第21讲 乘法中的巧算(教师版)
多位数乘法口算巧算

乘法口算巧算技法两位数乘法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375 注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×467=?解:13个位是33×4+6=183×6+7=253×7=2113×467=6071注:和满十要进一。
7.多位数乘以多位数口诀:前一个因数逐一乘后一个因数的每一位,第二位乘10倍,第三位乘100倍……以此类推例:33*132=?33*1=3333*3=9933*2=6699*10=99033*100=330066+990+3300=435633*132=4356注:和满十要进一。
数学中关于两位数乘法的“首同末和十”和“末同首和十”速算法。
(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。
例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。
小学奥数-乘除法中的巧算(含答案)

乘除法中的巧算同学们好!我们学习了加、减、连加、连减的混合运算律,可利用加法的运算定律或连减及加减的混合运算的性质进行简便运算。
而乘、除法更有着一些巧妙的简便算法,下面共同学习。
(一)学习指导首先认识乘法交换律:乘法结合律:如:或利用这些定律,可以使式题简便,同时可以推广到多个数相乘,我们可以选择两个因数相乘,得出较简单的(整十、整百、整千……)积,再将这个积与其它因数相乘,有时也可以把某个因数再分解成两个因数,使其中一个因数与其它的乘数的积成为较简单的数,然后再与其它的因数相乘,这样就可以进行巧算。
例1. 用简便方法计算。
(1)(3)(2)(4)分析:(1)可以将4和25结合起来先乘。
这样:原式(2)可以将125和8相结合起来乘,这样:原式(3)可以把28变成4×7,再将125和4结合起来先乘:原式(4)我们先把32变为4×8,再把25和4,125和8结合起来乘:原式利用乘法分配律,可以使一些题简便:,这个定律可以推广,一般的有,如,当两个数相乘时,有时可以把一个因数变为两个数的和与另一个因数相乘,也可以把一个因数变为两个数的差与另一个因数相乘,这样计算简便。
例2. 用简便方法计算下面各题。
(1)(3)(2)(4)分析:(1)、(2)题可以直接用乘法分配律去计算。
(1)(2)(3)题可以先把4004变为(),然后再用分配律计算。
(4)小题可以先把798变为(),再运用分配律计算。
例3. 巧算一个数乘以10,100,1000……分析:一个数乘以10,就是在这个数后添0,如:4301043=⨯当一个数乘以100时,就是在这个数后添00,如:52000100520=⨯当一个数乘以1000时,就是在这个数后添000,如:……例4. 巧算一个数与99相乘。
分析:先填空,再观察一个数与99相乘的规律。
观察发现:“一个数与99相乘,先在这个数后添00,再减去此数”即可。
如果是一个数与999相乘,是否也具有这样的规律呢?请你先填空,再总结规律。
小学数学奥数基础教程(三年级)目30讲全

小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数。
根据“加数=和-另一个加数”知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。
解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
(完整版)整数乘除法速算巧算教师版

本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家). 例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.二、乘除法巧算与速算(1)凑整:2×5;4×25;8×125……;知识点拨教案目标整数乘除法速算与巧算(2)构造整数:99999......9101k =-k 个;(3)乘法分配律:()a b c a b a c ⨯+=⨯+⨯; (4)提取公因数:()a b a c a b c ⨯+⨯=⨯+; 注意:除法算式中公因数只能用为除数。
多位数乘法口算巧算知识分享

乘法口算巧算技法两位数乘法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375 注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×467=?解:13个位是33×4+6=183×6+7=253×7=2113×467=6071注:和满十要进一。
7.多位数乘以多位数口诀:前一个因数逐一乘后一个因数的每一位,第二位乘10倍,第三位乘100倍……以此类推例:33*132=?33*1=3333*3=9933*2=6699*10=99033*100=330066+990+3300=435633*132=4356注:和满十要进一。
数学中关于两位数乘法的“首同末和十”和“末同首和十”速算法。
巧算24点教师版

巧算24点“巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.“巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等.这里向大家介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法.2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等.3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)①(a—b)×(c+d)如(10—4)×(2+2)=24等.②(a+b)÷c×d如(10+2)÷2×4=24等.③(a-b÷c)×d如(3—2÷2)×12=24等.④(a+b-c)×d如(9+5—2)×2=24等.⑤a×b+c—d如11×3+l—10=24等.⑥(a-b)×c+d如(4—l)×6+6=24等.例:2 7 9 10: ((7-(2-9))+10)=242 7 10 10: ((2×(7+10))-10)=24 2 8 8 8: ((2×(8+8))-8)=242 8 8 9: ((2-(8-9))×8)=24 2 8 8 10: ((8-(2-8))+10)=242 8 9 9: ((2+(9/9))×8)=242 8 9 10: ((2×(8+9))-10)=242 8 10 10: ((2+(10/10))×8)=242 9 10 10: ((9+(10/2))+10)=243 3 3 3: ((3×(3×3))-3)=24 3 3 3 4: ((3×(3+4))+3)=243 3 3 5: ((3×3)+(3×5))=24 3 3 3 6: ((3×(3+3))+6)=243 3 3 7: ((7+(3/3))×3)=24 3 3 3 8: ((3+(3-3))×8)=243 3 3 9: ((9-(3/3))×3)=24 3 3 3 10: ((3×(10-3))+3)=243 4 7 10: ((3+(4+7))+10)=24练习:3 3 8 10: ((3+(3+8))+10)=243 4 4 4: ((4×(3+4))-4)=243 4 5 8: ((3×(5-4))×8)=243 3 9 10: ((3+(3×10))-9)=244 4 4 9: ((4×(9-4))+4)=244 45 10: ((4×(10-5))+4)=244 4 7 10: ((4+4)×(10-7))=244 9 9 10: ((9-(4-9))+10)=245 5 5 6: ((5+(5×5))-6)=245 5 8 8: ((5×5)-(8/8))=245 6 7 9: ((9×(7-5))+6)=245 6 8 10: ((5×(6×8))/10)=246 6 6 10: ((6×10)-(6×6))=24 67 7 10: ((7+(7-10))×6)=246 8 8 10: ((6/(10-8))×8)=247 7 9 10: ((7×(9-7))+10)=24 7 8 8 9: ((8×(9-7))+8)=247 8 10 10: ((7×(10-8))+10)=247 8 8 10: ((8×10)-(7×8))=248 8 8 10: ((8×(10-8))+8)=24。
小学四年级奥数第21讲 速算与巧算(二)(含答案分析)

第21讲速算与巧算(二)一、专题简析:乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。
二、精讲精练例1:计算325÷25练习一计算下面各题。
450÷25 525÷253500÷125 10000÷625例2:计算25×125×4×8练习二计算下面各题。
125×15×8×4 25×24 25×5×64×125 125×25×32例3:计算。
(1)(360+108)÷36 (2)(450-75)÷15练习三计算下面各题。
(720+96)÷24 (4500-90)÷4573÷36+105÷36+146÷36 (10000-1000-100-10)÷10 例4:计算158×61÷79×3练习四计算下面各题。
238×36÷119×5 624×48÷312÷8138×27÷69×50 406×312÷104÷203例5:计算下面各题。
(1)123×96÷16 (2)200÷(25÷4)练习五计算下面各题。
612×366÷183 1000÷(125÷4)(13×8×5×6)÷(4×5×6)三、课后作业计算下列各题。
49500÷900 9000÷22575×16 125×166342÷21 8811÷89241×345÷678÷345×(678÷241)第二十一周速算与巧算(二)专题简析:乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21讲乘法中的巧算
上一讲我们介绍了乘、除法的一些运算律和性质,它是乘、除法中巧算的理论根据,也给出了一些巧算的方法。
本讲在此基础上再介绍一些乘法中的巧算方法。
1. 乘11,101,1001的速算法
一个数乘以11、101、1001时,因为11、101、1001分别比10、100、1000大1,利用乘法分配律可得
a×11=a×(10+1)=10a+a,
a×101=a×(101+1)=100a+a,
a×1001=a×(1000+1)=1000a+a。
例如:38×101=38×100+38=3838。
2. 乘9,99,999的速算法
一个数乘以9、99、999时,因为9、99、999分别比10、100、1000小1,利用乘法分配律可得
a×9=a×(10-1)=10a-a,
a×99=a×(100-1)=100a-a,
a×999=a×(1000-1)=1000a-a。
例如:18×99=18×100-18=1782。
上面讲的两类速算法,实际就是乘法的凑整速算。
凑整速算是当乘数接近整十、整百、整千……的数时,将乘数表示成上述整十、整百、整千……与一个较小的自然数的和或差的形式,然后利用乘法分配律进行速算的方法。
例1:计算
(1) 356×1001;(2) 38×102;(3)526×99;(4)1234×9998
(1) 356×1001=356×(1000+1)=356×1000+356=356000+356=356356;
(2) 38×102=38×(100+2)=38×100+38×2=3800+76=3876;
(3)526×99=526×(100-1)=526×100-526=52600-526=52074;
(4)1234×9998=1234×(10000-2)=1234×10000-1234×2=12340000-2468=12337532。
3. 乘5,25,125的速算法
一个数乘以5,25,125时,因为5×2=10,25×4=100,125×8=1000,所以可以利用“乘一个数再除以同一个数,数值不变”及乘法结合律,得到
例如:76×25=7600÷4=1900。
上面的方法也是一种“凑整”,只不过不是用加减法“凑整”,而是利用乘法“凑整”。
当一个乘数乘以一个较小的自然数就能得到整十、整百、整千……的数时,将乘数先乘上这个较小的自然数,再除以这个较小的自然数,然后利用乘法结合律就可达到速算的目的。
例2:计算
(1) 186×5;(2) 96×125
(1) 186×5=186×(5×2)÷2=1860÷2=930;
(2) 96×125=96×(125×8)÷8=96000÷8=12000。
有时题目不是上面讲的“标准形式”,比如乘数不是25而是75,此时就需要灵活运用上面的方法及乘法运算律进行速算了。
例3:计算
(1) 84×75;(2)56×625;(3) 33×125;(4) 39×75
(1) 84×75=(21×4)×(25×3)=(21×3)×(4×25)=63×100=6300;
(2)56×625=(7×8)×(125×5)=(7×5)×(8×125)=35×1000=35000;
(3) 33×125=32×125+1×125=4000+125=4125;
(4) 39×75=(32+1)×125 =(40-1)×75=40×75-1×75=3000-75=2925。
4. 个位是5的两个相同的两位数相乘的速算法
个位是5的两个相同的两位数相乘,积的末尾两位是25,25前面的数是这个两位数的首位数与首位数加1之积。
例如:
仿此同学们自己算算下面的乘积
35×35=______ ;55×55=______;65×65=______;85×85=______;95×95=______
这种方法也适用于个位数是5的两个相同的多位数相乘的计算,例如:
练习21
用速算法计算下列各题:
1. (1) 68×101;(2) 74×201;(3) 256×1002;(4) 154×601。
2. (1)45×9;(2)457×99;(3)762×999;(4) 34×98。
3. (1)536×5;(2)437×5;(3)638×15;(4)739×15。
4. (1)32×25;(2)17×25;(3)130×25;
(4)68×75;(5)49×75;(6)87×75。
5. (1)56×125;(2)77×125;(3)66×375;
(4) 256×625;(5)555×375;(6)888×875。
6. (1)295×295;(2)705×705。
练习21
1.(1)6868;(2)14874;(3)256512;(4)92554。
2.(1)405;(2)45243;(3)761238;(4)3332。
3.(1)2680;(2)2185;(3)9570;(4)11085。
4.(1)800;(2)425;(3)3250;
(4)5100;(5)3675;(6)6525。
5.(1)7000;(2)9625;(3)24750;
(4)160000;(5)208125;(6)777000。
6.(1)87025;(2)497025。