2017版中考数学专题聚焦第1章选择题、填空题跟踪突破2选择填空压轴题之规律探索问题试题
2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
2017版《聚焦中考》中考数学专题聚焦(人教版,课件 考点跟踪):

版权所有-
速度 耗油量
30 0.15
40 0.14
50 0.13
60 0.12
∴当速度为50 km /h时,该汽车耗油量为0.13 L /km, 当速度为100 km /h时,该汽车耗油量为0.12+ 0.002×(100-90)=0.14 L /km.
版权所有-
k的符号 b的取值
图象 b>0
k<0 b=0 b<0
经过象 限
性质
⑥ 一、二、四
二、四
⑦ 二、三、四
y随x的增大而⑧ 减小
版权所有-
待定系数法求解析式
一次函数 解析式的 确定
1、设:设一次函数解析式的一般式: y=kx+b
2、代:把已知条件(关键是图象上两个点的 坐标)代入解析式得到关于待定系数k,b的方 程(组) 3、求:解方程(组),求出待定系数k,b的值
步骤
4、写:依据k,b值写出一次函数解析式
版权所有-
由平移规律求解析式 一次函数 解析式的 确定
一次函数图象上下、左右进行平移,平移前 后的直线互相平行,因此其k值不变.平移前 后解析式之间有以下规律:将y=kx+b的图象
向上(下)平移m个单位,新图象对应的解
析式为y=kx+b±m; 将y=kx+b的图象向左(右)平移n个单位, 新图象对应的解析式为y=k(x±n)+b.
待定系数法求解析式
定义:如果y=k x +b(k、b为常数,且k≠0),那
么y 叫做 x 的一次函数.当b=0时,y=kx(k≠0),
这时称y是x 的正比例函数.正比例函数是一次函
中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。
题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。
【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。
遵义专版2017届中考数学总复习第三编综合专题闯关篇专题一规律探索猜想类试题

第三编 综合专题闯关篇专题一 规律探索猜想类类型与策略规律探索与猜想是中考中常见题型之一,它主要用于考查学生观察、分析、归纳、猜想等方面的能力,既可以命基础题,也可命中高档题,题型不限,方法灵活,主要有数式规律、图形规律、坐标规律等,解这类问题要善于发现其过程中的特点,抓住其周期是解决此类问题的关键.规律与预测纵观遵义近5年中考,每年都会涉及一题规律探索问题,一般难度不大,预计2017年遵义中考也有可能命一道中基础(选择或填空)规律探索题.,中考重难点突破)数字规律【例1】(2017中考预测)正整数按如图所示的规律排列,请写出第20行第21列的数字.【解析】首先应发现第1列中的数与所在行数的关系,再关注第n 行的第1个数与第(n +1)列的第1个数的关系,那么第n 行第n +1列这个数应该不难确定.【学生解答】解:由观察可知,第20行第一个数应为202,故第20行第21列的数字应为202+20=420.(一) 模拟题区1.(2016遵义二中二模)计算下列各式的值:92+19;992+199;9992+1 999;9 9992+19 999.观察所得结果,总结存在的规律,应用得到的规律可得99 (92)2 015个9+199…9,2 015个9) )=__102__015__.2.(2016遵义六中三模)将自然数按以下规律排列:第一列 第二列 第三列 第四列 第五列 第一行 1 4 5 16 17 … 第二行 2 3 6 15 … 第三行 9 8 7 14 … 第四行 10 11 12 13 … 第五行 … …表中数2在第二行,第一列,与序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2 014对应的有序数对为__(45,12)__.3.(2016遵义十一中三模)已知:2-122-12=13;4-3+2-142-32+22-12=15;计算:6-5+4-3+2-162-52+42-32+22-12=__17;猜想:[(2n +2)-(2n +1)]+…+(6-5)+(4-3)+(2-1)[(2n +2)2-(2n +1)2]+…+(62-52)+(42-32)+(22-12)=__12n+3__.中考真题区4.(2015安徽中考)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜测x、y、z满足的关系式是__x·y=z__.5.(2015广东中考)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是__1021__.6.(2016安徽中考)(1)观察下列图形与等式的关系,并填空:1+3=22;1+3+5=32;1+3+5+7=__42__;1+3+5+7+…+(2n-1)=__n2__.(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填:1+3+5+…+(2n-1)+(__2n+1__)+(2n-1)+…+5+3+1=__2n2+2n+1__.7.(2015武威中考)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,……依此类推,那么第9个三角形数是__45__,2 016是第__63__个三角形数.8.(2015临沂中考)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,….按照上述规律,第2 015个单项式是( C)A.2 015x2 015B.4 029x2 014C.4 029x2 015D.4 031x2 015图形规律【例2】(2015娄底中考)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n(n为正整数)个图案由________个▲组成.【解析】观察发现:第1个图案有3×2-3+1=4个三角形; 第2个图案有3×3-3+1=7个三角形; 第3个图案有3×4-3+1=10个三角形; …第n 个图案有3(n +1)-3+1=(3n +1)个三角形. 【学生解答】(3n +1)【方法指导】图形规律探索有以下几种类型:1.求个数,方法为:(1)标序数:按图号标序;(2)找关系:找后一个图与前一个图中所求量之间的关系(一般是通过作差或作商的形式观察是否含有定量)或找出图中的所求量与序数之间的关系;(3)算结果:计算每个给出图中所求量的个数;(4)找规律:对求出的结果进行一定的变形,使其呈现一定的规律;(5)归纳:归纳结果与序数之间的关系,即可得到第n 个图中所求量的个数;(6)验证:代入序号验证所归纳的式子是否正确.2.求面积,方法为:(1)根据题意可得出第一次变换前图形的面积为S ;(2)通过计算得到第一次变换后图形的面积,第二次变换后图形的面积,第三次变换后图形的面积,第四次变换后图形的面积,……归纳出后一个图形的面积与前一个图形的面积之间存在的倍数关系n ;(3)第M 次变换后,求得图形的面积为n MS.(二)模拟题区1.(2016遵义二中三模)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,……依此规律,第n 个图案有__(3n +1)__个三角形.(用含n 的代数式表示)2.(2016遵义航中三模)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……按此规律,第5个图中共有点的个数是( B )A .31B .46C .51D .663.(2016毕节三模)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,……按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )A .(12)n ·75°B .(12)n -1·65°C .(12)n -1·75°D .(12)n ·85°4.(2016汇川升学一模)观察图中菱形四个顶点所标的数字规律,可知数2 016应标在( D )A .第503个菱形的上方B .第503个菱形的右边C .第504个菱形的上方D .第504个菱形的右边中考真题区5.(2016益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,……,那么第9个图案的棋子数是__13__枚.6.(2016衡阳中考)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n 条直线最多可将平面分成56个部分,则n 的值为__10__.7.(2016河北中考)如图,已知∠AOB=7°,一条光线从点A 发出后射向OB 边,若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A=__76__°.……若光线从点A 发出后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=__6__°.点的坐标规律【例3】(2015威海中考)如图,在平面直角坐标系xOy 中,Rt △OA 1C 1,Rt △OA 2C 2,Rt △OA 3C 3,Rt △OA 4C 4……的斜边都在坐标轴上,∠A 1OC 1=∠A 2OC 2=∠A 3OC 3=∠A 4OC 4=30°,若点A 1的坐标为(3,0),OA 1=OC 2,OA 2=OC 3,OA 3=OC 4…,则依此规律,点A 2 015的横坐标为( )A .0B .-3×(233)2 014C .(23)2 015D .3×(233)2 014【学生解答】B【方法指导】求点坐标,根据图形点坐标的变换特点可知这类题有两种考查形式:一类是点坐标变换是在同一象限递推变化;另一类是点坐标变换在坐标轴上或象限内循环递推变化;解决这类题的方法如下:(1)若第一个点的坐标未给出,可先由所给信息求出坐标(a ,b);(2)根据题目中给出的线段的数量关系及角度,通过勾股定理或直角三角形的边角关系得到第二个,第三个,第四个……的坐标,观察它们之间存在的比例关系,比值记为n ;(3)当点坐标在同一象限变换时,通过第M 次变换后,图形的点坐标为(n M a ,n Mb);(4)当点坐标在整个平面直角坐标系里变换,先观察点的变换规律为顺时针循环还是逆时针循环,通过第M 次变换后,用M÷4=w +q(0≤q<4),当q =0时,点坐标所在象限与起点相同,依此类推,当确定出点坐标落在x 轴正半轴时,点坐标为(n Mc ,0),点坐标落在y 轴正半轴时,点坐标为(0,n M c),点坐标落在x 轴负半轴时,点坐标为(-n Mc ,0),点坐标落在y 轴负半轴时,点坐标为(0,-n Mc).(三)模拟题区1.(2016遵义十一中一模)如图,以O(0,0),A(2,0)为顶点作正△OAP 1,以点P 1和线段P 1A 的中点B 为顶点作正△P 1BP 2,再以点P 2和线段P 2B 的中点C 为顶点作正△P 2CP 3,……如此继续下去.则第六个正三角形中,不在第五个正三角形边上的顶点P 6的坐标是3232.2.(2016遵义红花岗三模)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为__(2n,1)__.中考真题区3.(2016岳阳中考)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,……,均在格点上,其顺序按图中“→”方向排列.如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),……,根据这个规律,点P2 016的坐标为__(504,-504)__.4.(2016吉林中考)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点.将此三角形纸片按下列方式折叠.若EF的长度为a,则△DEF的周长为__3a__.(用含a的式子表示)。
2017中考数学《压轴题》专题训练含答案解析

压轴题1、已知,在平行四边形OABC 中,OA=5,AB=4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒. (1)求直线AC 的解析式;(2)试求出当t 为何值时,△OAC 与△PAQ 相似; (3)若⊙P 的半径为58,⊙Q 的半径为23;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、BC 的位置关系,并求出Q 点坐标。
解:(1)42033y x =-+ (2)①当0≤t≤2.5时,P 在OA 上,若∠OAQ=90°时, 故此时△OAC 与△PAQ 不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ ∽△OCA ,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ ∽△∠OAC ,∵t>2.5,∴符合条件.综上可知,当时,△OAC 与△APQ 相似.(3)⊙Q 与直线AC 、BC 均相切,Q 点坐标为(109,531)。
2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=o, 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >,Q 顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+(第2题)②如图②,当EP FP =时,22EP FP =,22(2)1(1)9n n ∴-+=-+. 解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在. 综上所述,符合条件的抛物线解析式是22(1)2y x =-+. (3)存在点M N ,,使得四边形MNFE 的周长最小. 如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=22345+=.又5EF =Q ,∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是553、如图,在边长为2的等边△ABC 中,A D ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G,设BP=x . (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。
2017年中考数学填空压轴题

2017年中考数学填空压轴题填空题1(2017浙江衢州第15题)如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线343+-=x y 上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是__________【答案】22. 【解析】试题解析:连接AP ,PQ ,当AP 最小时,PQ 最小,∴当AP ⊥直线y=﹣34x+3时,PQ 最小, ∵A 的坐标为(﹣1,0),y=﹣34x+3可化为3x+4y ﹣12=0, ∴22|3(1)4012|34+=3, ∴223-1=22.考点:1.切线的性质;2.一次函数的性质.2.(2017重庆A卷第18题)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.学科网【答案】【解析】试题解析:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ ⊥FB ,∴FQ=BQ=12BF, ∵AB=4,F 是AB 的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=2,Rt △DAF 中,DF=2242=25+,∵DE=EF,DE ⊥EF, ∴△DEF 是等腰直角三角形,∴DE=EF=25=102,∴PD=22DE PE -=3,如图2,∵DC ∥AB ,∴△DGC ∽△FGA ,∴422CG DC DG AG AF FG ====, ∴CG=2AG ,DG=2FG,∴FG=1252533⨯=, ∵22442+=∴CG=233⨯=,∴-=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴3 =,∴EH=EF﹣-=∴∠NDE=∠AEF,∴tan∠NDE=tan∠AEF=EN GH DE EH=,123EN==,∴EN=2,∴NH=EH﹣EN=326-=,Rt△GNH中,6==,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=2632+++=考点:1。
2017中考数学题及答案

2017中考数学题及答案2017年中考是许多中学生的重要转折点,其中数学科目是考试中最重要的一门科目。
今天我们将为您整理2017年中考数学题及答案,希望对您的复习有所帮助。
第一部分:选择题1.如果一个数的7倍加4得到33,那这个数是多少?A. 3B. 4C. 5D. 6答案:D. 6。
解析:设这个数为 x,则有 7x + 4 = 33,解方程可得 x = 6。
2.一个长方形的长是宽的1.5倍,若宽为6米,则长为多少米?A. 6B. 8C. 9D. 12答案:C. 9。
解析:设长为 x,则宽为 6 米,由题意可得x = 1.5 × 6 = 9。
3.一公斤苹果售价8元,现有100元,可以买多少公斤苹果?A. 10B. 11C. 12D. 13答案:C. 12。
解析:设可买的苹果数量为 x,则有 8x = 100,解方程可得 x = 12。
第二部分:填空题4.某班级有 50 名学生,其中男生占总数的 40%,那么女生的人数为 ______ 人。
答案:30。
解析:女生人数占 60%,即0.6×50=30 人。
5.一块土地面积为 60 平方米,如果将其等分为正方形,每个正方形的面积为 ______ 平方米。
答案:4。
解析:设每个正方形的边长为 x,则面积为 x^2。
根据题意可得x^2 = 60 ÷ 15 = 4,解方程可得 x = 2。
6.已知两个数的和为 72,差为 8,那么这两个数分别是 ______ 和______。
答案:40 和 32。
解析:设两个数为 x 和 y,则有 x + y = 72,x - y = 8。
解这个方程组可得 x = 40,y = 32。
第三部分:解答题7.现有 2 个水桶,第1个水桶的容量是第2个水桶容量的3倍,若第2个水桶的水满了,倒入第1个水桶后,第1个水桶正好装满。
求两个水桶的容量分别是多少?答案:第2个水桶容量为 x,第1个水桶容量为 3x。
遵义专版2017届中考数学总复习第三编综合专题闯关篇专题一规律探索猜想类课件

2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
Jie
Shu
Yu
绳锯木断,水滴石穿。
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
பைடு நூலகம்
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
2017年中考数学命题研究(遵义专版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题跟踪突破2 选择填空压轴题之规律探索问题
一、选择题
1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,…解答下列问题:3+32+33+34+…+32 017的末位数字是( C )
A.0 B.1 C.3 D.7
点拨:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2 187…∴末尾数每4个一循环,∵2 017÷4=504…1,∴3+32+33+34+…+32 017的末位数字为3 2.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中点的个数是( B )
A.31 B.46 C.51 D.66
点拨:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选B
3.根据如图中箭头的指向规律,从2 013到2 014再到2 015,箭头的方向是以下图示中的( D )
A.B.C.D.
点拨:由图可知,每4个数为一个循环组依次循环,(2 013+1)÷4=503…2,∴2 013
是第504个循环组的第2个数,∴从2 013到2 014再到2 015,箭头的方向是.故选D
4.(2015·邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是( D )
A.2015πB.3019.5πC.3018πD.3024π
,第4题图),第5题图)
5.(2015·宜宾)如图,以点O 为圆心的20个同心圆,它们的半径从小到大依次是1,2,3,4,…,20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为( B )
A .231π
B .210π
C .190π
D .171π
6.(2016·达州)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是
( B )
A .25
B .33
C .34
D .50
二、填空题
7.观察下列一组数:14,39,516,725,936
,…,它们是按一定规律排列的,那么这一组数的第n 个数是__2n -1(n +1)
2__. 8.(2016·泉州)找出下列各图形中数的规律,依此,a 的值为__226__.
9.(2016·资阳)设一列数中相邻的三个数依次为m ,n ,p ,且满足p =m 2
-n ,若这列数为-1,3,-2,a ,-7,b …,则b =__128__.
10.(2015·甘孜州)如图,正方形A 1A 2A 3A 4,A 5A 6A 7A 8,A 9A 10A 11A 12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A 1,A 2,A 3,A 4;A 5,A 6,A 7,A 8;A 9,A 10,A 11,A 12;…)的中心均在坐标原点O ,各边均与x 轴或y 轴平行,若它们的边长依次是2,4,6…,则顶点A 20的坐标为__(5,-5)__. ,第10题图)
,第12题图)
11.下面是一个按照某种规律排列的数阵:
根据数阵的规律,第n(n 是整数,且n ≥3)行从左到右数第n -2个数是__n 2-2__.(用含n 的代数式表示)
点拨:前(n -1)行的数据的个数为2+4+6+…+2(n -1)=n(n -1),所以,第n(n 是
整数,且n ≥3)行从左到右数第n -2个数的被开方数是n(n -1)+n -2=n 2-2,所以,第
n(n 是整数,且n ≥3)行从左到右数第n -2个数是n 2-2.故答案为n 2-2
12.(2016·德州)如图,在平面直角坐标系中,函数y =2x 和y =-x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2 017
的坐标为__(21_008,21_009)__.
13.(导学号:)(2015·北海)如图,直线y =-2x +2与两坐标轴分别交于A ,B 两点,将线段OA 分成n 等份,分点分别为P 1,P 2,P 3,…,P n -1,过每个分点作x 轴的垂线分别交直线AB 于点T 1,T 2,T 3,…,T n -1,用S 1,S 2,S 3,…,S n -1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △T n -1P n -2P n -1的面积,则当n =2 015时,S 1+S 2+S 3+…+S n -1=__1 0072 015
__.
14.(导学号:)(2016·龙岩)如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S 1,S 2,S 3,…,S 10,则S 1+S 2+S 3+…+S 10=__π__.
点拨:(1)图①,过点O 做OE ⊥AC ,OF ⊥BC ,垂足为E ,F ,则∠OEC =∠OFC =90°,∵∠C =90°,∴四边形OECF 为矩形,∵OE =OF ,∴矩形OECF 为正方形,设圆O 的半径为r ,
则OE =OF =r ,AD =AE =3-r ,BD =4-r ,∴3-r +4-r =5,r
=3+4-52=1,∴S 1=π×1
2=π
(2)图②,由S △ABC =12×3×4=12×5×CD ,∴CD =125,由勾股定理得:AD =32-(125
)2=95,BD =5-95=165,由(1)得:⊙O 的半径=95+125-32=35,⊙E 的半径=125+165-42=45
,∴S 1+S 2=π×(35)2+π×(45
)2=π
(3)图③,由S △CDB =12×125×165=12×4×MD ,∴MD =4825
,由勾股定理得:CM =(125)2-(4825)2=3625,MB =4-3625=6425,由(1)得:⊙O 的半径=35
;⊙E 的半径=4825+3625-1252=1225;⊙F 的半径=4825+6425-1652=1625,∴S 1+S 2+S 3=π×(35)2 +π×(1225)2+π×(1625)2=π,∴图4中的S 1+S 2+S 3+S 4=π,则S 1+S 2+S 3+…+S 10=π.故答案为π。