡度方向,z 为梯度方向,因此剪切速率可以表示为γ=∂v x ∂z ,计算了一系列剪切速率(0.00008~0.05),所有模拟均采用了Lammps 软件.本文模拟了高分子熔体和不同体积分数φ(0.8%,1%,5%,10%)的高分子纳米复合物体系(φ=N r ×L r N r ×L r +N c ×L c),体积分数指纳米棒包含的粒子数与体系中总粒子数的比值.每条柔性链长L c 为30σ,棒长L r 为10σ.详细的模拟体系参数列于表1.876No.3刘爱清等:高分子/棒状纳米粒子复合物的分子动力学模拟2结果与讨论2.1平衡态性质纳米棒加入到高分子熔体中得到了多种浓度的复合物,纳米棒均匀分布在体系中[图1(A )].在平衡态下,讨论了高分子链的均方回转半径R 0g ()0与均方末端距R 0ee ()0的尺寸变化,并与纯熔体的相关值R 0g ()0φ=0=7.67时,R 0ee ()0φ=0=46.27进行比较[图1(B )和(C )].研究表明,纳米粒子对高分子基体尺寸的影响是复杂的,与纳米粒子的类型、尺寸和分散状态有关[49~56].Mackay 等[50]通过聚苯乙烯/聚苯乙烯纳米粒子的中子散射实验发现,聚苯乙烯链发生了扩张且随着纳米粒子浓度的增加而增加,而聚苯乙烯/二氧化硅纳米粒子[49,51]的实验表明聚苯乙烯链的尺寸没有受到影响.对于各向异性纳米粒子,实验发现,将10%(质量分数)的单壁碳纳米管分散在聚苯乙烯基体中,聚苯乙烯链尺寸增加近36%[56].本文模拟结果表明,纳米棒的体积分数为10%时,R 2g ()0与R 2ee ()0仅增加约3%,说明纳米棒对高分子链的统计平均尺寸影响很弱.本文也观测了纳米棒对高分子链运动的影响,探究了高分子链质心的扩散系数(D )和松弛时间(τ).扩散系数由高分子链质心(r cm )的均方位移(MSD )求得:D =lim t →+∞16t r 2cm ()t -r 2cm ()t 0(5)对于球形纳米粒子,模拟表明高分子链的扩散系数随着纳米粒子的增加而减小[31,57].而对于各向Fig.1Structural properties of polymers in nanocomposites with different nanorod volume fractions atequilibrium(A )Snapshots of nanorods with different volume fractions from left to right :0.8%,1%,5%,10%;(B )mean -square of radiusgyration R 2g ()0scaled by that of pure melt ;(C )mean -square end -to -end distance R 2ee ()0scaled by that of pure melt.Table 1Length of cubic box size(L ),the numbers of flexible polymers(N c ),the numbers of nanorod poly⁃mers(N r )and percentages(φ)of nanorods referred to different systemsL (σ)42.1732.9032.9042.1742.17N c 210799299020001896N r 02430320632φ(%)00.81510877Vol.42高等学校化学学报异性纳米粒子,高分子链穿过各向异性障碍物运动时,构象熵减小,从而导致自身扩散变慢[58~60].另外,研究发现,增加纳米棒的体积分数,更多的高分子链段会存在于纳米粒子表面形成的界面层[61],高分子链的扩散系数减小.图2(A )示出了模拟体系中高分子链的扩散系数与体积分数的关系.表明高分子链的扩散系数随着纳米棒含量的增加而降低,当纳米棒的体积分数为10%时,高分子链的扩散系数降低约54%,强烈地阻碍了高分子链运动.另外,高分子链的松弛时间(τ)由下式计算:R ()t ∙R ()t 0||R ()t ||R ()t 0=Ae ()-tτ(6)式中:R (t )是t 时刻高分子链末端矢量.高分子链的松弛时间随着纳米棒含量的增加而增大,当纳米棒体积分数为10%时,松弛时间相应地增加了约53%[图2(B )].上述关于结构和动力学行为的讨论表明,纳米棒的加入基本不会影响高分子链的尺寸,而对高分子链的运动影响严重.2.2剪切场下的链结构性质计算了高分子链的均方回转半径R 2g 及回转半径张量(G αβ)以描述剪切场中高分子链的构象:G αβ=1N ∑i =1N ∆r i ,α∆r i ,β(7)式中:∆r i 表示粒子i 与链质心之间的距离,α,β是笛卡尔坐标.G αα是高分子链在α方向上的均方回转半径张量.G αβ的3个特征值能够表征高分子链的形状,即定义张量对角化后3个轴向方向的尺度.其中,最大特征值G 1,最小特征值G 3和中间特征值G 2的加和为均方回转半径R 2g .高分子链在平衡态下统计平均形状为球形,即G xx =G yy =G zz =1/3R 2g .R 2g ()0为零剪切下的高分子链的均方回转半径.体系施加的剪切强度可以由无量纲物理量Weissenberg number (W i =γτ)(γ是剪切速率,τ为链最长松弛时间)来表征.一般来说,剪切场下的高分子链的行为由特征值分为2个区,在弱剪切区(W i <1),高分子链基本不发生形变;在强剪切区(W i >1),高分子链会沿着流场方向拉伸和取向.图3示出了加入不同体积分数纳米棒,归一化的链均方回转半径和回转张量与W i 的关系.W i <1时,曲线维持一个平台值,高分子链不受流场的影响,并未拉伸;当W i >1时,随着流场强度的增加,所有体系中的高分子链的R 2g 持续增加,同时G xx ,G yy 和G zz 也发生变化,即随W i 的增加,G xx 增大,而G yy 和G zz 相应地减小.说明高分子链在流场方向拉伸,梯度和涡度方向压缩.由图3可以看出,剪切场下纯熔体(φ=0)中的高分子链的结构符合剪切场下的一般行为,而加入纳米棒的高分子链的结构曲线与纯熔体基本一致,表明在相同剪切强度(W i )下,纳米棒对流场中高分子链的构象变化无本质影响.除上述结构物理量外,高分子链形状变化的另一特征是回转张量的特征值之比,即G2G 1和G 3G 1,其中G 1>G 2>G 3.当高分子链的形状为标准球形时,G 1=G 2=G 3.图4模拟结果显示,对于所有体系的高分子链来说,当W i <1时高分子链形状基本保持不变.W i >1时则高分子链沿主轴拉Fig.2Diffusion coefficient(D )(A)and relaxation time(τ)(B)of polymers as a function of different nanorodsvolume fractions878No.3刘爱清等:高分子/棒状纳米粒子复合物的分子动力学模拟伸,剪切越强,越趋近扁平状.因此,在相同的剪切强度下,纳米棒不会影响高分子链的形状变化.剪切场下高分子链除了会发生拉伸形变外,还会发生链取向.高分子链的取向性质可以用取向抑制参数m G 来表征,其由以下式表示[62~64]:m G =tan (2ϕ)∙W i =2G xz G xx -G zz W i (8)式中:ϕ为链的特征向量在剪切-梯度平面上的投影与流场方向的夹角.图5示出了不同体系中的高分子链平均取向m G 与Wi 的模拟结果.高分子链在平衡态中是无序状态,而流场会导致其沿着流场方向Fig.3Mean ⁃square radius of gyration and gyration tensor normalized by the radius of gyration underzero⁃shear as a function of W i for different volume fractions nanocomposites(A )Mean -square radius of gyration ;(B )the flow component 3G xxR 2g ()0;(C )the vorticity component 3G yy R 2g ()0;(D )the gradient component 3G zzR 2g ()0.Fig.4Ratio of the medium(G 2)and largest(G 1)eigenvalues(A)and ratio of the smallest(G 3)and largest(G 1)eigenvalues(B)of the gyrationtensor as a function of W iFig.5Orientation resistance parameter m G asa function of W i for different volumefractionsInset :a schematic illustration of orientation angle ϕ.879Vol.42高等学校化学学报取向.在剪切场中,对于小W i ,高分子链的m G 与W i 无关[63].图5的模拟结果显示,处于小剪切时,m G 保持一个稳定值,ϕ减小,链沿着流场方向取向(图5插图);在强流场区,随着剪切强度的增加,m G 明显增大,拟合W i >3的区间发现所有曲线符合同一标度关系m G ~W i 0.62,这与剪切场下高分子溶液的结果一致[62].曲线的一致性说明了相同剪切强度下,纳米棒的加入不会影响高分子链的平均取向.2.3剪切场下的链Tumbling 运动高分子链在剪切场中不停地运动,由于分子链不同部分所处位置不同,在梯度方向的速度差使得分子链转动,同时伴随着自身形变.称为Tumbling 运动.为了得到这种运动的特征时间,通常计算高分子链构象改变的交叉关联函数(C xz ).其计算公式如下[65~68]:-C xz (t )=δG xx ()t 0δG zz ()t 0+t (9)式中:δG αα=G αα-G αα.图6(A )示出了几种体系中W i .在这些曲线中,在t =0的两侧都存在1个波峰和波谷,类似正弦曲线,说明高分子链沿流场方向拉伸及沿梯度方向收缩的耦合运动[69],峰高差值表示链的形变振幅.波峰和波谷之间的时间差是Tumbling 运动的半周期.运动速度可以用频率f tb 表示,可以通过f tb =12()t +-t -计算.在相同的剪切强度(W i =20)下,随着纳米棒的增加,曲线峰宽增大,而且峰高差值随着体积分数的增加而减小,表明高分子链的形变减弱.由图6(A )计算得到运动频率(f tb ),图6(B )示出了在不同剪切强度下,不同体积分数的纳米复合物中高分子链的运动频率.随着W i 的增大(W i >1),所有体系中的高分子链Tumbling 运动加快,这与纯高分子体系的模拟与实验结果类似[65,70].在纳米复合物中,高分子链可能更多的是进行拉伸回缩运动,纳米棒的存在使高分子链很难进行翻滚运动,而且我们推测纳米棒体积分数的增大使得它们之间的相互关联作用增强,高分子链受到的束缚使其在有限空间内更难进行拉伸回缩运动.因此,加入纳米棒后,高分子链的运动频率减小,且与纳米棒的体积分数成反比,从而高分子的运动频率对剪切强度的依赖性依次减弱.2.4剪切黏度剪切场下,用剪切黏度η=-σxz γ和剪切应力[71]σxz =1v ∑i P i P i m +12∑i ≠j r ij F ij 来表征体系黏性.对于线型高分子,研究表明,剪切黏度曲线分为线性区和非线性区.临界剪切强度W i =1将曲线分为两段,当W i <1,剪切黏度为稳定值,不随剪切速率变化;W i >1,剪切黏度会随着剪切速率的增大而减小,即剪切变稀.研究表明,高分子体系中加入纳米粒子,剪切黏度的变化主要与纳米粒子形状、尺寸、体积分数、高分子链自身尺寸和两种组分间的相互作用有关[23,43,72].高分子纳米粒子之间为相互吸Fig.6Cross ⁃autocorrelation function C xz against simulation time t with W i of 20(A)and frequency oftumbling motion(f tb )as a function of W i (B)for various volume fractionsInset of (B ):frequency f tb of polymers as a function of nanorods volume fraction for W i =20.880No.3刘爱清等:高分子/棒状纳米粒子复合物的分子动力学模拟引作用,复合体系的黏度相对于纯熔体会增加,绝热纳米粒子则对体系黏度影响很小,而两组分之间为排斥相互作用则会降低体系黏度.Starr 等[73]研究发现,分散性好的纳米粒子体系黏度大于聚集的纳米粒子的体系黏度.Ganesan 等[74]模拟发现,复合体系的剪切流变类似于胶体悬浮液,稀或半稀纳米粒子浓度时,体系的剪切黏度由高分子链的剪切变稀主导.图7示出了本文模拟的不同体系的η⁃W i 曲线.体系黏度符合线型链的一般规律,W i =1是黏度曲线出现明显的剪切变稀区的临界剪切强度.当W i <1,由剪切黏度曲线外推可近似得到体系的零切黏度(η0),结果列于表2中.与纯熔体相比,纳米复合物体系的零切黏度较大,且随着纳米棒体积分数的增加而增大;当W i >1时,体系发生了剪切变稀且所有曲线遵循相同的幂指数η⁃W -n i (n ≈0.39).由图7插图可见,剪切强度W i =20时,体系的剪切黏度随着纳米棒的增多而单调升高,因此,纳米棒定量地改变了体系的剪切黏度,而剪切变稀行为对流场的依赖性几乎不变.3结论本文主要讨论了剪切场下加入不同体积分数的纳米棒对高分子基体的影响.在平衡态时,纳米棒对高分子链的尺寸几乎没有影响,但严重阻碍其运动.在剪切场下,在相同W i 下,复合体系中高分子链的尺寸、形状和取向度与纳米棒的体积分数无关,然而高分子链的动力学性质受到抑制.复合体系的剪切黏度曲线展现了与纯高分子熔体基本一致的行为:小剪切强度下黏度为平台值,大剪切强度下出现剪切变稀.随着纳米棒的增加,体系的剪切黏度相应地增大.另外,本文研究了加入相同体积分数的纳米棒,对比发现长纳米棒使高分子链扩散变慢,剪切黏度增加,而对其结构性质影响很弱.研究成果有望为纳米复合材料的改性以及结构-性能关系的阐述提供一定的指导意义.参考文献[1]Caseri W.R.,Mater.Sci.Technol.,2006,22(7),807—817[2]Edwards D.C.,J.Mater.Sci .,1990,25(10),4175—4185[3]Buxton G.A.,Balazs A.C.,Mol.Simul.,2004,30(4),249—257[4]Tang L.M.,Weder C.,ACS Appl.Mater.Interfaces ,2010,2(4),1073—1080[5]Hore M.J.A.,Frischknecht A.L.,Composto R.J.,ACS Macro Lett.,2012,1(1),115—121[6]Balazs A.C.,Emrick T.,Russell T.P.,Science ,2006,314(5802),1107—1110[7]Moniruzzaman M.,Winey K.I.,Macromolecules ,2006,39(16),5194—5205[8]Mao L.,Liu Y.J.,Fan S.H.,Chem.J.Chinese Universities ,2019,40(8),1726—1732(毛龙,刘跃军,范淑红.高等学校化学学报,2019,40(8),1726-1732)[9]Hule R.A.,Pochan D.J.,MRS Bull.,2007,32(4),354—358[10]Villmow T.,Pegel S.,John A.,Rentenberger R.,Potschke P.,Mater.Today ,2011,14(7/8),340—345[11]Villmow T.,John A.,Potschke P.,Heinrich G.,Polymer ,2012,53(14),2908—2918[12]Deluca N.W.,Elabd Y.A.,J.Polym.Sci.Pt.B :Polym.Phys .,2006,44(16),2201—2225[13]Kongkanand A.,Kuwabata S.,Girishkumar G.,Kamat P.,Langmuir ,2006,22(5),2392—2396[14]Rhim J.W.,Ng P.K.W.,Crit.Rev.Food Sci.Nutr .,2007,47(4),411—433[15]Youssef A.M.,Polym.Plast.Technol.Eng .,2013,52(7),635—660Fig.7Shear viscosity(η)as a function of W i for different volume fractions Inset :the shear viscosity of nanocomposites as a function of nanorods volume fractions for W i =20.Table 2Zero -shear viscosities(η0)of differentnanocomposites and pure meltφ(%)00.81510η019.6921.0221.5430.6346.28881882Vol.42高等学校化学学报[16]Toprak M.S.,McKenna B.J.,Waite J.H.,Stucky G.D.,Chem.Mat.,2007,19(17),4263—4269[17]Lin C.C.,Cargnello M.,Murray C.B.,Clarke N.,Winey K.I.,Riggleman R.A.,Composto R.J.,ACS Macro Lett.,2017,6(8),869—874[18]Luo J.J.,Daniel I.M.,Compos.Sci.Technol.,2003,63(11),1607—1616[19]Singha S.,Thomas M.J.,IEEE Trns.Dielectr.Electr.Insul.,2008,15(1),12—23[20]Shan X.Y.,Tai Q.L.,Hu Y.,Song L.,Yuan G.J.,Lu Z.M.,Chem.J.Chinese Universuties,2013,34(10),2431—2436(单雪影,台启龙,胡源,宋磊,袁国杰,卢兆明.高等学校化学学报,2013,34(10),2431—2436)[21]Zhang S.H.,He Y.F.,Fu R.F.,Jiang J.,Li Q.B.,Gu Y.C.,Chen S.,Chem.J.Chinese Universities,2017,38(6),1090—1098(张思航,何永锋,付润芳,蒋洁,李晴碧,顾迎春,陈胜.高等学校化学学报,2017,38(6),1090—1098)[22]Bao Z.W.,Hou C.M.,Shen Z.H.,Sun H.Y.,Zhang G.Q.,Luo Z.,Dai Z.Z.,Wang C.M.,Chen X.W.,Li L.B.,Yin Y.W.,Shen Y.,Li X.G.,Adv.Mater.,2020,32(25),1907227[23]Kalathi J.T.,Grest G.S.,Kumar S.K.,Phys.Rev.Lett.,2012,109(19),198301[24]Li Y.,Kroger M.,Liu W.K.,Phys.Rev.Lett.,2012,109(11),118001[25]Yamamoto U.,Carrillo J.M.Y.,Bocharova V.,Sokolov A.P.,Sumpter B.G.,Schweizer K.S.,Macromolecules,2018,51(6),2258—2267[26]Yamamoto U.,Schweizer K.S.,J.Chem.Phys.,2011,135(22),224902[27]Yamamoto U.,Schweizer K.S.,ACS Macro Lett.,2013,2(11),955—959[28]Yamamoto U.,Schweizer K.S.,Macromolecules,2015,48(1),152—163[29]Rudyak V.Y.,Krasnolutskii S.L.,Ivanov D.A.,Microfluid.Nanofluid.,2011,11(4),501—506[30]Zhang K.,Kumar S.K.,ACS Macro Lett.,2017,6(8),864—868[31]Karatrantos A.,Composto R.J.,Winey K.I.,Clarke N.,J.Chem.Phys.,2017,146(20),203331[32]Hall L.M.,Jayaraman A.,Schweizer K.S.,Curr.Opin.Solid State Mat.Sci.,2010,14(2),38—48[33]Hooper J.B.,Schweizer K.S.,Macromolecules,2006,39(15),5133—5142[34]Coleman J.B.,Khan U.,Gun'ko Y.B.,Adv.Mater.,2006,18(6),689—706[35]Liu X.,Wang W.J.,Shao Z.Q.,Li L.,Chem.J.Chinese Universities,2018,39(2),373—381(刘星,王文俊,邵自强,李磊.高等学校化学学报,2018,39(2),2373-2381)[36]Huynh W.U.,Dittmer J.J.,Alivisatos A.P.,Science,2002,295(5564),2425—2427[37]Min C.Y.,Shen X.Q.,Shi Z.,Chen L.,Xu Z.W.,Polym.Plast.Technol.Eng.,2010,49(12),1172—1181[38]Marconnett A.M.,Yamamoto N.,Panzer M.A.,Wardle B.L.,Goodson K.E.,ACS Nano,2011,5(6),4818—4825[39]Sonnichsen C.,Franzl T.,Wilk T.,von Plessen G.,Feldmann J.,Wilson O.,Mulvaney P.,Phys.Rev.Lett.,2002,88(7),077402[40]Bryning M.B.,Islam M.F.,Kikkawa J.M.,Yodh A.G.,Adv.Mater.,2005,17(9),1186—1191[41]White S.I.,Mutiso R.M.,Vora P.M.,Jahnke D.,Hsu S.,Kikkawa J.M.,Li J.,Fischer J.E.,Winey K.I.,Adv.Funct.Mater.,2010,20(16),2709—2716[42]Buxton G.A.,Balazs A.C.,J.Chem.Phys.,2002,117(16),7649—7658[43]Knauert S.T.,Douglas J.F.,Starr F.W.,J.Polym.Sci.Pt.B:Polym.Phys.,2007,45(14),1882—1897[44]Tokarev A.,Luzinov I.,Owens J.R.,Kornev K.G.,Langmuir,2012,28(26),10064—10071[45]Molaei M.,Atefi E.,Crocker J.C.,Phys.Rev.Lett.,2018,120(11),118002[46]Karatrantos A.,Composto R.J.,Winey K.I.,Clarke N.,Macromolecules,2019,52(6),2513—2520[47]Choi J.,Cargnello M.,Murray C.B.,Clarke N.,Winey K.I.,Composto R.J.,ACS Macro Lett.,2015,4(9),952—956[48]Kremer K.,Grest G.S.,J.Chem.Phys.,1990,92(8),5057—5086[49]Sen S.,Xie Y.P.,Kumar S.K.,Yang H.C.,Bansal A.,Ho D.L.,Hall L.,Hooper J.B.,Schweizer K.S.,Phys.Rev.Lett.,2007,98(12),128302[50]Tuteja A.,Duxbury P.M.,Mackay M.E.,Phys.Rev.Lett.,2008,100(7),077801[51]Crawford M.K.,Smalley R.J.,Cohen G.,Hogan B.,Wood B.,Kumar S.K.,Melnichenko Y.B.,He L.,Guise W.,Hammouda B.,Phys.Rev.Lett.,2013,110(19),196001[52]Jouault N.,Dalmas F.,Said S.,di Cola E.,Schweins R.,Jestin J.,Boue F.,Macromolecules,2010,43(23),9881—9891[53]Nusser K.,Neueder S.,Schneider G.J.,Meyer M.,Pyckhout⁃Hintzen W.,Willner L.,Radulescu A.,Richter D.,Macromolecules,2010,43(23),9837—9847[54]Nakatani A.I.,Chen W.,Schmidt R.G.,Gordon G.V.,Han C.C.,Polymer,2001,42(8),3713—3722[55]Lal J.,Sinha S.K.,Auvray L.,J.De.Phy.II,1997,7(11),1597—1615[56]Tung W.S.,Bird V.,Composto R.J.,Clarke N.,Winey K.I.,Macromolecules,2013,46(13),5345—5354[57]Picu R.C.,Rakshit A.,J.Chem.Phys.,2007,127(14),144909[58]Muthukumar M.,J.Non-Cryst.Solids,1991,131,654—666[59]Muthukumar M.,Baumgartner A.,Macromolecules,1989,22(4),1937—1941[60]Muthukumar M.,Baumgartner A.,Macromolecules,1989,22(4),1941—1946[61]Toepperwein G.N.,Riggleman R.A.,de Pablo J.J.,Macromolecules,2012,45(1),543—554[62]Aust C.,Kroger M.,Hess S.,Macromolecules,1999,32(17),5660—5672[63]Link A.,Springer J.,Macromolecules,1993,26(3),464—471[64]Winkler R.G.,Phys.Rev.Lett.,2006,97(12),128301No.3刘爱清等:高分子/棒状纳米粒子复合物的分子动力学模拟[65]Teixeira R.E.,Babcock H.P.,Shaqfeh E.S.G.,Chu S.,Macromolecules,2005,38(2),581—592[66]Huang C.C.,Sutmann G.,Gompper G.,Winkler R.G.,Epl.,2011,93(5),54004[67]Chen W.D.,Zhang K.X.,Liu L.J.,Chen J.Z.,Li Y.Q.,An L.J.,Macromolecules,2017,50(3),1236—1244[68]Xu X.L.,Chen J.Z.,An L.J.,J.Chem.Phys.,2014,140(17),174902[69]Schroeder C.M.,Teixeira R.E.,Shaqfeh E.S.G.,Chu S.,Macromolecules,2005,38(5),1967—1978[70]Schroeder C.M.,Teixeira R.E.,Shaqfeh E.S.G.,Chu S.,Phys.Rev.Lett.,2005,95(1),018301[71]Rapaport D.C.,The Art of Molecular Dynamics Simulation,Cambridge University Press,New York,2004[72]Nusser K.,Schneider G.J.,Pyckhout-Hintzen W.,Richter D.,Macromolecules,2011,44(19),7820—7830[73]Starr F.W.,Douglas J.F.,Glotzer S.C.,J.Chem.Phys.,2003,119(3),1777—1788[74]Pryamitsyn V.,Ganesan V.,J.Rheol.,2006,50(5),655—683Molecular Dynamics Simulation of Polymer/rod Nanocomposite†LIU Aiqing1,2,XU Wensheng2*,XU Xiaolei2*,CHEN Jizhong2,3*,AN Lijia2,3(1.College of Chemistry,Jilin University,Changchun,130012,China;2.State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun,130022,China;3.School of Applied Chemistry and Engineering,University of Science and Technology of China,Hefei230026,China)Abstract The effects of nanorods on the structural,dynamical,and rheological properties of polymer matrix were investigated under shear flow via nonequilibrium molecular dynamics simulation.By comparing the re⁃sults of nanocomposites(with volume fractions from0.8%to10%)and pure melts,it is found that the diffu⁃sion and relaxation of polymer chains are gradually limited with the increase of nanoparticles,while the poly⁃mer size keeps almost unchanged.Under shear flow,it is found that the structural properties such as the mean-square radius of gyration,main components of gyration tensor and the orientation resistance parameter are almost independent of the volume fractions of nanoparticles,from the perspective of Weissenberg number (W i),while the tumbling motion of polymer chains is restricted.In addition,we also find the shear viscosity curve of nanocomposites is essentially the same with that of the pure melt,that is,W i=1divides the curve into the plateau region and the shear thinning region.The introduction of nanorods merely changes the shear viscosi⁃ty of the fluid quantitatively.Keywords Nanocomposites;Molecular dynamics simulation;Shear flow(Ed.:W,K,S)Science Foundation of China(Nos.21873092,21774127,21790341,21790342),the Key ResearchAcademy of Science(No.QYZDY⁃SSW⁃SLH027)and the Jilin Provincial Science and Technology Deve⁃lopment Program,China(No.20190103115JH).883。

DNA纳米技术中的自组装与自组织

DNA纳米技术中的自组装与自组织

DNA纳米技术中的自组装与自组织DNA纳米技术是一种新型的纳米科技,其独特性在于利用DNA分子的自组装能力构建出原子级别的结构,因此被誉为“生物学的基础和纳米技术的未来”。

其中,自组装和自组织是DNA 纳米技术的核心要素,它们为构建高精度、高复杂度的纳米结构提供了基础。

本文将从自组装和自组织两个方面介绍DNA纳米技术中的这两个重要概念及其应用。

一、自组装自组装是指一种“自发”的过程,即分子或一组分子通过特定的非共价力(如范德华力、静电力等)与其他分子组装成特定结构的过程。

在DNA纳米技术中,DNA分子可以通过互补配对来进行自组装。

DNA具有双螺旋结构,由四个核苷酸基础(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳞状细胞素)组成,它们都有特定的最优互补配对关系。

例如,腺嘌呤只与鸟嘌呤互补,胸腺嘧啶只与鳞状细胞素互补。

这种互补配对可以让DNA分子自发地组装成各种形状和尺寸的结构。

通过对DNA分子的设计,可以将其制作成具有特定互补配对序列的单链DNA(ssDNA)。

这些ssDNA可以被混合在一起,通过互补配对来组装成各种形状的双链DNA(dsDNA)。

这些dsDNA可以进一步组装成更复杂的结构,例如DNA纳米图案、DNA纳米容器、DNA纳米机器等。

此外,通过在DNA分子上引入某些化学功能基团,例如生物素、荧光染料等,还可以实现不同的功能,例如药物传递、荧光探针等。

二、自组织自组织是指一种被动的过程,即在一定的物理条件下,物质可以自动组织成某种结构或形态。

在DNA纳米技术中,自组织通常涉及到DNA分子之间的一些物理现象,如热力学、扩散等。

与自组装不同的是,自组织过程通常是无法被准确控制的,但却可以利用一些物理法则预测其最终形态。

在DNA纳米技术中,常见的自组织现象包括DNA纳米结晶、DNA纳米液滴、DNA纳米带状体等。

这些自组织结构都具有特定的形态和尺寸,可以作为DNA纳米技术中的基本构建单元。

例如,DNA纳米带状体可以被用来构建具有一定长度的DNA纳米结构,通过控制带状体的弯曲度和扭曲度可以实现不同形态的DNA分子组装。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Development/Plasticity/RepairSelf-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord InjuryVicki M.Tysseling-Mattiace,1*Vibhu Sahni,1*Krista L.Niece,3Derin Birch,1Catherine Czeisler,1Michael G.Fehlings,4 Samuel I.Stupp,2,3and John A.Kessler11Department of Neurology and2Department of Medicine and Institute for BioNanotechnology in Medicine,Northwestern University,Chicago,Illinois 60611,3Departments of Materials Science and Engineering and Chemistry,Northwestern University,Evanston,Illinois60208,and4Department of Surgery, University of Toronto,Toronto,Ontario,Canada M5S1A8Peptide amphiphile(PA)molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury(SCI).Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created within the extracellular spaces of the spinal cord by simply injecting a liquid.The molecules are designed to form cylindrical nanofibers that display to cells in the spinal cord the laminin epitope IKVAV at nearly van der Waals density. IKVAV PA nanofibers are known to inhibit glial differentiation of cultured neural stem cells and to promote neurite outgrowth from cultured neurons.In this work,in vivo treatment with the PA after SCI reduced astrogliosis,reduced cell death,and increased the number of oligodendroglia at the site of injury.Furthermore,the nanofibers promoted regeneration of both descending motor fibers and ascend-ing sensory fibers through the lesion site.Treatment with the PA also resulted in significant behavioral improvement.These observations demonstrate that it is possible to inhibit glial scar formation and to facilitate regeneration after SCI using bioactive three-dimensional nanostructures displaying high densities of neuroactive epitopes on their surfaces.Key words:spinal cord injury;nanotechnology;gliosis;regeneration;extracellular matrix;functional recoveryIntroductionSpinal cord injury(SCI)often leads to permanent paralysis and loss of sensation below the site of injury because of the inability of damaged axons to regenerate in the adult CNS.Various ap-proaches have been used to treat SCI with notable but,unfortu-nately,limited success(Thuret et al.,2006).We report here on the use of a molecularly designed bioactive matrix without exoge-nous proteins or cells as a different therapeutic approach for SCI. The matrix is composed of peptide amphiphile(PA)molecules that self-assemble from aqueous solution into cylindrical nano-fibers that display bioactive epitopes on their surfaces(Hart-gerink et al.,2001,2002;Silva et al.,2004)(Fig.1;supplemental Figs.1–3,available at as supplemental mate-rial).The cylinders have a well defined diameter in the range of 6–8nm and consist of␤-sheet assemblies that tend to be parallel to the nanofibers(Jiang et al.,2007).Because each molecule con-tains an epitope sequence at its hydrophilic terminus,the nano-structures assembled in an aqueous medium are able to display bioactive sequences perpendicular to their long axis at nearly van der Waals density.This intensifies the epitope density compared with laminin by a factor of103(Silva et al.,2004).We reported previously on a negatively charged PA incorpo-rating the neuroactive pentapeptide epitope from laminin, isoleucine-lysine-valine-alanine-valine(IKVAV)(Silva et al., 2004).Addition of physiological fluids to dilute aqueous solu-tions of this PA leads to spontaneous formation of nanofibers in vitro and in vivo(Silva et al.,2004).In our previous studies,the nanofibers containing the IKVAV epitope were found to pro-mote outgrowth of processes from cultured neurons and to sup-press astrocytic differentiation of cultured neural progenitor cells (Silva et al.,2004).The suppression of astrocytic differentiation was not observed when using a simple IKVAV peptide,the pro-tein laminin,or a control PA that did not contain the neuroactive epitope and that instead had the nonbioactive sequence EQS at one terminus(EQS PA)(Silva et al.,2004).Furthermore,the PA promoted copious neurite outgrowth that far exceeded what was observed with either laminin or IKVAV peptide.Thus,the bio-logical effects of the IKVAV PA differ strikingly from those of either laminin or IKVAV peptide.These observations suggested that injection of the bioactive amphiphile after SCI might reduce astrogliosis and possibly promote axon outgrowth. Materials and MethodsMouse spinal cord injuries,amphiphile injections and animal care.All an-imal procedures were undertaken in accordance with the Public HealthReceived Nov.1,2007;revised March5,2008;accepted March7,2008.This project was supported by National Institutes of Health Grants R01EB003806-01(S.I.S.,J.A.K.),R01 NS20013-21(J.A.K.),and P50NS54287(J.A.K.)and by a scholarship from the Foundation for Physical Therapy (V.M.T.).We thank Bridgid Nolan,Tammy McGuire,and Min Hu for assistance with animal care,Hongzhou Jiang for helpwiththescanningelectronmicroscopy,andJieHuangforhelpwithstatistics.WethankOswaldStewardandhis laboratory for advice and training on the tract-tracing methodology.S.S.has founded a company,Nanotope,to eventually develop commercial applications of the self-assembling materials.S.I.S.and J.A.K.participate in this venture.*V.M.T.-M.and V.S.contributed equally to this work.Correspondence should be addressed to Vicki M.Tysseling-Mattiace,303E.Chicago Avenue,Chicago,IL60611. E-mail:v-mattiace@.DOI:10.1523/JNEUROSCI.0143-08.2008Copyright©2008Society for Neuroscience0270-6474/08/283814-10$15.00/03814•The Journal of Neuroscience,April2,2008•28(14):3814–3823Service Policy on Humane Care and Use of Laboratory Animals.TheInstitutional Animal Care and Use Committee approved all procedures.Female 129SvJ mice (10weeks of age;The Jackson Laboratory,BarHarbor,ME)were anesthetized using Avertin intraperitoneally.Afterlaminectomy at the T10vertebral segment,the spinal cord was com-pressed dorsoventrally by the extradural application of a 24g modifiedaneurysm clip for 1min (FEJOTA mouse clip).After SCI,the skin wassutured using AUTOCLIP (9mm;BD Biosciences,San Jose,CA).Post-operatively,animals were kept under a heat lamp to maintain body tem-perature.A 1.0cc injection of saline was given subcutaneously,which wasrepeated daily for the first week after the injury.Bladders were manuallyemptied twice daily throughout the duration of the study.In the event ofdiscomfort,buprenex (2mg/kg,s.c.,twice daily)was administered.Gen-tamycin was administered once daily in the event of hematuria (20mg/kg)subcutaneously for 5d.Mice that exhibited any hindlimb movement24h after the injury were excluded from the study.PA (1%aqueous solution)or vehicle was injected 24h after SCI usingborosilicate glass capillary micropipettes (Sutter Instruments,Novato,CA)(outer diameter,100␮m)coated with Sigmacote (Sigma,St.Louis,MO)to reduce surface tension.The capillaries were loaded onto a Ham-ilton syringe using a female luer adaptor (World Precision Instruments,Sarasota,FL)controlled by a Micro4microsyringe pump controller(World Precision Instruments).The amphiphile was diluted 1:1with a580␮M solution of glucose just before injection and loaded into thecapillary.Under Avertin anesthesia,the autoclips were removed and theinjury site was exposed.The micropipette was inserted to a depth of 750␮m measured from the dorsal surface of the cord,and 2.5␮l of thediluted amphiphile solution or vehicle was injected at 1␮l/min.Themicropipette was withdrawn at intervals of 250␮m to leave a trail (ven-tral to dorsal)of the IKVAV PA in the cord.At the end of injection,thecapillary was left in the cord for an additional 5min,after which thepipette was withdrawn and the wound closed.For all experiments,the experimenters were kept blinded to the identity of the animals.Animal perfusions and tissue acquisition.Animals were killed using anoverdose of halothane anesthesia and transcardially perfused with 4%paraformaldehyde in PBS.The spinal cords were dissected and fixedovernight in 30%sucrose in 4%PFA.The spinal cords were then frozenin Tissue-Tek embedding compound and sectioned on a Leica (Deer-field,IL)CM3050S cryostat.Longitudinal sections (20␮m thick)weretaken.GFAP quantitation.Sections were rinsed with PBS twice and thenincubated with anti-glial fibrillary acidic protein (GFAP;1:250;mousemonoclonal IgG1;Sigma)for 1h at room temperature.After this,sec-tions were rinsed thrice with PBS and incubated with Alexa Fluor-conjugated anti-mouse IgG1secondary antibodies (1:500;Invitrogen,Carlsbad,CA)for 1h at room temperature.Sections were finally rinsedthrice with PBS and then incubated with Hoechst nuclear stain for 10min at room temperature.After a final rinse with PBS,they weremounted using Prolong Gold anti-fade reagent (Invitrogen)and imagedusing a Zeiss (Thornwood,NY)UVLSM-Meta confocal microscope.Af-ter immunostaining,we measured the fluores-cence intensity of GFAP immunoreactivity to estimate the fold increase in GFAP levels around the lesion over baseline levels in uninjured parts of the cord.We also compared the GFAP fluo-rescence intensity to levels in spinal cord of nor-mal uninjured animals.For each animal,sec-tions at equivalent mediolateral depth were used for analysis.Because we knew the right–left thickness of each spinal cord,we could pick sec-tions at the equivalent mediolateral depths in different animals very accurately.Furthermore,the mediolateral thickness of the cord was not observed to be different between IKVAV PA-injected and control animals.Confocal scans inthe lesioned area were taken immediately adja-cent to the area of peak infiltration (supplemen-tal Fig.4,available at as sup-plemental material),where we observed themost intense GFAP immunoreactivity.Each scan was performed using identical laser power,gain,and offset values.These values were set such that the pixels in the images of the lesioned area did not saturate,and those in uninjured areas were not too dim (intensity sufficiently above zero).Z -stacks of the scans were recon-structed using LSM image browser (Zeiss).Fluorescence quantitation was performed by converting the entire Z -stack into a monochrome (.tif)image and subsequently measuring the intensity of each pixel.Each pixel has a grayscale that ranges from 0to 255.The total pixel intensity of each stack was integrated using the MetaMorph 2.6software.Intensity values at the lesioned area for each individual section were normalized to the baseline values derived from scans taken over uninjured parts of the same section,which we have defined as 1mm away from the edge of the area of increased GFAP immunoreactivity.We also normalized the intensity of gliosis at the lesion site to the values obtained from an uninjured cord (supplemental Fig.6,available at as supplemental material).For each section,four sites (two rostral and two caudal to the lesion epicenter)in the lesioned area and three in the uninjured area (spanning both gray and white matter)were scanned.At least four sec-tions were analyzed for each animal in such a manner.The total intensity values were then averaged for each group.The final fluorescence values were therefore expressed as fold increases over the baseline (uninjured area)values for individual sections,which were then grouped for each animal for comparison between IKVAV PA and vehicle-injected groups.Apoptotic cell death and oligodendrocyte density quantification.Sections were boiled in 10m M sodium citrate for 20min and then cooled to room temperature.They were then incubated in blocking solution [PBS con-taining 10%BSA,1%normal goat serum (NGS),and 0.25%Triton X-100]for 1h at room temperature.After this,the sections were incu-bated in primary antibody solution (PBS with 1%NGS and 0.25%Triton X-100)overnight at 4°C.After three 1ϫPBS washes on the next day,the sections were incubated with the appropriate secondary antibody (1:500)for 1h at room temperature and then rinsed with PBS and stained with Hoechst nuclear stain as already described above.Antibodies used were anti-APC/mAb CC1(1:200;EMD Biosciences,San Diego,CA)and anti-cleaved caspase-3(1:200;Cell Signaling Technology,Danvers,MA).Similar to the quantification of GFAP levels,sagittal sections in all animals were taken at the equivalent mediolateral depths.The lesion was defined as the area marked by dense infiltration,and apoptotic cells were counted both in the epicenter and 400␮m rostral and caudal to 1-positive cells were counted 400␮m rostral and caudal to the lesion.The area analyzed spanned the entire dorsoventral thickness of the cord.Tract tracing and analysis.At 1d or 9weeks after injury,mice were anesthetized with Avertin and were injected with mini-ruby-conjugated BDA (Invitrogen)using a 10␮l Hamilton microsyringe fitted with a pulled-glass micropipette.For dorsal column labeling,2␮l were injected just distal to the L5dorsal root ganglion.The corticospinal tract was labeled with three injections (0.5␮l each)made at 1.0mm lateral to the midline at 0.5mm anterior,0.5mm posterior,and 1.0mm posterior to bregma,and at a depth of 0.5mm from the cortical surface.Animalswere Figure 1.Structure of IKVAV PA.a ,Schematic representation showing individual PA molecules assembled into a bundle of nanofibers interwoven to produce the IKVAV PA.b ,Scanning electron micrograph image shows the network of nanofibers in vitro .Scale bar,200nm.Tysseling-Mattiace et al.•Nanoengineered Matrices and Spinal Cord Injury J.Neurosci.,April 2,2008•28(14):3814–3823•3815killed 14d after BDA injection and perfused.Floating 20␮m sagittal serial sections were each collected and washed three times in 1ϫPBS and 0.1%Triton X-100,incubated overnight at 4°C with avidin and biotin-ylated horseradish peroxidase (Vectastain ABC Kit Elite;Vector Labora-tories,Burlingame,CA),washed again three times in 1ϫPBS,and then reacted with DAB in 50m M Tris buffer,pH 7.6,0.024%hydrogen per-oxide,and 0.5%nickel chloride.Every section was collected serially so that individual axons could be traced from section to section.Sections were then transferred to PBS and mounted in serial order on microscope slides using a weak mounting media containing 0.1%gelatin and 10%ethanol in PBS.Tracts were traced using Neurolucida imaging software (MicroBrightField,Williston,VT)for each axon that was labeled within a 500␮m distance rostral to the lesion for corticospinal tract analysis and caudal to the lesion for dorsal column analysis.ResultsA unique feature of the PA is its ability to self-assemble into nanofibers when it is injected into tissue and contacts cations (Silva et al.,2004).To test the in vivo properties of the IKVAV PA as well as the therapeutic effects on recovery,we used a clip com-pression model of SCI that produces a consistent injury in mice where an initial impact is followed by persistent compression analogous to most cases of human SCI (Joshi and Fehlings,2002a,b).Parameters were chosen to produce a particularly se-vere injury.Because a PBS buffer would trigger self-assembly and make the PA gel before injection,an isotonic glucose solution was used for injections of PA.We first tested the stability of the bio-degradable IKVAV PA nanofibers.At 24h after SCI,the lesion site was injected with a fluorescent derivative of the IKVAV PA (PA2in supplemental Figs.1–3,available at as supplemental material).Longitudinal sections of spinal cordshow that the fluorescent IKVAV PA is present at 2weeks,but by 4weeks,the IKVAV PA has mostly biodegraded.Therefore,the stability of the IKVAV PA was found to be on the order of weeks (Fig.2).Functional recovery after SCIWe used the Basso,Beattie and Bresnahan (BBB)locomotor scale modified for the mouse (Basso et al.,1996;Joshi and Fehlings,2002a)to assess behavioral recovery from experimental SCI.For this and all subsequent experiments,the experimenters were kept blinded to the identity of the animals.At 24h after SCI,the lesion site was injected with IKVAV PA,the nonbioactive EQS PA,or glucose,and some animals received sham injection.At 9weeks after SCI,the EQS PA,sham injection,and glucose groups did not differ from one another,and all scored significantly less than the IKVAV PA group (Fig.3a ).Notably,injection of IKVAV peptide alone did not promote functional recovery (Fig.3b ),indicating that both the nanostructure of the PA and the IKVAV sequence are necessary for the beneficial effects on behavior.The nearly identical scores for the three control groups are also identical to those of animals in previous studies that received a complete transection of the spinal cord (Joshi and Fehlings,2002a).A glu-cose control group was therefore used for comparison with IKVAV PA in all of the subsequent experiments in which animals were analyzed anatomically.In the behavioral analysis of the an-imals used for the anatomic studies,there were no distinguishable differences between the control and IKVAV PA groups until 5weeks (Fig.3c ).However,at 5weeks and thereafter,the IKVAV PA-injected group displayed significant behavioralimprovementFigure 2.IKVAV PA solution self-assembles in vivo .a ,Phase (left)and fluorescent (right)images showing the fluorescent IKVAV PA in the injured spinal cord 24h after injection (dorsal,left;rostral,top).b–e ,Longitudinal sections of spinal cord showing the fluorescent IKVAV PA is present at 2weeks after injection only in IKVAV PA-injected animals (c )versus control (uninjected;b ),but by 4weeks,the IKVAV PA has mostly biodegraded,as seen in the IKVAV PA-injected animals (e )compared with uninjected animals (d ).Scale bars:a ,100␮m,b–e ,50␮m.3816•J.Neurosci.,April 2,2008•28(14):3814–3823Tysseling-Mattiace et al.•Nanoengineered Matrices and Spinal Cord Injurycompared with the glucose control.At 9weeks,the mean BBB score for the control group was 7.03Ϯ0.8,whereas the mean score for the IKVAV PA-injected group was 9.2Ϯ0.5(p Ͻ0.04).Importantly,this represents significant functional recovery,be-cause a score of 7implies no functional movement despite an extensive range of movement in all three joints in the hindlimb,whereas a score of 9indicates dorsal stepping in which the animal steps on the dorsal side of its foot during locomotion,i.e.,the hindlimb movement has a functional use.Effects of IKVAV PA on astrogliosisBecause the IKVAV PA produced significant long-term func-tional improvement,it seemed likely that it had altered cellular events,such as glial scar formation and cell death,that prevent recovery from SCI.Astrogliosis after neural injury involves an early hypertrophic (increased cell size)as well as a hyperplastic (increased cell number)response (Fawcett and Asher,1999;Faulkner et al.,2004).At 4d after SCI,GFAP immunohistochem-istry revealed no apparent difference between the treated and control animals (Fig.4a ,d ).However,at 5weeks and 11weeks after SCI,there was an obvious reduction in astrogliosis in the IKVAV PA-injected group (Fig.4b ,c ).To quantify these changes,we measured the intensity of GFAP immunofluorescence in the lesion site normalized to baseline levels in the same cord 1mm from the lesion (Fig.4d )and found a significant reduction in the treated group (2.56Ϯ0.6for IKVAV PA;3.31Ϯ0.9for controls;p Ͻ0.02at 5weeks;and 2.0Ϯ0.1for IKVAV PA;2.7Ϯ0.2for controls;p Ͻ0.04at 11weeks).In contrast,there was no differ-ence in GFAP in animals that received nonbioactive PA (EQS)compared with glucose.Results were similar when the GFAP immunofluorescence was normalized to intensity values in nor-mal,uninjured spinal cords (supplemental Fig.6,available at as supplemental material).Thus,injection of the IKVAV PA suppressed progression of astrogliosis at the lesion site but did not alter the initial reactive hypertrophy that may be essential for repairing the blood–brain barrier and restoring ho-meostasis (Faulkner et al.,2004;Okada et al.,2006).Figure 3.IKVAV PA promotes functional recovery as analyzed by the BBB scale.a ,Graph showsmeanmouseBBBlocomotorscoresat9weeksafterSCIforanimalsreceivinginjectionsof glucose,EQS PA,IKVAV PA,or sham injection.The IKVAV PA group differed from all others at p Ͻ0.045.n ϭ7.Because there was no difference among these controls,glucose was used in the subsequent experiment depicted in c .b ,IKVAV peptide was injected at the same manner as the IKVAV PA.There were no significant differences in the BBB scores of animals injected with IKVAV peptide compared with sham controls.c ,The graph shows mean mouse BBB locomotor scoresbetweenIKVAVPAandglucoseinjectionsafterSCI.TheIKVAV(n ϭ15)andglucose(n ϭ14)groups differ from each other at p Ͻ0.04by ANOVA with repeated measures.*Tukey’s HSD post hoc t tests showed that scores differed at p Ͻ0.045at every time point 5weeks after SCI andthereafter.Figure 4.IKVAV PA attenuates astrogliosis in vivo after SCI.a–c ,Representative confocal Z -stacksofinjuredareasstainedwithGFAPincontrolandIKVAVPA-injectedanimals.Thelesion is defined as the area marked by dense infiltration (Okada et al.,2006).The two groups do not differat4d(a ),butat5weeks(b )and11weeks(c ),thereissignificantlylessglialscarringinthe IKVAV PA-injected animals.d ,GFAP immunofluorescence levels (expressed as fold increases overuninjuredareas)intheIKVAVPA-injectedanimalsaresignificantlyreducedcomparedwith control animals at 5and 11weeks (*p Ͻ0.02,**p Ͻ0.04by t test).Scale bar,20␮m.Tysseling-Mattiace et al.•Nanoengineered Matrices and Spinal Cord Injury J.Neurosci.,April 2,2008•28(14):3814–3823•3817Effects of IKVAV PA on cell deathThe waves of apoptotic cell death that occur after SCI are also detrimental to functional recovery (Crowe et al.,1997;Beattie et al.,2002).We quantified cell death late in the second phase of apoptosis using cleaved caspase-3immunohistochemistry at 10d after SCI (Liu et al.,1997;Beattie et al.,2002).In IKVAV PA-injected animals,there were significantly fewer cells undergoing apoptosis both in the area of maximal cell infiltration (lesion;44.7Ϯ3.06for vehicle vs 34.3Ϯ2.02for IKVAV PA;p Ͻ0.008)(Fig.5b ,d )and on either side of the lesion (30.8Ϯ4.26for vehicle and 16.3Ϯ1.25for IKVAV PA;p Ͻ0.001)(Fig.5a ,d ).Because there is typically significant oligodendroglial (OL)death at thisstage after injury (Beattie et al.,2002),we used CC1immunohis-tochemistry (Beattie et al.,2002)to measure OL density in the same area adjacent to the lesion,where we found a decreased incidence of cell death after IKVAV PA injection.There was a significant increase in the number of CC1ϩcells in the IKVAV PA-injected animals (64.4Ϯ4.75cells per 0.25mm 2for vehicle vs 85.8Ϯ6.56after IKVAV PA;p Ͻ0.025),suggesting enhanced OL survival (Fig.5c ).Thus,IKVAV PA injection increased OL cell numbers concurrent with reduced apoptotic cell death and re-duction of glial scar formation.Tract tracing of motor axonsWe used tract-tracing techniques with BDA to determine whether the amphiphile injection could support regeneration of injured motor and sensory axons.Representative traces and pic-tures of corticospinal tract tracing from an IKVAV PA-injected and a vehicle-injected animal at 11weeks after injury (Fig.6a–f )illustrate the marked difference (Fig.6h )between the treated and control groups.Almost 80%of all labeled corticospinal axons in the IKVAV PA group entered the lesion compared with ϳ50%of the fibers in control animals (Fig.6h ).No fibers in the control animals were ever detected as far as 25%of the way across the lesion.In contrast,ϳ50%of the fibers in the treated group pen-etrated half of the way through the lesion,and ϳ45%of the fibers penetrated three-quarters of the distance.Strikingly,ϳ35%of all of the labeled corticospinal fibers actually grew through the lesion and entered the spinal cord caudal to the lesion.The fibers took meandering,unusual courses through the lesion site and termi-nated after growing through the lesion.Nevertheless,to further exclude the possibility of axon sparing,BDA labeling was exam-ined at 2weeks after injury in a separate group (Fig.6g ).At this time,axons were heavily labeled with BDA,indicating intact in-tegrity of axoplasmic transport,and the number of labeled axons near the rostral end of lesion did not differ between IKVAV PA-injected and control animals or between the 2week and 11week groups.At 2weeks after injury,no fibers in either group were ever observed even 25%of the way through the lesion,demonstrating that spared fibers were not present in any animals.Together,these findings strongly support the thesis that the bioactive nano-fibers promoted regeneration of CST motor fibers.Tract tracing of sensory axonsRepresentative traces and pictures of sensory axon tracing from IKVAV PA-injected and vehicle-injected animals at 11weeks af-ter injury (Fig.7a–f )illustrate the marked difference between the treated and control groups that received BDA injections.Ap-proximately 60%of labeled axons in the IKVAV PA group en-tered the lesion compared with only ϳ20%of the fibers in con-trols (Fig.7h ).Only rare fibers in controls grew 25%of the way across the lesion,and no fibers in controls penetrated as far as 50%.In contrast,ϳ35%of the fibers in the treated group pene-trated 25%of the way through the lesion,and ϳ25%of the fibers penetrated 50%of the distance.Importantly,ϳ10%of the fibers actually grew through the lesion and entered the spinal cord ros-tral to the lesion.Again to further exclude the possibility of axon sparing,BDA labeling was examined at 2weeks after injury in a separate group (Fig.7g ).At this time,axons were heavily labeled with BDA,indicating the integrity of axoplasmic transport,and the number of labeled axons near the caudal end of lesion did not differ between IKVAV and control.At 2weeks after injury,no fibers in either group were ever observed penetrating even as far as 25%of the way through the lesion,demonstrating that spared fibers were not present.In toto ,these findings support thethesisFigure 5.Apoptotic cell death is reduced in IKVAV PA-injected animals.a ,b ,Collapsed confocal Z -stacks of 20-␮m-thick spinal cord sections (red,activated caspase-3;blue,Hoechst nuclear stain).The IKVAV PA-injected animals had fewer cleaved caspase-3-positive cells in every 20-␮m-thick section in the lesion (defined as the area marked by dense infiltration;b ,d ;**p Ͻ0.008by t test)and as far as 400␮m rostral and caudal to the lesion (a ,d ;*p Ͻ0.001by t test).c ,Confocal Z -stacks of 20-␮m-thick sections within 400␮m of the lesion (red,CC1;blue,Hoechst)reveals anincreased density of OLs in the IKVAVPA-injected animals.See textfor quantitation.Scale bar,20␮m.3818•J.Neurosci.,April 2,2008•28(14):3814–3823Tysseling-Mattiace et al.•Nanoengineered Matrices and Spinal Cord Injurythat the bioactive nanofibers promoted regeneration of sensory fibers.Illustration of the unusual course and morphology of traced axonsThe Neurolucida drawings in Figures 6and 7are two-dimensional reconstructions of a three-dimensional phenome-non and therefore do not completely demonstrate the unusual courses of the axons.To further illustrate this process,montages of sections and focal planes were assembled for a single represen-tative axon from Figure 7(Figs.8,9;supplemental Fig.7,avail-able at as supplemental material).These fi-bers met the rigorous published criteria (Steward et al.,2003)for distinguishing regeneration from sparing of axons.Notably,the fibers took meandering,unusual courses through the injured tis-sue (Figs.8,9;supplemental Fig.7,available at as supplemental material),terminated at varying distances after passing through the lesion site,and displayed unusual morphol-ogies not characteristic of normal axons (Figs.7–9).DiscussionAlthough adult CNS neurons have the intrinsic capacity to regen-erate axons after injury (Richardson et al.,1980),axon elongation and functional recovery after SCI is limited because of an unfa-vorable extracellular milieu (Silver and Miller,2004;Thuret et al.,2006).In this study,we sought to develop a clinically relevant technique for providing an environment that might foster recov-ery from injury.We specifically used an injury model that mimics the type of injury seen in the clinic and we implemented therapy with a delay after experimental injury that is relevant to the time elapsed from clinical injury to hospital or spinal stabilization.The efficacy of the IKVAV PA despite the severity of the injury and delay in treatment highlights its unique ability to provide an en-vironment conducive to recovery after SCI.Cellular actions of the IKVAV PAIn previous studies,we investigated PA containing the bioactive sequence,IKVAV,and the nonbioactive sequence EQS for their effects on cultured neural progenitor cells and neurons (SilvaetFigure 6.IKVAVPApromotesregenerationofmotoraxonsafterSCI.a ,b ,RepresentativeNeurolucidatracingsofBDA-labeleddescendingmotorfiberswithinadistanceof500␮mrostralofthelesionin vehicle-injected (a )and IKVAV PA-injected (b )animals.The dotted lines demarcate the borders of the lesion.c–f ,Bright-field images of BDA-labeled tracts in lesion (c ,e )and caudal to lesion (d ,f )used for Neurolucida tracings in an IKVAV PA-injected spinal cord (a ,b ).g ,h ,Bar graphs show the extent to which labeled corticospinal axons penetrated the lesion.*The groups representing three control and three IKVAVPAmiceandthetracingof130individualaxonsdifferfromeachotherat p Ͻ0.03bytheWilcoxonranktest.R,Rostral;C,caudal;D,dorsal;V,ventral.Scalebars:a–d ,100␮m;e–f ,25␮m.Tysseling-Mattiace et al.•Nanoengineered Matrices and Spinal Cord Injury J.Neurosci.,April 2,2008•28(14):3814–3823•3819。

相关文档
最新文档