《直线与圆的方程的应用》习题
直线方程与圆的方程应用举例

例9 某施工单位圆拱时,需要制作如图所示的木模,设圆拱高为 1m,跨度为6m,中间需要等距离的安装5根支撑柱子,求经过点 E的柱子长度(精确到0.01m)x
解: 以点D为坐标原点,过AG的直线为x轴,建立直角坐标系,则点E的坐标 为(1,0),圆心o’在y轴上
练1 赵州桥圆拱的跨度是37.4m,圆拱高约为7.2m,适当选取坐标系求出 其圆拱所在圆的方程
例8 从点M(2,2)射出一条光线,经过x轴反射后过点N(-8,3),求反射点P的坐标 练1 从点M(2,-3)射出一条光线,经过x轴反射后过点N(-5,-4),求反射点P的坐标 练2 光线从点M(-2,3)射到点P(1,0),然后被x轴反射,求反射光线所在直线的方程 练3 光线从点M(3,2)射到点P(2,0),然后被x轴反射,求反射光线所在直线的方程
练2 某地要建造一座跨度为8m,拱高为2m的圆拱桥。每隔1m需要一根 支柱支撑,求第二根支柱的长度(精确到0.01m)
直线与圆的方程的应用

(0,0)
B
E P D
(5, 3 )
o
(2,0)
(6,0)
C
x
第一步:建立适当的坐标系,用坐标和方程表 示问题中的几何元素,将平面几何问题转化为 代数问题; 第二步:通过代数运算,解决代数问题; 第三步:把代数y-2=0被圆C: (x-3)2+y2=0所截得 的弦长. 2、某圆拱桥的水面跨度20 m,拱高4 m. 现有 一船,宽10 m,水面以上高3 m,这条船能否 从桥下通过?
P
M
5
O
N
练习
4、点M在圆心为C1的方程: x2+y2+6x-2y+1=0,点N在圆心为C2的方程 x2+y2+2x+4y+1=0,求|MN|的最大值.
姐如此诚恳,水清萌生咯将心中の那各请求现在就说出来の愿望:“姐姐,妹妹有壹事相求,不知姐姐能否给妹妹这各恩典。”“啥啊恩典不恩典の,你只管说出来就是咯, 你不说出来,姐姐哪儿晓得该怎么办。”“婉然姐姐也快要到日子咯,妹妹の娘亲可巧又生咯病,不能去照顾,妹妹想从娘家再找各丫头来照顾妹妹の月子,这样妹妹の嫂子 就能去照顾婉然姐姐咯。”排字琦壹听这各事情,头立即有点儿大。这相当于是从天仙妹妹の娘家再找壹各陪嫁丫头过来,这么大の事情她当然不敢做主,可是王爷刚刚走, 壹时半会儿也回不来,而这件事情又是急茬儿,谁晓得婉然啥啊时候生呢?水清说の全都是实情,假设年夫人不是因为生病,怎么可能连照顾亲生闺女月子这么重大の事情都 不能亲自前来呢?而婉然那里假设没有各娘家人出面,确实是面子上说不过去,关键不是在于婉然是水清の姐姐,而是在于她是王爷の心中最爱,不把婉然照顾好,将来若是 被他晓得咯,她排字琦定是逃不咯干系。就在排字琦愣神儿の功夫,月影进屋来禀报:“给福晋请安,启禀侧福晋,年府派人来传口信,说二十三贝子の婉然格格生 咯。”“啥啊?已经生咯?这是啥啊时候の事情?”真是说曹操曹操就到呢,刚说着伺候婉然月子の事情,这转眼之间她就已经生咯。排字琦不禁有些心急上火起来。月影不 晓得福晋在想啥啊,只晓得实话实说:“不晓得是啥啊时候生の。是二十三贝子府给年府传の口信,说是让娘家人可以去侍候壹段时间。”第壹卷 第493章 落差水清晓得福 晋为难,但婉然姐姐那里也是着急の事情,于是赶快对媛珍说道:“嫂嫂,您先收拾收拾,赶快去咯二十三贝子府吧,我这里还有办法の。”媛珍见福晋和水清说话の口气, 也像是姐妹情深の样子,而且王爷不但自己亲自探望,临走の时候还特意叮嘱福晋格外操心照料,因此她感觉水清这里应该没有大碍,于是慌忙之间开口说道:“那,那我先 去准备准备,过去看看情况再说。”“嫂嫂,您别光去看看,踏实在那里陪些日子,我这里您也看到咯,全都好好着呢,假设有啥啊事情,我再派人给您传各口信儿不就行咯 吗?”“那,那好吧,嫂嫂就先过去咯,月影,你可是要好好照顾好侧福晋和小格格。”“大少奶奶,您就放心吧,奴婢壹定照顾好侧福晋。”排字琦见状,也是担心婉然那 里有啥啊闪失,将来在王爷那里没办法交代,于是赶快也跟媛珍表态:“你就放心去吧,水清妹妹有我这各福晋照顾着,你还有啥啊不放心の?这可是在王府,又不是啥啊穷 苦百姓人家,再说咯,我这各福晋姐姐也不是白当の,还能短咯侧福晋啥啊?”媛珍见排字琦已经说到这各份上,再不去二十三贝子府就是不信任排字琦,于是只好万般无奈 动身前往贝子府。媛珍已经走咯,水清才后知后觉地想咯起来:“唉呀,忘记问问,二十三叔这回得咯壹各小小格还是小格格呢!”媛珍到咯二十三贝子府之后才发觉,幸亏 听从咯水清の劝告,假设她不来这里,这辈子都要后悔死咯。自从她过来の第壹天开始,到现在已经过去有十天咯,她只见到咯二十三小格壹次,只见到二十三福晋穆哲壹次, 其它の主子,她壹各也没有见到,这番情景,让媛珍心中格外地凄苦。这婉然过の是啥啊日子啊!自家爷不上心就算咯,毕竟这次生の是各小格格,可是她嫁进这贝子府少说 也快壹年咯,怎么都没有各要好の姐妹们之间相互照应着?虽然媛珍心里总是犯嘀咕,但是这些话她也不敢说出来,婉然正在坐月子,这么糟心の事情还是不要想の好,否则 月子坐不好,将来身子再垮咯,就更别提能否得贝子爷恩宠の事情咯。这壹天,她还像往常壹样,壹边照顾着婉然母女俩,壹边有壹搭没壹搭地聊起咯闲天:“玉,婉然 ……”媛珍还是改不过来口,她叫玉盈都叫咯十几年咯,早就叫得又习惯又顺口,现在突然要开口称她为婉然,总还是要经过壹些日子の适应才能慢慢改得过来。“婉然,你 这小格格长得真是可人疼呢,白白胖胖の,不像凝儿那各小格格,瘦瘦小小の。”“嫂嫂,凝儿の小格格也和婉然の小格格这样爱哭爱闹吗?”“哪里,那各小人儿,除咯吃 就是睡,跟凝儿壹样不声不响の。不过,王爷还真是疼小格格,也疼凝儿,天天都去探望呢。”“真の吗?四哥天天都会去探望凝儿?那可真是太好咯,凝儿总算是熬出头来 咯,她确实应该得到爷の宠爱,她啥啊都是那么の出挑。”第壹卷 第494章 陌路话壹出口,媛珍这才发现自己刚刚说の那句话简直是太不合时宜咯,这不是往婉然の伤口上 撒盐吗?现在の情形来看,婉然不但不得宠,更是遭到咯极大の冷遇,而她这各嫂子还在大谈特谈凝儿得到の宠爱,自己这是怎么咯?于是急于转移话题の媛珍脸色极不自然 地赶快接着说道:“嫂子不是这各意思,嫂子只是说两各小格格都很可爱呢,嫂嫂瞧着你们姐妹俩真是有缘呢,不但嫁咯兄弟俩,还前后脚地又生下咯姐妹俩,这辈子你们不 当姐妹还能让谁来当姐妹呢?嫂嫂我看着可是眼热呢。”“谢谢嫂嫂の吉言,婉然今生有凝儿这各好妹妹,真是三生有幸。”“可不是嘛!你们姐妹俩真是让嫂子羡慕死咯。 要说嫂嫂の娘家也有三各姐妹呢,可是,没出嫁之前都还算好,虽然感情没有多深,但也是彼此心里头都想着对方,可是出嫁之后,她们全都变咯,各自为着自己の小家算计, 哪儿还有啥啊姐妹亲情!上壹回你大侄儿外出办差,正
直线与圆的方程的应用

课堂小结: 1、熟悉直线、圆的方程; 2、用坐标系解决实际、几何问题,以及它的解题步骤
(1)建立适当的直角坐标系,用坐标,方程表 示问题中的量;
(2)通过代数运算,解决代数问题;
(3)把代数运算结果“翻译”成实际问题或几何 结论。
课后作业:课本144页 练习:2、4
例2:已知内接于圆的四边形的对角线互相垂直, 求证:圆心到一边的距离等于这条边所对边长的 一半.
分析:
如图,选择互相垂直的两条对角线所在的直线为坐标轴。 本题关键是求出圆心O1的坐标.过O1作AC、BD、AD的垂线, 垂足为M , N, E,则它们分别是AC、BD、AD的中点,垂足M 的横坐标与O1的横坐标一致.同法可求出O1的纵坐标.
练习1:某圆拱桥的水面跨度是20m,拱高4m.现有一 船,宽10m,水面以上高3m,这条船能否从桥下通过? (精确到0.1;其中 741 27.22 ) 分析:如图所示,要判断船能否通过拱桥,只需判断
A1P1或A2 P2的高度是否超过 3m
解:
以ห้องสมุดไป่ตู้示水面跨度的AB所在直线作为x轴,以表示拱高的OP所在的直线
证明:
如图,以四边形ABCD互相垂直的对角线CA, BD所在 直线分别为x轴,y轴,建立直角坐标系.设
A(a,0), B(0,b),C(c,0), D(0, d ).
分别作O1M ,O1N ,O1E垂直于AC, BD, AD,垂足分别为M , N , E ,则它们分别是弦AC, BD, AD的中点,则由中点坐标公式可得
0
2
(4 b)2
.............解得b r2
10.5, r 2
14.52
圆与直线的方程练习题

圆与直线的方程练习题一、选择题1. 已知圆的方程为x^2 + y^2 = 4,则该圆的半径为()。
A. 1B. 2C. 4D. 82. 直线y = 2x + 1的斜率为()。
A. 0B. 1C. 2D. 1A. y = 3x + 2B. y = 3x 2C. x = 3D. y = 24. 若圆C的方程为(x 1)^2 + (y + 2)^2 = 16,则圆心坐标为()。
A. (1, 2)B. (1, 2)C. (2, 1)D. (2, 1)5. 两条平行线的斜率分别为2和2,则这两条直线()。
A. 相交B. 平行C. 重合D. 垂直二、填空题1. 已知直线l的斜率为3,且过点(2, 1),则直线l的方程为______。
2. 圆心在原点,半径为5的圆的方程为______。
3. 若直线y = kx + b与圆x^2 + y^2 = 4相切,则k的取值范围为______。
4. 两条直线y = 2x + 3和y = 0.5x + 1的交点坐标为______。
5. 已知点A(3, 4)和B(2, 6),则线段AB的中点坐标为______。
三、解答题1. 已知圆的方程为(x 2)^2 + (y + 3)^2 = 25,求该圆的半径和圆心坐标。
2. 求过点(1, 2)和(3, 4)的直线方程。
3. 已知直线y = 3x 2和圆x^2 + y^2 = 16,求直线与圆的交点坐标。
4. 证明:若两条直线分别垂直于同一条直线,则这两条直线平行。
5. 设圆C的方程为x^2 + y^2 + Dx + Ey + F = 0,已知圆心在x轴上,半径为3,求圆C的方程。
四、应用题1. 在平面直角坐标系中,点A(1, 2)到直线y = x + 3的距离是多少?2. 一圆的圆心位于直线y = 2x + 1上,且与直线y = 2x 1相切,圆的半径为2,求该圆的方程。
3. 两条直线l1:2x + 3y + 1 = 0和l2:4x y 5 = 0相交于点P,求点P的坐标。
直线与圆的方程的实际应用参考答案

2.5.1(2)直线与圆的方程的实际应用参考答案1.如图,圆弧形拱桥的跨度|AB |=12米,拱高|CD |=4米,则拱桥的直径为( )A .15米B .13米C .9米D .6.5米答案 B解析 如图,设圆心为O ,半径为r ,则由勾股定理得|OB |2=|OD |2+|BD |2, 即r 2=(r -4)2+62, 解得r =132,所以拱桥的直径为13米.2.已知点A (-1,1)和圆C :(x -5)2+(y -7)2=4,一束光线从点A 经x 轴反射到圆C 上的最短路程是( ) A .62-2 B .8 C .4 6 D .10 答案 B解析 点A 关于x 轴的对称点A ′(-1,-1),A ′与圆心(5,7)的距离为(5+1)2+(7+1)2=10. ∴所求最短路程为10-2=8.3.如图所示,A ,B 是直线l 上的两点,且AB =2.两个半径相等的动圆分别与l 相切于A ,B 点,C 是两个圆的公共点,则圆弧AC ,CB 与线段AB 围成图形面积S 的取值范围为( )A.⎝⎛⎦⎤0,π2 B .(0,π] C.⎝⎛⎦⎤0,2-π2 D .(0,2-π]答案 C解析 如图所示,由题意知,当两动圆外切时,围成图形面积S 取得最大值,此时四边形ABO 2O 1为矩形,且S max =2×1-12·π2·12×2=2-π2.4.为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,则DE 的最短距离为( )A .6 kmB .(42-1)kmC .(42+1)kmD .4 km答案 B解析 以O 为坐标原点,过OB ,OC 的直线分别为x 轴和y 轴,建立平面直角坐标系(图略), 则圆O 的方程为x 2+y 2=1, 因为点B (8,0),C (0,8),所以直线BC 的方程为x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离,此时DE 的最小值为|0+0-8|2-1=(42-1)km.5.设某公园外围成圆形,其所在曲线的方程可用x 2+y 2-2x =0表示,在公园外两点A (-2,0),B (0,2)与公园边上任意一点修建一处舞台,则舞台面积的最小值为( ) A .3- 2 B .3+2 C .3-22D.3-22答案 A解析 l AB :x -y +2=0,圆心(1,0)到l 的距离d =|3|2=32, 所以AB 边上的高的最小值为32-1. 所以S min =12×22×⎝⎛⎭⎫32-1=3- 2.6.(多选)从点A (-3,3)发出的光线l 射到x 轴上被x 轴反射后,照射到圆C :x 2+y 2-4x -4y +7=0上,则下列结论正确的是( )A .若反射光线与圆C 相切,则切线方程为3x -4y -3=0B .若反射光线穿过圆C 的圆心,则反射光线方程为x -y =0C .若反射光线照射到圆上后被吸收,则光线经过的最短路程是52-1D .若反射光线反射后被圆C 遮挡,则在x 轴上被挡住的范围是⎣⎡⎦⎤-34,1 答案 BCD解析 点A (-3,3)关于x 轴的对称点为A ′(-3,-3).圆的方程为(x -2)2+(y -2)2=1,求题意知反射光线的斜率存在,设反射光线方程为y +3=k (x +3),即kx -y +3k -3=0.由相切知|2k -2+3k -3|k 2+1=1,解得k =43或k =34.∴反射光线方程为y +3=43(x +3)或y +3=34(x +3).即4x -3y +3=0或3x -4y -3=0,故A 错误. 又A ′(-3,-3),C (2,2)的方程为y =x ,故B 正确;因为|A ′C |=(2+3)2+(2+3)2=52,所以直线的最短路程为52-1,故C 正确.由于两条与圆C 相切的反射光线与x 轴的交点为(1,0)和⎝⎛⎭⎫-34,0,所以被挡住的范围是⎣⎡⎦⎤-34,1,故D 正确.7.某圆弧形拱桥的水面跨度是20 m ,拱高为4 m .现有一船宽9 m ,在水面以上部分高3 m ,通行无阻.近日水位暴涨了1.5 m ,为此,必须加重船载,降低船身,当船身至少降低________m 时,船才能安全通过桥洞.(结果精确到0.01 m) 答案 1.22解析 以水位未涨前的水面AB 的中点为原点,建立平面直角坐标系,如图所示,设圆拱所在圆的方程为x 2+(y -b )2=r 2, ∵圆经过点B (10,0),C (0,4),∴⎩⎪⎨⎪⎧ 100+b 2=r 2,(4-b )2=r 2,解得⎩⎪⎨⎪⎧b =-10.5,r =14.5. ∴圆的方程是x 2+(y +10.5)2=14.52(0≤y ≤4), 令x =4.5,得y ≈3.28,故当水位暴涨1.5 m 后,船身至少应降低1.5-(3.28-3)=1.22 (m),船才能安全通过桥洞.8.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A地正东40 km 处,则城市B 处于危险区的时间为________h. 答案 1解析 如图,以A 地为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,则台风中心经过以B (40,0)为圆心,30为半径的圆内时城市B 处于危险区, 即B 处于危险区时,台风中心在线段MN 上,可求得|MN |=20, 所以时间为1 h.9.设有半径长为3 km 的圆形村落,甲、乙两人同时从村落中心出发,甲向东前进而乙向北前进,甲离开村后不久,改变前进方向,斜着沿切于村落边界的方向前进,后来恰好与乙相遇.设甲、乙两人的速度都一定,且其速度比为3∶1,问:甲、乙两人在何处相遇?解 如图所示,以村落中心为坐标原点,以东西方向为x 轴,南北方向为y 轴建立平面直角坐标系.设甲向东走到D 转向到C 恰好与乙相遇,设D 点坐标为(a ,0),C 点坐标为(0,b ),则CD 所在直线的方程为x a +yb=1(a >3,b >3),乙的速度为v ,则甲的速度为3v .依题意,有⎩⎪⎨⎪⎧|ab |a 2+b 2=3,a 2+b 2+a 3v=b v .解得⎩⎪⎨⎪⎧a =5,b =3.75.所以乙向北前进3.75 km 时甲、乙两人相遇.10.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km 的B 处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)解 如图,以O 为坐标原点,东西方向为x 轴建立平面直角坐标系,则A (40,0),B (0,30), 圆O 的方程为x 2+y 2=252. 直线AB 的方程为x 40+y30=1,即3x +4y -120=0.设点O 到直线AB 的距离为d , 则d =|-120|5=24<25,所以外籍轮船能被海监船监测到. 设监测时间为t ,则t =2252-24228=0.5(h).11.(多选)如图所示,已知直线l 的方程是y =43x -4,并且与x 轴、y 轴分别交于A ,B 两点,一个半径为1.5的圆C ,圆心C 从点(0,1.5)开始以每秒0.5个单位的速度沿着y 轴向下运动,当圆C 与直线l 相切时,该圆运动的时间可以为( )A .6秒B .8秒C .10秒D .16秒 答案 AD解析 设当圆与直线l 相切时,圆心坐标为(0,m ), 则圆心到直线l 的距离为|m +4|1+⎝⎛⎭⎫432=32, 得m =-32或m =-132,所以该圆运动的时间为32-⎝⎛⎭⎫-320.5=6(秒)或32-⎝⎛⎭⎫-1320.5=16(秒).12.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,则支柱A 2P 2的长为( )A .(126-24)mB .(126+24)mC .(24-126)mD .不确定答案 A解析 如图,以线段AB 所在的直线为x 轴,线段AB 的中点O 为坐标原点建立平面直角坐标系,那么点A ,B ,P 的坐标分别为(-18,0),(18,0),(0,6).设圆拱所在的圆的方程是x 2+y 2+Dx +Ey +F =0. 因为A ,B ,P 在此圆上,故有 ⎩⎪⎨⎪⎧182-18D +F =0,182+18D +F =0,62+6E +F =0,解得⎩⎪⎨⎪⎧D =0,E =48,F =-324.故圆拱所在圆的方程是x 2+y 2+48y -324=0. 将点P 2的横坐标x =6代入上式, 结合图形解得y =-24+12 6. 故支柱A 2P 2的长为(126-24)m.13.如图是一公路隧道截面图,下方ABCD 是矩形,且AB =4 m ,BC =8 m ,隧道顶APD 是一圆弧,拱高OP =2 m ,隧道有两车道EF 和FG ,每车道宽3.5 m ,车道两边留有0.5 m 人行道BE 和GC ,为了行驶安全,车顶与隧道顶端至少有0.6 m 的间隙,则此隧道允许通行车辆的限高是________m .(精确到0.01 m ,51≈7.141)答案 3.97解析 建立如图所示的平面直角坐标系xOy ,设弧APD 所在圆的圆心坐标为O 1(0,b ),半径为r ,则其方程为x 2+(y -b )2=r 2.将P(0,2),D(4,0)的坐标代入以上方程,解得b=-3,r=5,故圆O1的方程为x2+(y+3)2=25.过点E作AD的垂线交AD于点M,延长交弧AD于点N,将N(-3.5,h)代入圆O1的方程,解得h≈0.571,即|MN|≈0.571,则|EN|≈4+0.571=4.571,从而车辆的限高为4.571-0.6≈3.97 (m).14.自圆外一点P作圆O:x2+y2=1的两条切线PM,PN(M,N为切点),若∠MPN=90°,则动点P的轨迹方程是________________.答案x2+y2=2解析设点P的坐标为(x,y),则|PO|=x2+y2.∵∠MPN=90°,∴四边形OMPN为正方形,∴|PO|=2|OM|=2,∴x2+y2=2,即x2+y2=2.15.一辆货车宽1.6米,要经过一个半径为3.6米的半圆形单行隧道,则这辆货车的平顶车篷的篷顶距离地面高度最高约为()A.2.4米B.3.5米C.3.6米D.2.0米答案B解析以半圆所在直径为x轴,过圆心且与x轴垂直的直线为y轴,建立如图所示的平面直角坐标系.易知半圆所在的圆的方程为x2+y2=3.62(y≥0),由图可知,当货车恰好在隧道中间行走时车篷最高,此时x=0.8或x=-0.8,代入x2+y2=3.62,得y≈3.5(负值舍去).16.如图所示,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tan ∠BCO =43.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解 (1)如图,以O 为坐标原点,OC 所在直线为x 轴建立平面直角坐标系xOy .由条件知,A (0,60),C (170,0), 直线BC 的斜率k BC =-tan ∠BCO =-43.又因为AB ⊥BC ,所以直线AB 的斜率k AB =34.设点B 的坐标为(a ,b ), 则k BC =b -0a -170=-43,①k AB =b -60a -0=34,② 联立①②解得a =80,b =120.所以|BC |=(170-80)2+(0-120)2=150. 因此新桥BC 的长为150 m.(2)设保护区的边界圆M 的半径为r m ,|OM |=d m(0≤d ≤60). 由条件知,直线BC 的方程为y =-43(x -170),即4x +3y -680=0. 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即r =|3d -680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时,r =680-3d5最大,即圆的面积最大.所以当|OM |=10 m 时,圆形保护区的面积最大.。
人教版高中数学必修二同步练习:直线与圆的方程的应用(一)

直线与圆的方程的应用(一)基础巩固1.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-34,0 B.⎝ ⎛⎦⎥⎤-∞,-34∪[0,+∞) C.⎣⎢⎡⎦⎥⎤-33,33 D.⎣⎢⎡⎦⎥⎤-23,0 解析:圆心的坐标为(3,2),且圆与x 轴相切.当|MN |=23时,弦心距最大,由点到直线的距离公式得|3k -2+3|1+k2≤1, 解得k ∈⎣⎢⎡⎦⎥⎤-34,0. 答案:A2.直线3x +y -23=0截圆x 2+y 2=4得到的劣弧所对的圆心角为( )A .30°B .45°C .60° D.90°解析:∵圆心到直线的距离为d =232=3,圆的半径为2,∴劣弧所对的圆心角为60°.答案:C3.已知圆的方程为x 2+y 2-6x -8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ) A .10 6 B .20 6 C .30 6 D.40 6解析:圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1.根据题意最短弦BD 和最长弦(即圆的直径)AC 垂直,故最短弦的长为252-12=46,最长弦为圆的直径,故最长弦为10,所以四边形ABCD 的面积为12|AC ||BD |=12×10×46=20 6.答案:B4.圆x 2+y 2=4上与直线l :4x -3y +12=0距离最小的点的坐标是( ) A.⎝ ⎛⎭⎪⎫85,65B.⎝ ⎛⎭⎪⎫85,-65C.⎝ ⎛⎭⎪⎫-85,65 D.⎝ ⎛⎭⎪⎫-85,-65 解析:圆的圆心(0,0),过圆心与直线4x -3y +12=0垂直的直线方程为3x +4y =0.3x +4y =0与x 2+y 2=4联立可得x 2=6425,所以它与x 2+y 2=4的交点坐标是⎝ ⎛⎭⎪⎫-85,65,⎝ ⎛⎭⎪⎫85,-65.又圆上一点与直线4x -3y +12=0的距离最小,所以所求的点的坐标为⎝ ⎛⎭⎪⎫-85,65. 答案:C5.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析:由题意知,圆心(0,0)到直线的距离小于1,即|c |122+(-5)2<1,|c |<13,-13<c <13.答案:(-13,13)6.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.解析:两圆圆心分别为O (0,0),O 1(m ,0),且5<|m |<3 5.又易知OA ⊥O 1A ,。
直线与圆的方程典型例题

解析几何中,直 线与圆方程的应 用可以帮助我们 研究几何图形的 性质和特征
解析几何中,直 线与圆方程的应 用可以用于解决 实际生活中的问 题,如测量、绘 图和计算等
实际生活中的应用
交通路径规划:利用直线与圆的方程,可以计算出最短或最安全的行驶路 径。
建筑设计:在建筑设计时,可以利用直线与圆的方程来计算出最佳的设计 方案,以满足建筑的功能和美观要求。
范围。
直线的一般式 方程:通过已 知直线的一般 式方程,推导 出直线的斜截 式方程,并说 明其应用范围。
圆的方程的变形与拓展
圆的一般方程:x²+y²+Dx+Ey+F=0
圆的标准方程:x²+y²+Dx+Ey+F=0
圆的一般方程的变形:通过移项、合并同类项等操作,将一般方程转化为标准方程或参数方 程
圆的参数方程:通过引入参数t,将圆的方程转化为参数方程,方便进行参数化处理和求解相 关问题
直线与圆相离的 条件:圆心到直 线的距离大于圆 的半径
直线与圆交点求解的变形与拓展
变形:将直线方程代入圆方程,得到一元二次方程,解得交点坐标 拓展:利用韦达定理,求出交点坐标之间的关系,进而得到弦长、面积等几何量Leabharlann 感谢观看汇报人:XX
直线与圆的交点求解
联立方程法:通过 将直线方程与圆方 程联立,消元求解 交点坐标
几何法:利用圆心 到直线的距离等于 半径,判断交点个 数,并求解交点坐 标
参数方程法:利用 参数方程表示直线 和圆的方程,通过 消参法求解交点坐 标
代数法:通过代入 法求解交点坐标
03
直线与圆方程的应 用
几何图形中的应用
点斜式方程:知道直线上的一点 (x1, y1)和直线的斜率k,则直线 方程为y-y1=k(x-x1)
人教版高中数学选修一第二单元《直线和圆的方程》测试卷(答案解析)

一、选择题1.过点()0,0A 、()2,2B 且圆心在直线24y x =-上的圆的标准方程为( ) A .()2224x y -+= B .()2224x y ++= C .()()22448x y -+-=D .()()22448x y ++-=2.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b +的最小值为( ) A .72B .4C .1D .53.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=4.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D5.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)6.设点M 为直线2x =上的动点,若在圆22:3O x y +=上存在点N ,使得30OMN ∠=︒,则M 的纵坐标的取值范围是( )A .[1,1]-B .11,22⎡⎤-⎢⎥⎣⎦C .[-D .22⎡-⎢⎣⎦7.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .48.直线y =x +b 与曲线x =b 的取值范围是( )A .||b =B .-1<b ≤1或b =C .-1≤b <1D .非以上答案9.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是( ) A .250x y +-= B .20x y -= C .230x y -+=D .20x y +=10.若直线y x b =+与曲线3y =2个公共点,则b 的取值范围是( )A.[1-+ B.(11]-- C.[3,1+D .[1,3]-11.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( ) ABCD12.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-二、填空题13.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.14.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 15.光线沿直线30x y -+=入射到直线220x y -+= 后反射,则反射光线所在直线的方程为___________________.16.已知圆C :()2234x y -+=,线段MN 在直线211y x =-+上运动,点P 是线段MN 上任意一点,若圆C 上存在两点A ,B ,使得PA PB ⊥,则线段MN 长度的最大值是___________.17.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为_____________.18.已知等腰三角形的底边所在直线过点()2,1P ,两腰所在的直线为20x y +-=与740x y -+=,则底边所在的直线方程是_____________.19.若直线y x b =+与曲线y =b 的范围______________.20.已知圆C :222x y +=,点P 为直线136x y+=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则原点O 到直线AB 距离的最大值是______.三、解答题21.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 22.已知直线l 过点(2,1)M ,且分别与x 轴正半轴、y 轴正半轴交于点A 、B ,(O 为坐标原点)(1)当ABO 的面积为4时,求直线l 的一般式方程; (2)当MA MB ⋅取最小时,求直线l 的一般式方程.23.已知ABC 的顶点(5,1)A ,直线BC 的方程为6590x y AB --=,边上的中线CM 所在直线方程为250x y --=. (1)求顶点C 的坐标;(2)求AC 边上的高所在直线方程.24.已知圆1C 过点(0,6)A ,且与圆222:10100C x y x y +++=相切于原点,直线:(21)(1)740l m x m y m +++--=.(1)求圆1C 的方程;(2)求直线l 被圆1C 截得的弦长最小值.25.已知圆C 的圆心在直线2y x =-上,且过点(2,1),(0,3)-- (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 26.圆心在直线:10l x y ++=上的经过点(1,2),(1,0)A B -; (1)求圆C 的方程(2)若过点(0,3)D 的直线1l 被圆C 截得的弦长为31l 的方程;【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设圆心的坐标为(),24a a -,根据圆心到点A 、B 的距离相等可得出关于实数a 的等式,求出a 的值,可得出圆心的坐标,并求出圆的半径,由此可得出所求圆的标准方程. 【详解】设圆心为(),24C a a -,由AC BC ==整理可得20a -=,解得2a =,所以圆心()2,0C ,所求圆的半径为2AC =,因此,所求圆的标准方程为()2224x y -+=.故选:A. 【点睛】方法点睛:求圆的方程常见的思路与方法如下:(1)求圆的轨迹方程,直接设出动点坐标(),x y ,根据题意列出关于x 、y 的方程即可; (2)根据几何意义直接求出圆心坐标和半径,即可写出圆的标准方程;(3)待定系数法,可以根据题意设出圆的标准方程或一般方程,再根据所给条件求出参数即可.2.C解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 4.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.5.D解析:D 【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥= 所以实数r的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.6.C解析:C 【分析】在OMN=,从而得到M y =ONM ∠的取值范围,求出M y 的取值范围,即可得解; 【详解】解:设()2,M M y ,在OMN 中,由正弦定理得sin sin OM ONONM OMN=∠∠因为30OMN ∠=︒,ON=12==整理得M y =由题意知0150ONM ︒<∠<︒,所以(]sin 0,1ONM ∠∈,所以sin 1ONM ∠=时,M y 取得最值,即直线MN 为圆22:3O x y +=的切线时,My取值最值,所以M y ⎡∈-⎣故选:C【点睛】本题考查直线与圆的综合应用,解答的关键转化到OMN 中利用正弦定理计算,考查转化思想;7.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上代入得:12022m c+-+= 整理可得:3m c += 本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.8.B解析:B 【分析】作出曲线21x y =-y x b =+,求出直线过半圆直径两端点时的b 值,及直线与半圆相切时的b 值可得结论. 【详解】作出曲线21x y =-,它是单位圆的右半个圆,作出直线y x b =+,如图, 易知(0,1),(1,0)A B -,当直线y x b =+过点A 时,1b =,当直线y x b =+过点B 时,1b =-, 当直线y x b =+与半圆相切时,12b =,2b =±,由图可知2b =-∴b 的取值范围是11b -<≤或2b =-. 故选:B【点睛】本题考查直线与圆的位置关系,解题时要注意曲线是半圆,因此直线过B 点时与半圆有两个交点,直线与半圆相切时,也只有一个公共点,这是易错点.9.A解析:A 【分析】分析可得当弦长最短时,该弦所在直线与过点(1,2)的直径垂直,先求出过点(1,2)的直径的斜率,然后再求出所求直线的斜率,最后由点斜式写出直线的方程即可. 【详解】当弦长最短时,该弦所在直线与过点(1,2)的直径垂直, 圆229x y +=的圆心为(0,0),所以过点(1,2)的直径的斜率为20210-=-, 故所求直线为12-,所求直线方程为12(1)2y x ,即250x y +-=. 故选:A . 【点睛】方法点睛:本题考查直线与圆位置关系的应用,解题关键是明确当弦与圆的直径垂直时,弦长最短,考查逻辑思维能力,属于常考题.10.B解析:B 【分析】将234y x x =--化为22(2)(3)4-+-=x y (3y ≤),作出直线与半圆的图形,利用两个图形有2个公共点,求出切线的斜率,观察图形可得解. 【详解】由234y x x =--得22(2)(3)4-+-=x y (3y ≤),所以直线y x b =+与半圆22(2)(3)4-+-=x y (3y ≤)有2个公共点,作出直线与半圆的图形,如图:当直线经y x b =+过点(4,3)时,341b =-=-, 当直线与圆22(2)(3)4-+-=x y 211=+,解得122b =-或122b =+由图可知,当直线y x b =+与曲线234y x x =-2个公共点时,1221b -<≤-,故选:B 【点睛】关键点点睛:作出直线与半圆的图形,利用切线的斜率表示b 的范围是解题关键.11.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C. 【点睛】关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.12.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-;当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D. 【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.二、填空题13.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2 【分析】根据切线的性质可将面积转化为21PACB S PC =-,求出PC 的最小值即()0,1C -到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.14.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.15.【分析】求得直线与直线的交点的坐标然后求出直线上的点关于直线的对称点的坐标进而可求得直线的方程即为反射光线所在直线的方程【详解】联立解得则直线与直线的交点为设直线上的点关于直线的对称点为线段的中点在 解析:730x y --=【分析】求得直线30x y -+=与直线220x y -+=的交点A 的坐标,然后求出直线30x y -+=上的点()3,0B -关于直线220x y -+=的对称点C 的坐标,进而可求得直线AC 的方程,即为反射光线所在直线的方程. 【详解】联立30220x y x y -+=⎧⎨-+=⎩,解得14x y =⎧⎨=⎩,则直线30x y -+=与直线220x y -+=的交点为()1,4A .设直线30x y -+=上的点()3,0B -关于直线220x y -+=的对称点为(),C a b , 线段BC 的中点3(,)22a b M -在直线220xy -+=上,则322022a b-⨯-+=,整理得220a b --=.直线220x y -+=的斜率为2,直线BC 与直线220x y -+=垂直,则213ba ⋅=-+,整理得230ab ++=.所以,220230a b a b --=⎧⎨++=⎩,解得1585a b ⎧=⎪⎪⎨⎪=-⎪⎩,即点1(,55)8C -.所以,反射光线所在直线的斜率为8457115ACk +==-, 因此,反射光线所在直线的方程为()471y x -=-,即730x y --=. 故答案为:730x y --=. 【点睛】运用点关于直线的对称点的坐标的求解是解题关键.16.【分析】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况此时△APC 和△ABC 均为等腰直角三角形先算出进一步求出答案【详解】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况也就是PAPB 分别与圆 解析:23【分析】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,此时△APC 和△ABC 均为等腰直角三角形,先算出2232lPC d =-=,进一步求出答案. 【详解】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,也就是PA ,PB 分别与圆相切的情况,此时△APC 和△ABC 均为等腰直角三角形,由题意知,圆心()3,0C ,半径2r线段PC 的长为22r =圆心到直线的距离d ==,根据图像的对称性可知2l==所以线段MN 长度的最大值为故答案为: 【点睛】本题考查了直线与圆位置关系的应用.本题的难点是分析何时EF 取到最值.根据考虑边界的情况数形结合得出结论.17.或【分析】分类讨论:直线过坐标原点直线不过坐标原点再根据截距的关系求解出直线的方程【详解】当直线过坐标原点时显然直线的斜率存在设代入所以所以所以直线方程为;当直线不过坐标原点时设所以横截距为纵截距为解析:y x =-或11542y x =-+ 【分析】分类讨论:直线过坐标原点、直线不过坐标原点,再根据截距的关系求解出直线的方程. 【详解】当直线过坐标原点时,显然直线的斜率存在,设y kx =,代入()10,10-, 所以1010k -=,所以1k =-,所以直线方程为y x =-; 当直线不过坐标原点时,设()1010y k x -=+,所以横截距为1010k--,纵截距为1010k +,所以()101041010k k --=+,解得14k =-或1k =-(舍),所以直线方程为11542y x =-+,故答案为:y x =-或11542y x =-+. 【点睛】本题考查根据截距关系求解直线方程,难度一般.根据截距的倍数求解直线方程时,要注意直线过坐标原点的情况.18.或【分析】在等腰三角形顶角角平分线上任取一点利用点到两腰所在直线的距离相等可求得顶角角平分线方程再由底边所在直线过点且与顶角角平分线垂直可求得所求直线的方程【详解】在等腰三角形顶角角平分线上任取一点解析:370x y +-=或310x y -+= 【分析】在等腰三角形顶角角平分线上任取一点(),M x y ,利用点M 到两腰所在直线的距离相等可求得顶角角平分线方程,再由底边所在直线过点P 且与顶角角平分线垂直可求得所求直线的方程. 【详解】在等腰三角形顶角角平分线上任取一点(),M x y , 则点M 到直线20x y +-=与740x y -+=的距离相等,=7452x y x y -+=+-.所以,()7452x y x y -+=+-或()7452x y x y -+=-+-,所以,该等腰三角形顶角角平分线所在直线的方程为370x y -+=或6230x y +-=. 由于底边与顶角角平分线垂直.当底边与直线370x y -+=垂直时,且直线370x y -+=的斜率为13, 此时底边所在直线方程为()132y x -=--,即370x y +-=;当底边与直线6230x y +-=垂直时,且直线6230x y +-=的斜率为3-,此时底边所在直线方程为()1123y x -=-,即310x y -+=. 故答案为:370x y +-=或310x y -+=.【点睛】本题考查等腰三角形底边所在直线方程的求解,考查了等腰三角形三线合一的性质以及点到直线距离公式的应用,考查计算能力,属于中等题.19.或【分析】由曲线变形为画出的图象当直线经过时直线与曲线有两个公共点求出此时的以及直线过时的值再求出当直线与曲线相切时的的值数形结合即可得b 的范围【详解】由曲线变形为画出的图象①当直线经过时直线与曲线解析:22b -≤<或b = 【分析】由曲线y =()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图 象,当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,求出此时的b ,以及直线y x b =+过(2,0)C 时b 的值,再求出当直线与曲线相切时的b 的值,数形结合即可得b 的范围. 【详解】由曲线y =()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图象,①当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,此时2b =, 当直线y x b =+过(2,0)C 时02b =+,得2b =-, 所以若直线与曲线有1个公共点,则22b -≤<.②当直线与曲线相切时,联立224y x bx y =+⎧⎨+=⎩ ,化为222240x bx b ++-=, 令2248(4)0b b ∆=--=,解得:22b =,或22b =-(舍去), 综上所述b 的范围: 22b -≤<或22b =. 故答案为:22b -≤<或22b =.【点睛】本题主要考查了直线与圆相交相切问题、采用数形结合思想,属于中档题.20.【分析】为使原点到直线距离的最大则应当最小于是应当最小进而得到应当最小然后利用点到直线的距离公式求得的最小值利用直角三角形相似求得原点到直线距离的最大值【详解】为使原点到直线距离的最大则应当最小于是 解析:53【分析】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,进而得到OP 应当最小,然后利用点到直线的距离公式求得OP 的最小值,利用直角三角形相似求得原点O 到直线AB 距离的最大值. 【详解】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,∴OA OP应当最大,∴OP 应当最小,当且仅当OP 与直线136x y+=垂直时OP 最小,OP 的最小值为O 到直线136x y +=,即260x y +-=的距离2266521d ==+设OP 与AB 交于点,Q 则2~,||Rt OQA Rt OAP OQ OP OA ∴⨯=,∴max5||,655OQ ==5 【点睛】本题考查与圆有关的最值问题,属中等难度的题目,关键在于转化为OP 最小,同时注意利用三角形相似进行计算.三、解答题21.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程. 【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA ()()2241225-+--=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA=2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 22.(1)240x y +-=;(2)30x y +-=. 【分析】(1)设直线的截距式方程,结合三角形面积公式即可得解;(2)设直线l 的方程为()12y k x -=-,表示出点A 、B ,进而可得,MA MB ,表示出MA MB ⋅后结合基本不等式即可得解. 【详解】(1)由题意,设直线l 的方程为()1,0,0x ya b a b+=>>, 则142ABO S ab ==△,所以8ab =, 又直线l 过点(2,1)M ,所以211a b +=,所以42a b =⎧⎨=⎩, 所以直线l 的方程为142x y+=即240x y +-=; (2)设直线l 的方程为()12y k x -=-,则12,0A k ⎛⎫-+ ⎪⎝⎭,()0,21B k -+,所以MA =MB ,所以4MA MB ⋅=, 当且仅当21k =时,等号成立,所以当MA MB ⋅取最小时,1k =-(正值舍去), 此时直线方程为12y x -=-+即30x y +-=. 【点睛】关键点点睛:解决本题的关键是设出合理的直线方程,结合两点间距离公式及基本不等式运算即可得解.23.(1)(4,3)C ;(2)250x y --=.【分析】(1)联立直线方程可解得结果;(2)设出()00,B x y ,利用AB 的中点M 在直线CM 上以及点()00,B x y 在直线BC 上,解方程组可得B 的坐标,利用垂直可得斜率,根据点斜式可得所求直线方程. 【详解】 (1)联立6590250x y x y --=⎧⎨--=⎩,解得43x y =⎧⎨=⎩,可得(4,3)C ;(2)设()00,B x y ,则AB 的中点0051,22x y M ++⎛⎫⎪⎝⎭, 则0000659015502x y y x --=⎧⎪⎨++--=⎪⎩,解得(1,3)B --, 又23145AC k -==--,所以AC 边上的高所在直线的斜率12k =,所以AC 边上的高所在直线方程为13(1)2y x +=+,即250x y --=. 【点睛】关键点点睛:求出点B 的坐标是求出AC 边上的高所在直线方程的关键,设()00,B x y ,利用直线BC 的方程和AB 的中点坐标满足CM 的方程可解得点B 的坐标. 24.(1)22(3)(3)18x y -+-=;(2) 【分析】(1)设2221:()()C x a y b r -+-=,根据题意列方程组解得,,a b r 即可得解;(2)求出直线l 所经过的定点(3,1)B ,再根据圆心1C 到直线l 的距离的最大值可求得结果. 【详解】(1)设2221:()()C x a y b r -+-=,圆222:10100C x y x y +++=的圆心2(5,5)C --,半径为则222222()(6)a b r a b r r ⎧-+-=⎪⎪+=⎨=,解得33a b r ⎧=⎪=⎨⎪=⎩, 所以圆1C 的方程为22(3)(3)18x y -+-=.(2)因为:(21)(1)740l m x m y m +++--=,即(27)40x y m x y +-++-=,由27040x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=⎩,所以直线l 过定点(3,1)B , 设圆心1(3,3)C 到直线l 的距离为d,则1||2d C B ≤==,当且仅当1l BC ⊥时,等号成立,所以弦长||AB =≥=.所以直线l 被圆1C 截得的弦长的最小值为. 【点睛】关键点点睛:第二问利用圆心1C 到直线l 的距离的最大值求弦长的最小值是解题关键. 25.(1)22(1)(2)2x y -++=;(2)0x =或34y x =-. 【分析】(1)根据题意设圆心坐标为(,2)a a -,进而得222222(2)(12)(0)(32)a a r a a r⎧-+-+=⎨-+-+=⎩,解得1,a r ==,故圆的方程为22(1)(2)2x y -++=(2)分直线l 的斜率存在和不存在两种情况讨论求解即可. 【详解】(1)圆C 的圆心在直线2y x =-上,设所求圆心坐标为(,2)a a - ∵ 过点(2,1),(0,3)--,222222(2)(12)(0)(32)a a r a a r⎧-+-+=∴⎨-+-+=⎩解得1,a r ==∴ 所求圆的方程为22(1)(2)2x y -++= (2)直线l 经过原点,并且被圆C 截得的弦长为2 ①当直线l 的斜率不存在时,直线l 的方程为0x =, 此时直线l 被圆C 截得的弦长为2,满足条件; ②当直线l 的斜率存在时,设直线l 的方程为y kx =,由于直线l 被圆C 截得的弦长为2,故圆心到直线l 的距离为1d = 故由点到直线的距离公式得:1d ==解得34k =-,所以直线l 的方程为34y x =- 综上所述,则直线l 的方程为0x =或34y x =- 【点睛】易错点点睛:本题第二问在解题的过程中要注意直线斜率不存在情况的讨论,即分直线l 的斜率存在和不存在两种,避免在解题的过程中忽视斜率不存在的情况致错,考查运算求解能力与分类讨论思想,是中档题.26.(1)22(1)4x y ++=;(2)0x =,或4390x y -+=.【分析】(1)求出线段AB 中垂线方程,由中垂线与直线l 相交求得圆心坐标,再求得半径可得圆标准方程;(2)求得圆心到直线1l 距离为1,检验斜率不存在的直线是否满足题意,在斜率存在时设直线方程为30kx y --=,由圆心到直线的距离可得k ,得直线方程.【详解】(1)由题意得,圆心C 一定在线段AB 的垂直平分线上,0211(1)AB k -==---,线段AB 中点为(0,1), ∴直线AB 的垂直平分线为10x y -+=,∴直线:10l x y ++=与10x y -+=的交点即为圆心C ,坐标为()1,0-.∴圆C 的方程为22(1)4x y ++=,(2)当直线1l 斜率不存在时,方程为0x =,此时圆心到1l 距离为1,截得的弦长为当直线1l 斜率存在时,设为k ,则1:30l kx y --=,圆心(1,0)-到1l距离1d ===∴43k = ∴直线1l 的方程为0x =,或4390x y -+=.【点睛】易错点睛:本题考查求圆的标准方程,考查直线与圆相交弦长问题.已知弦长求直线方程时,须考虑斜率不存在的直线是否满足题意,在斜率存在的情况下,设出直线方程,由圆心到直线的距离列式可得结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《直线与圆的方程的应用》习题
一、 选择题
1、ABC ∆的顶点A 的坐标为(3,-1),AB 边上的中线所在直线方程为08=-+y x ,直线
L :012=+-y x 是过点B 的一条直线,则AB 的中点D 到直线L 的距离是(
) A 、552 B 、553 C 、554 D 、5
2、两直线l 1:mx-y+n=0和l 2:nx-y+m=0在同一坐标系中,则正确的图形可能是( )
3、已知点A(-7,1),B(-5,5),直线:y=2x-5,P 为上的一点,使|PA |+|PB |最小时P 的坐
标为 ( )
(A) (2,-1) (B) (3,-2) (C) (1,-3) (D) (4,-3)
4、如果点A(1,2),B(3,1),C(2,3)到直线x=my 的距离平方和取最大值,那么m 的值等
于 ( )
(A) 0 (B) -1 (C) 1 (D) 2
5、已知直线b x y +=2
1与x 轴、y 轴的交点分别为A ,B ,如果△AOB 的面积(O 为原点)小于等于1,那么b 的取值范围是 ( )
(A) b ≥ -1 (B )b ≤1且0≠b
(C) -1 ≤b ≤1 且0≠b (D) b ≤-1或b ≥1
6、通过点M (1,1)的直线与坐标轴所围成的三角形面积等于3,这样的直线共有
( )
(A)1条 (B)2条 (C)3条 (D)4条
7、点P (x,y )在直线x+2y+1=0上移动,函数f(x,y)=2x +4y 的最小值是 ( )
(A)2
2 (B) 2 (C)22 (D)42 8、已知两点O(0,0) , A(4,-1)到直线mx+m 2y+6=0的距离相等, 则实数m 可取的不同值共
有 ( )
(A) 1个 (B) 2个 (C) 3个 (D) 4个
二、填空题
9、菱形ABCD 的相对两个顶点是B(1,3),D(0,4),如果∠BAD=60o
,那么顶点A 和C 的坐标是________.
10、与直线3x+4y-7=0平行,且和两轴围成的三角形面积等于24的直线方程是_____
11、如果对任何实数k ,直线(3+k)x +(1-2k)y +1+5k=0都过一个定点A ,那么A 的坐标是______。
12、已知y 轴上有一点P ,它与点(-3、1)连成的直线的倾斜角为1200,则点P 的坐标为
三、解答题
13、求与直线0534=+-y x 垂直,且与两坐标轴围成的三角形周长为10的直线的方程.
14、、已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB 。
求m 的值。
15、已知定点)0,2(A ,点在圆122=+y x 上运动,AOP ∠的平分线交PA 于Q 点,其中O 为坐标原点,求Q 点的轨迹方程.
答案
一、 选择题
1、B ;
2、B ;
3、A ;
4、B ;
5、C ;
6、D ;
7、B ;
8、C
二、 填空题
9、)2
37,231( )237,231(--++、 10、02443 02443=-+=++y x y x 或
11、A(-1,2)
12、P(0,-2)
三、 解答题
13、解:设所求直线方程:3x+4y+t=0 分别交x 轴、y 轴于点A )0,3(t -,B )4,0(t - 则线段AB 的长t 12
5 由1012
543=++t t
t
得 t=10或t= -10 即 所求的直线方程为 3x+4y+10=0 或3x+4y-10=0
14、解:由题设△APB 是等腰直角三角形,∴圆心到y 轴的距离是圆半径的2
2倍 将圆方程02422=++-+m y x y x 配方得:m y x -=++-5)1()2(22
圆心是P(2,-1),半径r=m -5
∴225⋅=
-m 解得m= -3
15、解:在△AOP 中,∵OQ 是∠AOP 的平分线
∴212===OP OA
PQ AQ
设Q 点坐标为(x ,y );P 点坐标为(x 0,y 0)
∴⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧++=++=
即y y x x y y x x 232232
12021220000 ∵ P (x 0,y 0)在圆x 2+y 2=1上运动,∴x 02+y 02=1
即12322322=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-y x ∴943222=+⎪⎭⎫ ⎝
⎛-y x 此即Q 点的轨迹方程。