新人教版七年级数学上册教案全套表格式
最新人教版初中数学七年级上册全册全套表格式优秀教案教学设计附反思名师优秀教案

最新人教版初中数学七年级上册全册全套表格式优秀教案教学设计附反思名师优秀教案人教版初中数学七年级上册全册全套表格式优秀教案教学设计附反思人教版初中数学七年级上册全册全套表格式优秀教案教学设计附反思教学目标:1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。
教学重点:经历探索简单事物排列与组合规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教具准备:卡纸、动物磁性图片教学过程:一、情景创设,激发兴趣师:小朋友们,你们是不是很喜欢旅游阿,生:是~师:好,今天老师就带你们去一个好玩的地方玩一玩好吗,瞧,这是哪儿, (呈现“数学广角”的卡片)生:数学广角~师:数学广角里有好多好玩的地方,今天还有个摘星的活动呢~能够在这次游玩中遵守纪律,发言积极响亮的同学都可以摘到星星~有没有信心呀,生:有~二、游戏娱乐,学在其中第一环节:时尚街——衣服搭配师:我们先去第一个景点时尚街看一看,老师看中了2件衣服、一条裙子和一条裤子,你能帮我搭配出几套衣服呢, (呈现衣服磁性图片,请学生把自己的搭配方法到黑板上来展示一下) 生1:红色衣服和裙子,绿色衣服和裤子。
生2:红色衣服和裤子,红色衣服和裙子。
师:刚才的两位小朋友都非常的棒,他们每个人都配出了两套,有哪位小朋友还想来试试,把所有的搭配方法都给大家介绍一下~生3:红色衣服和裙子,绿色衣服和裤子;红色衣服和裤子,红色衣服和裙子。
(在老师的引导下,学生用连线的方法表示出来。
具体图示如下:)三、由浅入深,体会感悟1、数字园——数字搭配1、写两位数。
师:刚才我们去了时尚街,小朋友们搭配衣服的本领可真棒~现在,老师带大家去数字园玩一玩~数字园里有3个数字宝宝,他们每个人都想和另外第一个数字娃娃交朋友。
新人教版七年级数学上册精品全册教案

新人教版七年级数学上册精品全册教案篇一:最新人教版七年级数学上册全册最新人教版七年级数学上册教案全册课题: 1.1 正数和负数(1)授课时间:____________ 12 3 1.1 正数和负数(2)授课时间:____________4 5 篇二:2015新人教版七年级数学上册全册教案数学教案七年级上册 2016—2017学年度第一学期教师:买买提·玉努斯伊吾县淖毛湖镇中学七年级(1)班数学课程表第一章有理数教材分析 1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化. 3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分. 4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标 1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解。
新人教版七年级数学上册教案全套-表格式

中小学课时教案2015-2016学年度上期第本任教学科数学授课班级七年级任课教师学校(盖章)2015年9月1日教育科研培训中心研制学科教学计划(2015-2016学年度上期)七年级 2 班学科数学执教教师本期总第( 1、2 )课时本期总第( 3、4 )课时本期总第( 5、6)课时本期总第( 7、9 )课时本期总第( 10、11)课时本期总第( 12、13 )课时本期总第( 7 )课时本期总第( 8)课时本期总第( 9 )课时设置情境引入课题:一架飞机作特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?(组织学生小组讨论并得出答案)学生可能出现的算式:(1)4.5+(-3.2)+1.1+(-1.4)(2)4.5-3.2+1.1-1.4提出课题:有理数加减法混合运算.分析问题探究新知:1、回顾小学加减法混合运算的顺序.(从左到右,依次计算)2、以教科书例6计算(-20)+(+3)-(-5)一(+7)为例来说明。
鼓励生来进行独立计算。
(这里要给学生充裕的时间,让学生算出答案,估计学生能解决这个问题3、教师引导:这个式子中有加法,也有减法,我们可不可以利用有理数的减法法则,把这个算式改变一下?再给算一算,你发现了什么?(学生小组合作,探讨把减法转化为加法,再利用运算来简化计算)教师巡回观祭,作适当稍导,若学生不能进一步计算,也可以在他们把减法转化为加法后,提示他们使用运算律。
(-20)+(3)一(-5)一(+7)=(-20)+(+3)+(+5)+(-7)=〔(-20)+(-7)〕+〔(+3)+(+5)〕=(-27)+(+8)=-194、学生交流汇报.(发现了什么?)充分鼓励学生大胆发现,勇敢交流.(如:计算结果与前面的算法是一样的;把减法都转化为加法可以使用运算律,计算会简单些等)5、归纳明确“减法可以转化为加法”.加减混合运算可以统一为加法运算,如:a+b-c=a+b+(-C).6、省略加号.教师引导:式子(-20)+(+3)十(+5)+(一7)是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号和加号,把它写为-20+3+5-7,读作:“负20正3正5负7的和”,或读作“负20加3加5减7",鼓励学生使用第一种读法;并让学生体会两种读法的区别.再根据教科书,规书写例6的运算过程.解决问题:1、解决引例中的问题.师:我们现在回过头来看引例中的间题,你对这两种算法又有什么新的认识?2、计算:(1)(-7)-(+5)+(-4)-(-10);(2)3712()()14263-+----师生共同完成计算。
人教版七年级数学上册:4.2《直线、射线、线段》表格式教案设计

4.2 直线、射线、线段(第一课时)教学目标:1、借助具体情境,了解“两点确定一条直线”的事实,理解直线、射线、线段概念及它们的区别和联系。
2、会表示线段、射线、直线,能根据几何语言画出简单图形。
3、让学生经历观察、想象、操作体验等数学活动,培养学生归纳、抽象及用语言表达结论的能力,培养学生学数学用数学的意识,增强对数学的好奇心和探究欲。
教学重点:教学难点两点确定一直线。
不同几何语言的相互转化。
环节教学过程设计意图导入课题:通过从熟悉的实物创设情境让学生们从实物中找出熟悉的平面图形,从中抽象出几何图形,让学而引出本节课题“直线、射线、线段”。
生直观地认识直线、射线、线段,导入新课设疑:从学生已有的生活建筑工人砌墙、木工师傅锯木板时,他们是经验出发,从学生熟悉和如何做的,为什么这样做?让学生大胆猜想他感兴趣的问题入手,诱发们这样做的依据其主动探索问题的欲望。
提出问题:结合具体情景,发现讨论实践要在墙上固定一根木条,至少需要几个钉并提出问题,让学生初步子?学会运用数学的思维方①在小组中动手试一试,并记录你们每一式去观察,并通过动手实步的结果。
践得到答案。
同时也为探探索新知②经过探索你能得到什么结论?索直线的性质作好了铺动画演示:一根木条钉一个钉子的情境演垫。
示,两个钉子的情境演示一下。
建立模型:画图:①如图,经过一点几条?②经过两点A、 B 呢?O 画直线,能画让学生经历了把钉子抽象成点把木条抽象成直线的过程,从而获得直线的性质。
让学生自己动手画一画,然后在小组中交流画图的结果。
模型解释:通过上述的活动,学通过实验和探索,得到:生经历了知识的发生、发①经过一点有无数条直线展过程,得出结论。
在这②经过两点有一条直线,并且只有一条直时师生共同归纳得到直线。
线的性质,实现概念理解注释:①中的“直线经过一点“是指这个和结论由来的从感性到点在直线上。
如图:理性的自然深化,培养了讨论实践直线 I 经过点 O 我们可以说点O在直线I上,学生的概括归纳能力。
人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
【核心素养目标】人教版数学七年级上册1.1 正数和负数 教案(表格式)

1.1 正数和负数一、创设情境,导入新知观看下面的视频,体会数的产生过程.师生活动:老师点击视频让学生观看,体会数的产生过程.回忆自然数的研究过程,探讨我们该如何研究数.师生活动:老师引导学生根据自然数的研究过程,说出有理数接下来研究的过程.二、小组合作,探究概念和性质知识点一:正数和负数数的产生:点击红包封口查看你所扮演的角色,说说你会遇见什么样的数据.第一个红包:某天天气预报截图:第二个红包:商店销售额统计表:第三个红包:银行存款流水:师生活动:学生上台点击红包,说出红包中所观察的数字.观察同学们提到的部分数,你能找到什么规律吗?师生活动:学生思考,师生共同归纳同,老师给出定义:正数:大于0 的数.负数:在正数前面加上符号“-”(负)的数.例如:7、3、6453、1549、1864.例如:-6、-9、-10、-585.8、-293.师追问:特殊的0 呢?师生活动:学生观察分析得出:数0既不是正数,也不是负数.练一练:1.请将下列各数进行分类.正数:____________________________;负数:____________________________.知识点二:具有相反意义的量合作探究:分组讨论下列数表示的含义,并说说这样表示的意义.典例精析:例1 (1)一个月内,小明体重增加了2 kg,小华体重减少了1 kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年下列国家的商品进出口总额比上年的变化情况是:美国减少 6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.师生活动:让学生尝试解答,并互相交流,教师结合学生的具体活动,加以指导.师说明:在同一个问题中,分别用正数和负数表示的量具有相反的意义写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量类似的还有水位上升收入等等. 我们要在解决问题时注意体会这些指明方向的量,正确用正负数表示它们.师强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东或向西,收入与支出;二是它们都是数量,而且是同类的量.归纳总结:如果一个问题中出现相反意义的量,我们可以用正数和负数来表示它们.练一练:2. 下列各对关系中,不具有相反意义的量的是( )A. 运进货物3 吨与运出货物2 吨B. 升温3℃ 与降温3℃C. 增加货物100 吨与减少货物2000 吨D. 胜3 局与亏本400 元合作探究:在温度、盈利亏损、存入和支出的数中,0 有什么特殊含义,请分组思考并举例.三、当堂练习,巩固所学1. 下列说法,正确的是( )A. 加正号的数是正数,加负号的数是负数B. 0是最小的正数C. 字母a既可为正数,也可为负数,还可为0D. 任意一个数,不是正数就是负数2.下列关于“0”的说法中,正确的有.(填序号)①0是正数与负数的分界;②0是正数;③0是自然数;④0不是整数.3.某老师要测量全班学生的身高,他以1.60米为基准,将某一小组5名学生的身高(单位:米) 简记为:﹢0.12,-0.05,0,﹢0.07,-0.02.这里的正数、负数分别表示什么意义?这5名学生的实际身高分别为多少?教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。
人教版初中七年级上册数学全册教学设计(完整版)

人教版初中七年级上册数学全册教学设计(完整版)一. 教材分析人教版初中七年级上册数学教材主要内容包括:第一章有理数;第二章整式的加减;第三章几何图形初步;第四章数据的收集、整理与分析。
本册教材主要让学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。
二. 学情分析七年级的学生已经掌握了小学阶段的数学知识,具备一定的逻辑思维能力和运算能力。
但部分学生对数学学科的学习兴趣不高,学习主动性不足。
因此,在教学过程中,需要关注学生的学习兴趣,激发学生的学习积极性。
三. 教学目标1.知识与技能:使学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。
2.过程与方法:通过自主学习、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:培养学生对数学学科的兴趣,提高学生的自信心。
四. 教学重难点1.教学重点:有理数、整式的加减以及几何图形的知识。
2.教学难点:有理数的混合运算、整式的加减运算以及几何图形的性质。
五. 教学方法1.情境教学法:通过生活实例引入知识,使学生感受到数学与生活的紧密联系。
2.启发式教学法:引导学生主动思考问题,培养学生的逻辑思维能力。
3.合作学习法:鼓励学生之间相互讨论、交流,提高学生的合作能力。
六. 教学准备1.教师准备:熟练掌握教材内容,了解学生的学习情况。
2.学生准备:预习教材内容,了解本节课的学习目标。
3.教学资源:多媒体课件、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用生活实例引入本节课的知识,激发学生的学习兴趣。
例如,讲解温度、身高等概念,引出有理数的概念。
2.呈现(15分钟)讲解有理数的定义、性质以及运算规则。
通过示例演示有理数的加减乘除运算,让学生跟随老师一起动手操作,巩固知识点。
3.操练(15分钟)布置练习题,让学生独立完成。
题目难度可分为基础、提高、挑战三个层次,以满足不同学生的学习需求。
教师巡回指导,帮助学生解决问题。
新人教版七年级数学(上册)全册教案

数学教案(七年级上册)第1章有理数第2章整式的加减第3章一元一次方程第4章图形认识初步第一章有理数1.1正数和负数教学目标: 1、了解正数与负数是从实际需要中产生的。
2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。
3、会用正、负数表示实际问题中具有相反意义的量。
重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。
2、正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。
结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。
为了用数表示具有相反意义的量,我们把其中一种意义的量。
如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。
正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“-”(读作负)号来表示。
根据需要,有时在正数前面也加上“+”(读作正)号。
注意:①数0既不是正数,也不是负数。
0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。
②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。
三、巩固知识1、课本P3 练习1,2,3,42、课本P4例四、总结①什么是具有相反意义的量?②什么是正数,什么是负数?③引入负数后,0的意义是什么?五、布置作业课本P5习题1.1第1、2题。
1.2.1有理数教学目标:1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。
2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。
重点:正确理解有理数的概念重点:有理数的分类 教学过程:一、知识回顾,导入新课什么是正数,什么是负数?问题1:学习了负数之后 ,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教学计划
(2015-2016学年度上期)
七年级2 班学科数学执教教师
设置情境引入课题:
一架飞机作特技表演,起飞后的高度变化如下表:
此时飞机比起飞点高了多少千米?
(组织学生小组讨论并得出答案)
学生可能出现的算式:
(1)4.5+(-3.2)+1.1+(-1.4)
(2)4.5-3.2+1.1-1.4
提出课题:有理数加减法混合运算.
分析问题探究新知:
1、回顾小学加减法混合运算的顺序.(从左到右,依次计算)
2、以教科书例6计算
(-20)+(+3)-(-5)一(+7)为例来说明。
鼓励生来进行独立计算。
(这里要给学生充裕的时间,让学生算出答案,估计学生能解决这个问题
3、教师引导:
这个式子中有加法,也有减法,我们可不可以利用有理数的减法法则,把这个算式改变一下?再给算一算,你发现了什么?
(学生小组合作,探讨把减法转化为加法,再利用运算来简化计算)
教师巡回观祭,作适当稍导,若学生不能进一步计算,也可以在他们把减法转化为加法后,提示他们使用运算律。
(-20)+(3)一(-5)一(+7)
=(-20)+(+3)+(+5)+(-7)
=[(-20)+(-7)]+[(+3)+(+5)]
=(-27)+(+8)
=-19
4、学生交流汇报.(发现了什么?)
充分鼓励学生大胆发现,勇敢交流.
(如:计算结果与前面的算法是一样的;把减法都转化为加法可以使用运算律,计算会简单些等)
5、归纳明确“减法可以转化为加法”.
加减混合运算可以统一为加法运算,如:a+b-c=a+b+(-C).
6、省略加号.
教师引导:
式子(-20)+(+3)十(+5)+(一7)是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号和加号,把它写为-20+3+5-7,读作:“负20正3正5负7的和”,或读作“负20加3加5减7",鼓励学生使用第一种读法;并让学生体会两种读法的区别.再根据教科书,规范书写例6的运算过程.
解决问题:
1、解决引例中的问题.
师:我们现在回过头来看引例中的间题,你对这两种算法又有什么新的认识?
2、计算:
(1)(-7)-(+5)+(-4)-(-10);
(2)
3712
()()1
4263
-+----
师生共同完成计算。
(学生口述,教师板书示范)
一、情境引入
教师提出课本的问题
问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)教师可以在学生回答的基础上做回顾小结。
问题2:你会用算术方法求出王家庄到翠湖的距离吗?
(当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式
问题3:能否用方程的知识来解决这个问题呢?
二、讲解新课
1、教师引导学生设未知数,并用含未知数的字母表示有关的数量
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米。
2、教师引导学生寻找相等关系,列出方程.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?
教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
x-50
3=
x+70
5,依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:
x-50
3=
50+70
2
3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
4、归纳列方程解决实际问题的两个步骤: (1)用字母表示问题中的未知数(通常用x,y,z 等字母); (2)根据问题中的相等关系,列出方程.渗透列方程解决实际问题的思考程序。
5、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报。
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
6、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?
(学生回答省略)
三、范例学习,巩固知识
课本例1
问题:你能解释这些方程中等号两边各表示什么意思吗?体会列方程所依据的相等关系。
(学生回答省略)
归纳得出一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次议程。
像4x,1700+150x等这样的式子,可以表示实际问题中的数量关系。
实际问题一元一次方程
设未知数列方程
教学
目标
1、经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,进一
步体会模型化的思想。
2、学会探索数列中的规律,建立等量关系,通过探究实际问题与一元一次方程的关系,
感受数学的应用价值。
3、能正确地求一元一次方程并判断解的合理性,通过运用算术和列方程两种方法解决实
际问题的过程,使学生体会到列方程解应用题更简捷明了,省时省力。
重点
难点
关键
重点:建立列方程解决实际问题的思想方法,分析实际问题中的已经量
和未知量,找出相等关系,列出方程。
难点:分析实际问题中的已经量和未知量,找出相等关系,列出方程,
使使学生逐步建立列方程解决实际问题的思想方法
教
具
多媒体
教学课时及板书设计旁批一、创设情境,引入新课
问题:课本问题3
学生思考,然后讨论合作。
二、讲授新课
三、巩固知识
讲解例3
习题3.2 第4题
四、总结
本节主要学习一元一次方程在实际中的应用,主要用到的思想方法是分类讨论思想,
在学习时,要注意观察,然后根据实际问题,抽象出方程模型。
五、布置作业
习题3.2 第5题
课
后
心
得
进度第三章(单元)第3节(课)1 课时课型新课备课时间年月日。