电机的寿命和可靠性

电机的寿命和可靠性
电机的寿命和可靠性

电机的寿命和可靠性标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电机的寿命和可靠性

绝缘——影响寿命和可靠性的关键因素

在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10——15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。

绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。

电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级,一台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。

微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见下表:

表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种:

1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DMD纤维纸,聚酯薄膜纸,尼龙一体成型槽绝缘等。

2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。

3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。

4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。

二、合理设计——电机寿命和可靠性的先天保证

电机设计是产品质量链中的第一环节,如果设计不合理,甚至不正确,那么后道再完善的工艺及再精心的制作都将变成无效,最终不可能做出适用性好的、客户满意的产品。我们常听说这电机先天不足,意即设计不好造成的。

电机设计的主要任务是按客户对产品的设计输入要求,外形安装要求,电机使用场合,负荷大小,工作环境条件,工作制长短等,通过电路、磁路计算选取合理的发热和磁路参数,决定电机各主要零部件的关键尺寸,并通过这些主要条件进行机械强度计算,最终绘制电机主要零部件的工作图及总装图,设计时必须同时考虑到制作时良好的工艺性及制造成本的经济合理性。

下面列出一些直流微电机中常用的电磁计算公式及应控制的电磁设计参数。

1、P N =

其中:P N ——额定功率(瓦)

T N ——额定转矩(牛·米)

n N ——额定转速(转/分)

2、N

n N P aE N N ???=Φ8

1060 其中:N Φ——每极额定磁通(高斯)

N E ——额定功况下的反电势(伏)

p ——磁极对数

N ——电枢总导体数

3、Da N

I A N π?=

其中:A ——电枢的线负荷(安/厘米)

N I ——电枢额定支路电流(安)

Da ——电枢直径(厘米)

4、310975-?=N

n I U T N N N η

其中: T N ——额定转矩(公斤·米)

η——电机额定效率

N U ——额定电压(伏)

5、P l =U N I N

其中:P l ——电机输入功率(瓦)

6、l

P P

∑-=1η

其中:∑P ——电机总损耗(瓦)

电机的主要发热和磁路参数有定子电流密度,转子电流密度,电枢线负载,电枢发热因素,每极磁通量,气隙磁通密度,电枢齿部磁通密度等。

7、32

1016.0-?=a a i N l D AB T δα

其中 i α——电机计算极弧系数

δB ——气隙磁通密度(高斯)

a l ——电枢铁心长度(厘米)

a a

l D 2——电机有效体积,表征电机体积的大小 由上式可见,当选取较高的电磁发热参数(i α、A 、δB )时,电机的额定转矩也相应增大,或可缩小电机的体积来达到相同的转矩,但电机的制造难度及要求也相应提高。另外由上式也可见,电机体积的大小与其额定转矩成正比,而与其功率没有直接的关系。

三、精心制作—电机寿命和可靠性的主要保证

各种电机使用实践表明,电机损坏大多不是由于绝缘材料的自然老化,而是由于电机零部件制作过程中工艺不当,制造粗陋,留下隐患,而电机在运用过程中,绕组等部件受发热、磁场、机械外力、潮湿、化学、油污等各种因素的侵蚀,使其丧失使用功能而提前夭折的。因此精心制作,减少隐患,是提高电机寿命和使用可靠性的主要保证。对微型直流电动机,关键工序有换向器精车、电枢线与换向器之间的点压焊接、电枢动平衡,环氧粉末涂敷,绝缘处理,定子与转子的绕线等。

1、换向器精车:换向器是一个高速运转的部件,其工作面与电刷滑动接触并传送电能,因此要求其工作面必须是一个稳定的圆柱体,径向跳动小于等于,不得有凹片和凸片,表面光洁度要达到以下(相当于原87~??)

换向器精车必须使用高精度的车床,床身和传动机构牢固、可靠、且应避免默默振动的影响。切屑量、切屑速度和走刀量要选取合理。金刚石车刀由于硬度高、耐热性好,可以提高切削效率且避免粘刀现象,从而减小切削毛刺。提高了换向器表面的光洁度。

控制圆度是对换向器工作面检测评价的一项先进和实用的手段,比用百分表测径向跳动的宏观手段更精确,更深透,向微观检测迈出了关键的一步。

2、电枢导体与换向器钩之间的点压焊接(FUSING)

这是目前微型直流电机中最关键,最不稳定也是最难以控制的工序,它直接影响着电机的寿命和可靠性。

点压焊较锡铅合金钎焊及钨极惰性气体TIG保护焊有着明显的优点,非常适合带钩的微型电机换向器与电枢导体的焊接,它是通过电阻焊时产生的高温高热,加热铜导体和钩子,熔化掉漆膜排挤掉接触面处的空气,推压并将它们粘附在一起。因此我们认为,通过点压焊接应使铜导体与换向片钩部之间有适度的粘附和熔焊,是本工序的关键要害所在,如果只达到熔化掉漆包线的漆膜,铜线与钩公有表面的接触,没有粘熔的状态,则该处的焊接电阻将是不稳定的,一旦该连接处的状态有所变化(如外力移位及漆液渗入),焊接电阻将逐步变大,发热加剧,直到该连接点脱开而不能正常使用。

目前公司所有电机电枢的焊接电阻控制值均为0.3mΩ,如果点压焊良好,则达到

0.3mΩ以下不是问题,但各电机的情况是不平衡的。以BZY17为最差,首次检的不合格率为1/3,经三次点焊后仍不过关而报废的还有10%,还有一些电机较差如BZR14、16及BZR01,而以BZR11、13为最好。

在点压焊机中,现用的DNH焊机具有一系列的优点,如温度监控器控制焊点的温度,稳定的恒流控制系统等。并且有宽广的调节范围,供我们不同大小电枢点压焊时选用。对于目前焊接电阻不太稳定的电枢,可以再做焊接参数变动的试验,以寻求不同大小电枢的各自最佳焊接参数,以达到稳定的焊接电阻保证值。

四、提高电机寿命和可靠性的途径:

1、影响电机安全作用的四个极限条件

发热强度极限:绝缘结构的热芯化,使其绝缘性能变坏而失去绝缘性能,对微型电机,由于负荷电流较小。因此一般不必考虑和担心电机发热强度极限的影响,除非像BZY20A,BZY21的寿命试验时要求那么严酷的发热条件。

电气强度极限:对直流微电机而言,电压都非常低,均在100伏以下,除非电机制造中存在大的缺陷和隐患(如果匝间和层间绝缘损伤),电气强极限也要不必考虑。

换向强度极限:对直流微电机,设计的换向参数如电抗电势最大片间电压等都非常低,因此理论上讲都应有良好的换向,但往往由于使用环境条件的恶劣及剧烈的振动等原因,使换向器工作表面很难形成一层氧化膜,电刷及换向器上磨损很快,表面烧蚀及炭化严重,使电刷与换向器表面无法正常良好接触,导致电机失效。

机械强度极限:常见的是电枢线甩出卡定子(槽内及两端部),平衡泥甩出,轴承超速损坏等。

2、直流微型电机提高寿命及可靠性的措施:详见下表

电机按工作时间的长短,分连续工作制(S1)、短时工作制(S2)及断续工作制

(S3)三种,以边疆工作制对电机寿命的要求最高,特别是很多客户要求寿命达

5000~1000小时,对电机的设计和制造带来很高的要求。

电机的寿命和可靠性

电机的寿命和可靠性标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10——15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。 绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。 电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级,一台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。 微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见下表: 表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DMD纤维纸,聚酯薄膜纸,尼龙一体成型槽绝缘等。 2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。 3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。 4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。

电动机试验报告

设备名称;#3炉一次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉二次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 四、交流耐压: 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机A试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机B试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#1机电动给水泵A试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

设备名称;#1机电动给水泵B试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

电气自动化控制设备的可靠性分析 顾舜

电气自动化控制设备的可靠性分析顾舜 发表时间:2018-08-31T14:13:19.417Z 来源:《防护工程》2018年第7期作者:顾舜 [导读] 在当下社会经济飞速发展的新形势下,国内的电气事业也取得了飞跃式的发展,电气自动化控制设备也逐渐朝着智能化、自动化的方向发展 浙江深度能源技术有限公司浙江杭州 31000 摘要:在当下社会经济飞速发展的新形势下,国内的电气事业也取得了飞跃式的发展,电气自动化控制设备也逐渐朝着智能化、自动化的方向发展,人们对电气自动化控制设备的可靠性也提出越来越高的要求,其可靠性不仅会对人们的正常生产、生活用电造成巨大的影响,同时也会在很大程度上影响电力企业的长远发展。因此,对电气自动化控制设备的可靠性进行分析和研究具有极其重要的现实意义。 关键词:电气自动化;控制设备;可靠性分析 近年来,我国电气工程及其自动化领域取得突破性进展,各种自动化技术、智能技术得到开发和应用,进一步推动了相关行业的发展。电气自动化技术是一项重要的电力技术,在各项生产、生活活动中发挥着重要作用,为了进一步提高控制效果,电气自动化控制设备得到了广泛应用。电气自动化控制设备能够有效提高电力系统以及相关操控系统的控制效果,避免了人工操作的危险性、不可靠性,能够完成一系列复杂的控制和运行工作。但是,电气自动化控制设备容易受到各种因素的影响,例如零部件质量、运行环境、人为操作等,使得设备的可靠性降低。为了确保电气自动化控制设备的运行质量,相关单位和电气技术人员要从设计、制造和应用等多个环节,积极采取措施,提高电气自动化控制设备的可靠性。 1电气自动化控制设备可靠性的重要意义 电气自动化控制设备的可靠性指的是在相同的时间和条件下,电气自动化控制设备的工作效率远远高于人工效率,并且任务完成效果较为理想,同时,设备的运行性能优良,故障发生率较低。目前,电气自动化控制设备被应用到各行各业,发挥着重要作用,在这种情况下,确保电气自动化控制设备的可靠性具有十分重要的意义,具体体现在以下几点:第一,提升产品生产质量,现代市场竞争日趋激烈,各个行业面临的生存压力较大,尤其对于工业制造、生产领域,提升产品质量十分重要,通过电气自动化控制设备的应用,工业生产能够实现自动化检测和控制,进而提高工业产品的生产效率和质量[1];第二,降低生产运作成本,在企业经营管理或者工业生产中,电气自动化控制设备具有极高的工作效率,能够减少一定的劳动力成本,同时,在电气自动化控制设备可靠性较高的情况下,设备的故障发生率较低,能够减少维修成本,提高企业的经济效益;第三,提高市场竞争力,随着科技的不断发展,各类电气自动化设备的应用逐渐增多,只有充分确保电气自动化控制设备的可靠性,才能够使其发挥有效的应用价值,进而提升企业的科技水平,增强市场竞争实力。 2提高电气自动化控制设备可靠性的措施 2.1提高思想认识,加强技术培训 现阶段,国内大部分企业只是一味地强调电气自动化控制设备的使用,却未意识提高电气自动化控制设备可靠性的重要性和必要性,在日常工作中,对电气自动化控制设备的管理、养护及维护等工作缺乏足够重视,严重影响着电气自动化控制设备的可靠性,导致电气自动化控制设备在生产经营中的重要作用无法充分体现出来。所以,企业应提高自身的思想认识,重视对电气自动化控制设备可靠性的提升,认真做好电气自动化控制设备的管理、养护及维护等工作,以确保设备始终处在稳定、可靠、安全的工作状态。除此之外,企业还庆加大对设备管理者及操作者的技术培训力度。作业人员的技术水平也会在一定程度上影响电气自动化控制设备的可靠性,因此,必须加强对作业人员的岗前培训,禁止录用不合格者,保证工作人员的技能水平能够满足工作要求。同时,还应定期对工作人员进行培训与考评,促使他们始终保持严谨的工作态度,不断提升自身的工作技能,另外,还应给予他们适当的鼓励与指导,以提升其工作热情。 2.2加强电气自动化设备设计的可靠性 想要有效地提升电气自动化控制设备运行的可靠性和稳定性,电气自动化控制设备生产企业可以要求设计人员在设计初期加强设备设计的可靠性。设备设计初期,可以针对应用行业领域产品的主要性能进行分析研究,根据产品的实际生产要求设计有针对性的设备生产方案,这样有目的性、有针对性的设备设计方案能够有效地确保电气自动化控制设备整体运行的可靠性。比如,产品的种类和详细结构要依据其使用范围来明确吗,而产品的具体尺寸则直接制约着产品的整体制作规模和数量,不同种类的产品也会对其经济效益造成影响,这些因素设计师在电气自动化控制设备设计过程中都要添加到考量范围内,在充分满足客户要求以及设备技术规范的基础上,融入价值工程设计方式,实现电气自动化控制设备的整体优化升级,确保电气自动化控制设备的综合性能实现最大化,从而提高电气自动化控制设备的运行可靠性。 2.3规范选取元器件与零部件 由于电气自动化控制设备通常是由多种元器件共同组成的,因此,在选购设备元器件时应保持严谨态度,尽量减少设备元器件及零部件的品种,同时,尽可能选购产自正规生产厂商的元器件及零部件,这样可以大大提升电气自动化控制设备的质量及准确度,同时,也可以大大减少设备维修难度,有效提升电气自动化控制设备的可靠性。 2.4改善设备的运行环境 对于电气自动化控制设备而言,良好的运行环境有利于其工作性能的发挥,因此,应用电气自动化控制设备的企业需要提高对其运行环境的重视,并积极采取措施,对其运行环境进行改善和优化。电气自动化控制设备运行中的常见问题就是高温,在这个方面,相关企业可以通过优化通风设计或者增加散热辅助设备等方式,实现设备运行温度的有效控制,同时减少能源消耗,提高设备的运行效率。此外,尘土过多容易造成静电问题,使得设备运行不灵敏,这就需要相关人员做好环境清洁工作,确保电气自动化控制设备工作在干净、整洁的运行环境中,同时,做好防潮工作,避免设备的腐蚀与损坏。 2.5气力除灰系统的控制措施 ①系统参数的设定相当重要,由设计单位针对每台机组的实际情况,实际的干灰输送量,煤种,燃烧方式,锅炉负荷等等因素而设计出最合理的范围区间。过大容易造成干灰沉积形成堵管现象,过小影响走料的时间,走料周期过长会造成料位逐渐升高。②加强对空压机

电力变压器可靠性分析及其寿命评估 王鹏

电力变压器可靠性分析及其寿命评估王鹏 发表时间:2019-06-04T15:59:53.327Z 来源:《电力设备》2019年第2期作者:王鹏路辉[导读] 摘要:随着我国西电东运和全国网络和特高压项目的推广,电网安全稳定运行也将面临更大的挑战。 (国网廊坊供电公司廊坊市 065000) 摘要:随着我国西电东运和全国网络和特高压项目的推广,电网安全稳定运行也将面临更大的挑战。近年来电力变压器的可靠运行逐渐成为了国内外学者的研究重点。随着变压器电压等级的提高,其发生故障给系统带来的损失越来越大。为了提升变压器的可靠性,有效地延长电力设备的使用寿命,让投资和回报有一个最佳的平衡,需要对其进行全面的准确的可靠性评估。因此,如何科学地评估其寿命,保证超期服役的电力设备安全运行是个亟待解决的问题。本文简述了电力变压寿命分析评估方法,分析了影响电力变压器寿命的因素,探讨了阻止电力变压器加速老化的对策及大型变压器寿命管理的方法。 关键词:变压器可靠性使用寿命防护措施 一、影响变压器可靠运行的因素 1.变压器铁芯故障 在正常情况下,变压器铁芯只有一个接地点,以限制流过铁心和铁心点的电流。当磁芯未在多点接地或接地时,会导致磁芯发生故障,导致变压器过热,影响变压器的正常运行。当发生芯子故障时,相邻硅钢片之间的绝缘漆膜烧坏。在严重的情况下,磁芯可能会过热和放电,从而在电压发生器内部产生可燃气体,这可能导致变压器开关跳闸中的电源故障。 2.变压器导电回路故障 如果变压器接头焊接不良,从物理角度来看,导电回路的横截面积相应减小,从而局部电阻增加。根据功率损耗的计算方法:功率=电流的平方×截面电阻,当正常电流通过时,由于截面积的增加,功率损耗会增加,变压器接头处的温度变得过高,从而加速了接头。机械变形和氧化腐蚀,接头处的电阻不断增加,使循环往复运动,最终烧毁变压器的绝缘层,导致电源故障。 3.变压器绕组绝缘损坏故障 当变压器绕组绝缘损坏变压器,变压器自身的绕组和匝间绝缘,以及一些金属绝缘等,如果有绝缘损坏,就会导致绕组短路,即在绕组内部形成闭合电流回路。当大电流通过时,绕组产生额外的热量和损耗,这导致变压器的稳定异常。变压器的三相电压输出未达到平衡,运行噪音增加。绕组的短路主要是由于绕组线圈在短距离电力作用下的位移,导致绝缘磨损引起的短路;绝缘材料在运行过程中自然老化或在局部高温下破裂;导线的质量差,绕组的绕组不适合压接和卷绕过程,金属材料进入损坏的绝缘层。 4.变压器漏磁故障 变压器铁心产生的磁通称为主磁通。在正常情况下,铁芯产生的额定主磁通量不饱和。当复杂电流流入变压器时,绕组将会泄漏。助焊剂现象。主磁通穿过铁磁材料,漏磁通穿过绕组周围的空间。当漏磁通过某些金属部件时,会产生涡流,从而产生热量。变压器的容量与负载电流成比例,并且变压器的容量增加。它容易发生热故障。通常,燃料箱的温度最接近绕组或导体。 5.散热条件差 当变压器在高温环境下长时间运行,或变压器周围有热源时,房间内的通风散热措施不好,建筑物与变压器之间的散热距离太大关闭,变压器产生的热量不能及时。消散到空气中,导致变压器的温度上升,绕组电阻变大,然后变压器会产生更多的热量,导致变压器的温度异常。 6.变压器冷却系统异常 运行中的变压器产生通过变压器自己冷却油或散热器传递到周围环境的热量一定的数量。当变压器冷却器油泵损坏,风扇马达被损坏,灰尘和其它碎屑附着在热管中,油循环路径被阻挡,油流量减小,并且变压器的散热受到影响,从而导致在增加了变压器的温度。在停电的情况下,冷却系统停止工作,这将导致变压器的温度持续升高,导致变压器烧坏。 二、变压器运行中的防护措施 1.加强对油温及绕组温度的监测,根据监测结果及时调整负荷状态。要防止或减少变压器在过负荷状态下运行,因为它是以牺牲寿命为代价的,尤其是热点温度高达160℃的短期急救过负荷运行,对变压器绝缘寿命危害极大。必须过负荷运行时,要严格执行变压器厂家提供的过负荷能力表,不能超越。 2.加强对线路的巡视,防止发生变压器出口突发性短路,尤其要防止外界偶然因素和环境因素造成的突发性短路。科学设置继电器保护整定值,短路时能快速切断故障电流,减小短路电流对变压器的冲击。 3.加强变压器的常规电气测试,如测试绕组直流电阻,比率,空载电流,空载损耗,局部放电,铁芯绝缘电阻和接地电流,并综合分析各种电气测试数据及时。事先判断错误。加强变压器在线诊断,例如对变压器进行局部放电的在线测量、绝缘油的在线色谱分析和油中微水分析。通过对变压器局放和油中气体含量的色谱分析、微水分析及时发现变压器异常,及早发现故障。必要时还可以进行油中糠醛含量和绝缘纸聚合度的测量,来判断绝缘的老化程度。 4.密封件属于低值易耗品,建议在变压器每次检修时更换所有的密封件,加强变压器的密封性。 四、大型变压器寿命管理的方法 变压器寿命管理的核心是确定绝缘寿命的状态。除了防止变压器绝缘老化的措施外,还应建立一系列检查系统和检查系统,以确保变压器的安全运行。 1.预警系统大型变压器在线监测系统(氢气,局部放电和绝缘的在线监测)可以预先发现变压器操作期间异常的条件。在线监测与专家系统相结合预测变压器的绝缘和在变压器发芽的初始阶段发现异常情况。 2.现场诊断现场诊断是确定变压器绝缘强度的一种方法。现场诊断和趋势分析的结合是最重要的检测手段,能及时检测变压器的过热、局部放电、电介质劣化、线圈位移等。有下列检测项目: a)局部放电测量。当变压器出现异常或油色谱仪中出现C2H2时,应对变压器进行现场局部放电测量。超声定位仪可以定位局部放电部位。 b)定期测量油温和盘管温度。通过查明变压器是否过载或部分过热,可以进行更详细的诊断。 c)油的色谱分析。通过色谱分析变压器油中的气体含量,及时发现变压器异常。d)测量油中的糠醛含量。它可以判断变压器的老化程度。当色谱分析中的CO或CO2含量很高时,应进行此测量。 e)绝缘油的微水分析。

产品寿命可靠性测试

产品寿命可靠性测试方法 概念: ?平均失效时间: MTBF ( Mean Ti me bet ween Fai l ur es ),就是失效率的倒数,试验求得的MTBF设为θ,是相当于产品总运作时间除以总失效的次数。 ??平均失效时间的最低接收值( θ1) : Mi ni mum Accept abl e Mean Ti me Bet ween Fai l ur es , 是根据能够容忍错误接收产品的特定风险而决定出。 规定的平均失效时间( θ0) : Speci f i ed Mean Ti me Bet ween Fai l ur e,是一种在规格书上所订定的MTBF值此值是用平均失效时间的最低接收值θ1乘上判别比率( Di scr i mi nat i on Rat i o) θ0/ θ1而得。它是用来限制生产者的冒险率( α)。 ??判别比率( θ0/ θ1) : Di scr i mi nat i on Rat i o,是规定的平均失效时间与平均失效时间的最低 接收值之比,也即是在可靠性试验下,可视为合格之最坏的可靠性特性值的界限值与尽可 能视为不合格之可靠性的特性值的界限值之比。 风险( Deci si on Ri sks) : ( 1)消费者的风险( Consumer’s Deci si on Ri sk: β) :消费者接收较差的MTBF( θ1)的机率称之为消费者的风险。 ( 2)生产者的风险( Pr oducer’s Deci si on Ri sk: α) :拒绝接收产品的真实MTBF为θ0之机率称之为生产者的风险。 1.寿命可靠性验证试验( Demonst r at i on Test ) 该试验适用于DMT/ PMT验证时期的产品可靠性测试,建议采用一次抽样可靠性试验( Sequent i al Rel i abi l i t y Test i ng)。 一次抽样可靠性测试设计及评估方法: ??首先确认产品Spec.规定的MTBF值及信赖度水平( 1- α) 依照下列公式与测试计划给予的时间要求确定测试样品的数量及测试时间 MTBF Cal cul at i on For mul a 2×T MTBF= χ 2 α ( ,2R+ 2) T = Tot al Power On Ti me, R = Tot al Fai l ur e number ; α = 1?confidence= 1?0.9 Ref er ence Tabl e: Conf i dence Level Fai l ur e Q’t y 90% 10% χ 2(α,2R+ 2) χ 2(α,2R+ 2) 0 1 2 3 4 4. 6 7. 78 10. 6 13. 4 16 0. 21 1. 07 2. 21 3. 49 4. 87

电机的寿命和可靠性

精心整理 电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所 2 3 4 场合,负荷大小,工作环境条件,工作制长短等,通过电路、磁路计算选取合理的发热和磁路参数,决定电机各主要零部件的关键尺寸,并通过这些主要条件进行机械强度计算,最终绘制电机主要零部件的工作图及总装图,设计时必须同时考虑到制作时良好的工艺性及制造成本的经济合理性。 下面列出一些直流微电机中常用的电磁计算公式及应控制的电磁设计参数。

1、 P N =0.1047n N T N 其中:P N ——额定功率(瓦) T N ——额定转矩(牛·米) n N ——额定转速(转/分) 2、N n N P aE N N ???=Φ81060 3、4 5、P l =U N I N 其中:P l ——电机输入功率(瓦) 6、l P P ∑-=1η 其中:∑P ——电机总损耗(瓦)

电机的主要发热和磁路参数有定子电流密度,转子电流密度,电枢线负载,电枢发热因素,每极磁通量,气隙磁通密度,电枢齿部磁通密度等。 7、321016.0-?=a a i N l D AB T δα 其中 i α——电机计算极弧系数 δB ——气隙磁通密度(高斯) l D 1、换向器精车:换向器是一个高速运转的部件,其工作面与电刷滑动接触并传送电能,因此要求其工作面必须是一个稳定的圆柱体,径向跳动小于等于0.01,不得有凹片和凸片,表面光洁度要达到Ra0.8以下(相当于原87~??) 换向器精车必须使用高精度的车床,床身和传动机构牢固、可靠、且应避免默默振动的影响。切屑量、切屑速度和走刀量要选取合理。金刚石车刀由于硬度高、耐

产品与设备可靠性分析

设备与产品的可靠性诊断分析 摘要:可靠性分析在发现产品在设计、材料和工艺等缺陷方面有重要作用, 经分析和改进,可以提高产品的可靠性,为改善产品的战备完好性、提高任务成功率、减少维修保障费用提供信息,创造更高的经济效益。本文主要介绍了研究设备和产品可靠性分析的目的和意义,我国机械设备的可靠性现状以及设备和产品的可靠性分析试验,最后结合最近的可靠性的发展,介绍了设备和产品可靠性分析的发展趋势,从而对设备和产品可靠性分析的应用和发展有一个全面的、客观的认识。 关键字:设备;产品;可靠性分析 一.绪论 1.可靠性分析的目的和意义 可靠性作为产品质量和技术措施的一个最重要的指标已受到世界各工业国家的高度重视,因为任何产品和技术,尤其是高科技产品、大型设备及超大型设备的制造,尖端技术的发展,都要以可靠性技术为基础,科学技术的发展又要求高可靠性。 可靠性是衡量产品质量的一项重要指标,可靠性问题与经济效益和人身安全密切相关。随着科学技术的迅猛发展,大量的复杂系统被研发和应用,这些复杂系统在生产实践中发挥着巨大的作用,对其可靠性进行分析和对系统进行优化设计是系统设计者和管理者必须高度重视的问题。 可靠性包括可靠性数学、可靠性物理、可靠性管理及可靠性工程,其主要研究内容为产品或系统故障发生的原因、故障的消除和预防措施。可靠性分析的主要研究目的为保证产品的可靠性和可用性、延长使用寿命、降低维修费用、提高产品的用效益。现代科学技术和工业以惊人的速度向前发展,产品产量、参数的提高,使用条件的苛刻以及大量新技术、新工艺、新材料的应用,使产品可靠性问题日益突出,可靠性已经不仅影响产品的性能,而且关系到一个国家的经济发展和安全稳定,成为当今人们致力研究的对象。 2.我国机械设备可靠性现状 可靠性问题只是在第二次世界大战前后,才真正开始受到重视。从 50 年代至今,可靠性理论这门新兴学科以惊人的速度发展着,各方面都已积累了丰富的经验。 我国机械工业底子薄,上世纪七八十年代不少大型成套设备和精密自动化设备不能自行设计制造。产品可靠性差、能耗高,有效寿命多数只相当先进国家相应产品的1/3-1/2。 改革开放以来,特别是我国加入WTO之后,极大地促进了我国机械工

(整理)产品可靠性分析

ISAS项目文档

目录 目录 (2) 产品可靠性分析 (5) 摘要 (5) 1、产品可靠性分析的背景及意义 (6) 1.1、可靠性分析的背景 (6) 1.2、可靠性分析的意义 (8) 1.2.1、满足现代技术和生产的需要 (8) 1.2.2、获得高的经济效益 (8) 1.2.3、提高竞争能力 (9) 2、可靠性建模 (9) 2.1、可靠性建模的概述 (9) 2.2、典型的可靠性模型 (10) 2.2.1、串联模型 (10) 2.2.2、并联模型 (11) 2.2.3、r/n表决模型 (12) 2.2.4、旁联模型 (13) 2.2.5、小结 (14) 3、可靠性分配 (15) 3.1、可靠性分配概述 (15) 3.2、可靠性分配的定义 (15)

3.3、可靠性分配理论与现状 (16) 3.4、可靠性分配方法分类 (18) 3.4.1、快速分配法 (18) 3.4.2、等分法 (18) 3.4.3、基于故障率的分配方法 (18) 3.4.4、基于危险因子和复杂性因子的分配方法 (19) 3.4.5 、AHP (Analytic Hierarchy Process) (19) 3.4.6 、基于故障树的分配方法 (19) 4、FMECA (20) 4.1、故障模式影响分析 (20) 4.2、危害性分析 (22) 4.3、实施FMECA应注意的问题 (23) 4.3.1、明确分析对象 (23) 4.3.2、时间性 (23) 4.3.3、层次性 (23) 5、FTA (25) 5.1、FTA概述 (25) 5.2、故障树分析法的产生与特点 (27) 5.2.1、故障树分析法的产生 (27) 5.2.2、故障树分析法的特点 (28) 5.3、故障树的构成和顶端事件的选取 (29) 5.4、故障树分析的基本程序 (29)

IGBT模块的寿命和可靠性研究

IGBT模块的寿命和可靠性研究 系统寿命与可靠性关系: 可靠性:产品在一定条件下无故障完成规定功能的能力或可能性 IGBT模块的失效模式: 功率周次 Power cycling: 功率周次用于评估绑定线和Die焊层的机械寿命 Power cycling can estimate the bonding wire and die solder’s lifetime π测试方法: 加载自加热,周期≤ 3秒,测试ΔTvj π Test method: Self heating by load, T_cycle ≤ 3 seconds, measure ΔTvj π失效判据:饱和压降 Vcesat 增大+5% π Failure criteria: Vcesat increase more than 5%

温度周次 Thermal cycling 温度周次用于评估DCB下焊接层的寿命 Thermal cycling can estimate DCB solder’s lifetime π测试方法: 通电加热,周期5分钟,测量ΔTc π Test method: Self heating by load, 5 min/, measure ΔTc π失效判据:热阻Rthjc 增大+20% π Failure criteria: R_thjc increase 20% 失效机理是两种材料不同的膨胀系数 (Different material’s CTE)[ppm/K]

不同应用下IGBT模块的寿命 Lifetime of IGBT module in different application There are many applications and similar types of power modules. Main objective is: how to select an active device in order to reach desired system lifetime? Is it possible to have power module suiting to all applications?

可靠性和使用寿命

可靠性和使用寿命 所谓产品的可靠性,实际上是以时间的方式来描述产品的质量,其经典定义是:在 规定的条件下和规定的时间内满意地完成规定功能的概牢。比如说,一合电冰箱.厂 家 设计它的使用寿命为10年,那么生产出的电冰箱在以后实际的工作中是否能满意地工作 10年呢?也就是说,它工作10年的概率有多大?概率越大,其可靠性就超高,反之则低。 经典定义所强调的共有四个方面,即概率、性能要求、使用条件和干均无故障工作时间。 由此可以确定故障与使用寿命的函数随时间而变化,并呈现出不同的特性,如图3—1所 示。从图中可以看到,任何电器设备的故障发生期均可分为三个阶段,即早期故障、 使用 期故障和损耗期故障。早期故障一般是指在仓库存放或销售期间,运输过程中,以及 用 户购买后使用半年左右的时间范围。这种故障一般是原发性的,有些是设计和生产中 的 问题,有些是工艺问题,也有的是个别不合格元器件未被剔除而失效。如果是运输中 出现的故障,如破损、元器件压碎等,在商店选购时其AVX钽电容故障就会显露出来,一般不会到用

户手中,这些产品由生产厂家或批发商直接负责。而在月户使用过程中的早期性故障 一 般表现为:焊接或密封不良,接点不良.元器件装配不当,偶发性故障等,这也不要紧, 因为一般的大型电子产品,这段时间都由厂家或特约的维修网点保修。过f早期故障期, 产品即进行了老化,开始进入使用期,在这一段时间内其故障率是最少的,见图3—1中曲 线比较平坦的一段,我们通常所说的使用寿命大都是这段时间。当然,不同的电子产 品 有不同的使用寿命,据日本有关资料统计,几种常用家电的使用寿命见表3—1所示。使用 期所发生的故障大多属于病发性的,一般是由于某一个元件或几个性能较差的元器件 的 性能变化或偶尔破坏性损坏。如人为故障,雷电击坏等,一般更换单只元器件,重新 调 整电路特性,故障即可排除。使用期过后,整机开始进入损耗期,这一时期,电路的 故钽电容 障较多,而且会越来越多,有时会同时几处出现故障。这个时期的故障属于损坏性的.因 电器设备一般比较复杂,采用的元器件较多,经过较长时间的损耗,元器件的持性变差、 性能衰老.出现疲劳而失效。损耗期除了要更换失效的元器件外,还要加以整机调试,有

生产线可靠性研究--综述

可靠性概述 “可靠性”作为衡量产品质量的一个重要指标,早己不是一个新的概念。可 靠性理论是以产品的寿命特征作为主要研究对象的一门综合性和边缘性科学,它 涉及到基础科学、技术科学和管理科学的许多领域。长期以来,一切注重产品 信誉的厂家,为了争取顾客都在追求其产品具有好的可靠性。因为只有那些可靠 性好的产品才能长期发挥其使用性能而受到客户的欢迎。不仅如此,有些产品如 汽车、轮船、飞机,如果其关键零部件不可靠,不仅会给用户带来不便,耽误时 间、推迟日程,造成经济损失,甚至还可能直接危及使用者的生命安全。像美国 “挑战者”号航天飞机、苏联切尔诺贝利核电站等发生的重大可靠性事故所引起 的严重后果,都足以说明产品的可靠性差会引起一系列严重问题,甚至会危及国 家的荣誉和安全。而1957年苏联第一颗人造卫星升天,1969年美国阿波罗11 号宇宙飞船载人登月等可靠性技术成功的典范,不仅为其国家带来荣耀,而且说 明了高科技的发展要以可靠性技术为基础,科学技术的发展又要求高的可靠性。 早期人们对“可靠性”这一概念的理解仅仅从定性方面,而没有数值量度。 但为了更好地表达可靠性的准确定义,不能只从定性方面来评价它,而应有定量 的尺度来衡量它。在第二次世界大战后期,德国火箭专家R Lusser首先提出用概 率乘积法则,将系统的可靠度看成其各子系统的可靠度乘积,从而算得VII型火 箭诱导装置的可靠度为75,首次定量地表达了产品的可靠性。但只是从50年 代初期开始,在可靠性的测定中更多地引进了统计方法和概率概念以后,定量的 可靠性才得到广泛应用,可靠性问题才作为一门新的学科被系统地加以研究。 60年代以来,空间技术和宇航技术的发展提高了可靠性的研究水平,扩展 了其研究范围,对可靠性的研究,以及由电子、航空、宇航、核能等尖端工业部 门扩展到电机与电力系统、机械、动力、土木等一般产业部门,扩展到工业产品 的各个领域。对机械产品,尤其是对大批量生产的汽车产品的可靠性研究,已成 为重要课题,并且取得了可喜的成果,例如,1959年在国际市场上小轿车的保 用期为90天或4000英里,而到70年代初提高到5年或50000英里[[ 19]。当今, 提高产品的可靠性己经成为提高产品质量的关键。今后只有那些可靠性高的产品 及其企业,才能在竞争日益激烈的世界上幸存下来。不仅如此,国外还把对产品 可靠性的研究工作提高到节约能源和资源的高度来认识。这不仅因为高可靠性产 品的使用期长,而且通过可靠性设计,可以有效地利用材料,减少加工工时,获 得体积小、重量轻的产品。 利用概率论的方法可把产品发生故障的规律作为随机现象来研究。所以,通 常所说的可靠度,一般不是指某一特定具体产品的可靠度,而是对该种型号产品 总体可靠度而言。当然,就一些单个产品而言,如果能在其长期运行的条件下, 观测其故障规律,则不仅能够估计出一些产品的可靠性,也能估计出该种产品总 体的可靠性。在现代生产中,可靠性技术已贯穿于产品的开发研制、设计、制造、试验、使用、运输、保管及维修保养等各个环节。从经济的观点来讲,为了减少 维修费用,提高产品的利用率,高可靠性是非常必要的。但也不是可靠性最好时 总的消耗费用一定最低,因为还有产品的制造成本问题,需要综合考虑、优化选 择,以找出使总费用最低的最佳可靠度。 产品的可靠性是设计出来的,生产出来的,管理出来的四。这一思想越来越 为人们所理解。多年来世界各国开展可靠性工作的经验证明,可靠性设计对产品 可靠性有重要影响。据日本电子行业的统计,产品不可靠的原因中,设计占80% 元器件占15%,制造工艺占5%。又据美国海军电子实验室统计,产品的不可靠

产品寿命可靠性试验MTBF计算规范

产品寿命可靠性试验MTBF计算规范 一、目的: 明确元器件及产品在进行可靠性寿命试验时选用标准的试验条件、测试方法 二、范围: 适用于公司内所有的元器件在进行样品承认、产品开发设计成熟度/产品成熟度(DMT/PMT)验证期间的可靠性测试及风险评估、常规性ORT例行试验 三、职责: DQA部门为本文件之权责单位,责权主管负责本档之管制,协同开发、实验室进行试验,并确保供应商提交的元器件、开发设计产品满足本文件之条件并提供相关的报告。 四、内容: MTBF:平均无故障时间 英文全称:Mean Time Between Failure 定义:衡量一个产品(尤其是电器产品)的可靠性指标,单位为“小时”.它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力.具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔,它仅适用于可维修产品,同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF

MTBF测试原理 1.加速寿命试验 (Accelerated Life Testing) 1.1执行寿命试验的目的在于评估产品在既定环境下之使用寿命. 1.2 常規试验耗時较长,且需投入大量的金钱,而产品可靠性资讯又不能及时获得并加以改善. 1.3 可在实验室时以加速寿命试验的方法,在可接受的试验时间里评估产品的使用寿命. 1.4 是在物理与时间基础上,加速产品的劣化肇因,以较短的时间试验来推定产品在正常使用状态的寿命或失效率.但基本条件是不能破坏原有设计特性. 1.5 一般情況下, 加速寿命试验考虑的三个要素是环境应力,试验样本数和试验时间. 1.6 一般电子和工控业的零件可靠性模式及加速模式几乎都可以从美軍规范或相关标准查得,也可自行试验分析,获得其数学经验公式. 1.7 如果溫度是产品唯一的加速因素,則可采用阿氏模型(Arrhenius Model),此模式最为常用. 1.8 引进溫度以外的应力,如湿度,电压,机械应力等,則为爱玲模型(Eyring Model),此种模式适用的产品包括电灯,液晶显示元件,电容器等. 1.9反乘冪法則(Inverse Power Law)适用于金属和非金属材料,如轴承和电子装备等.

电机温升测试

电机温升试验 电机中绝缘材料的寿命与运行温度有密切的关系,为保证电机安全、合理的使用,需要监视与测量电机绕组、铁心等其他部分的温度。按国家标准规定,不通绝缘等级的电机绕组有不同的允许温升,如下表所示 若超过规定值,如对B级绝缘的电机,温升每增加10度,电机的寿命将降低一半。因此电机的温升试验,准确的测取个部件的温度,对改进电机的设计和制造工艺,提高电机的质量是非常重要的对电机绕组和其他各部分的温度测量,目前虽已采用不少先进技术,仍可归纳为电阻法、温度计法、埋置检温计法三种基本方法。 一、电阻法 在一定的温度范围内,电机绕组的电阻值将随着温度的上升而相应的增加,而且其阻值与温度之间存在着一定的函数关系。根据这一原理,可以通过测定电机绕组的电阻来确定其温度,故称电阻测量法。 当绕组温度在-50~150度范围时,其温升有下式确定

Δθ=(R f-R0)(k+θ0)/R0+θ0-θf 式中R0、θ0分别为绕组的实际冷态电阻和环境温度;R f、θf分别为绕组热态式电阻和环境温度;k为常数,对铜绕组为235,对铝绕组225 如果不能采用带电测量装置,可采用较先进的快捷、准确、数字显示的各种毫欧表或微欧计等直流电阻测量仪。其基本工作原理是采用高准确度、高稳定度的恒流电源所产生的直流电流通到被测电阻上,则电阻两端的电压降将严格的按照电阻值变化 二、温度计法 对电机中不能采用电阻法测量的部位,如定子铁心,轴承及冷却介质等,可采用温度计法来测量。 温度计法是用温度计贴附在可接触的表面来测量温度,所测得的温度是被测点的表面温度。为了减小误差,从被测点到温度计的热传导尽可能的良好,将温度计球面部分用绝热材料覆盖,以免周围冷却介质的影响。温度计除包括水银、酒精等膨胀式温度计外,也包括半导体温度计及非埋置的热电耦或电阻温度计。在电机中存在交变磁场的部分,不可采用水银温度计,因为交变磁场在水银中产生涡流会发热,以致影响测量的准确性。 三、埋置检温计法 埋置检温计法是讲电阻检温计、热电耦或半导体热敏元件埋植于电机内部不能触及的部位,如定子绕组的槽部和铁心内等,经连接导线引到电机外的二次仪表,从而测定温度值。在测量时应控制测量

机械设备可靠性分析论文

机械设备可靠性分析摘要:机械的可靠性设计在机械设计中具有重要的作用,它对机械是否能够稳定的工作起决定性的作用。本文主要介绍了机械可靠性设计的特点,机械可靠性设计的流程,以及在机械可靠性设计中的常用的可靠性分析方法和设计技术,最后结合最近的机械可靠性的发展,介绍了机械可靠性设计的发展趋势,从而对可靠性技术在机械领域的应用和发展有一个全面的、客观的认识。 引言:随着科学技术的发展,对产品的要求不断提高,不仅要具有好的性能,更要具有高的可靠性水平。采用可靠性设计弥补了常规设计的不足,使得设计方案更加贴近生产实际。所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。可靠性工程的诞生已近半个世纪的历史, 以电子产品可靠性设计为先导的可靠性工程迄今发展得比较成熟, 已形成一门独立的学科。相比之下, 机械产品的可靠性设计与研究则起步较晚。所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料特性的离散性以及测量、加工、制造和安装误差等因素的影响,使机械产品的系统参数具有固有的不确定性,因此考虑这种固有随机性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。上世纪60年代, 对机械可靠性问题引起了广泛的重视并开始对其进行了系统研究。虽然国内外都投入了研究力量, 取得了一定的进展,但终因机械产品可靠性涉及的领域太多、可靠性研究的范围大、基础性数据缺乏等原因,机械可靠性设计在工程实际中应用得并不广泛。本文简要介绍了可靠性技术在机械领域中的应用,主要介绍了一些在机械产品设计中应用的较为成熟的可靠性技术和可靠性设计方法,并且结合当今可靠性工程学科的发展,指出了可靠性技术在机械领域中的发展和趋势。 正文:机械产品的可靠性要受到诸多因素的影响,从产品的设计、制造、试验,到产品使用和维护,都会涉及到可靠性间题,也就是说它贯穿于产品的整个寿命周期之内。如何使产品在整个寿命周期内失效率最小,有效度高,维修性好,经济效益大,经济寿命长,是我们对产品进行可靠性设计的根本目的。机械产品的可靠性设计并不是一种崭新的设计方法, 而是在传统机械设计的基础上引入以概率论和数理统计为基础的可靠性设计方法。这样的设计可以更科学合理地获得较小的零件尺寸、体积和重量, 同时也可使所设计的零件具有可预测的寿命和失效率, 从而使产品的设计更符合工程实际。 目前在机械工程中可靠性设计主要应用在产品的设计、制造、使用和维修等方面。现代生产的经验表明,在设计、制造和使用的三个阶段中,设计决定了产品的可靠性水平,即产品的固有可靠性,而制造和使用的任务是保证产品可靠性指标的实现。可靠性试验数据是可靠性设计的基础,但是试验不能提高产品的可靠性,只有设计才能决定产品的固有可靠性。图1所示为三者的关系。 图1 机械产品与可靠性关系框图 机械产品的设计,它包括整机产品的设计和零部件的设计。整机产品可将其作为一个系统进行设计,设计的方式主要有两种,第一种是根据零部件的可靠性预测结果,计算产品系统的可靠性指标,这就是系统的可靠性预测,其结果满足指标要求即可。如果不能满足要求,就要按第二种方式

电机的寿命和可靠性

电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10——15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。 绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。 电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级,一台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。 微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见下表: 表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DMD纤维纸,聚酯薄膜纸,尼龙一体成型槽绝缘等。 2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。 3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。 4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。 二、合理设计——电机寿命和可靠性的先天保证 电机设计是产品质量链中的第一环节,如果设计不合理,甚至不

直流马达寿命测试规程

1 目的 1.1 直流马达寿命测试的目的就是通过直流马达在模拟工作条件下的正常寿 命,来判断其是否达到设计或改进的预期效果,以完成设计或改进之验 证和确认的目的。 2 范围 2.1 此标准仅适用于低伏直流马达。 2.2 本标准是依据马达的实际应用情况制定。 3 定义 3.1 额定电压:客家指定或设计指定的、可使马达正常工作的电压。一般是 指马达两端的电压。(单位:V或 mV) 3.2 额定电流:额定电压下的电流值或在最低的额定电压范围,在电器用品 上所注明之实际用电流。(单位:A 或 mA) 3.3 额定转速:客家指定或设计指定的、马达工作在额定电压和额定负载下 的转速。(单位:rpm) 3.4 额定负载:客家指定或设计指定的、作为马达承受的负荷(单位:g-cm或 N –cm)。负载力矩=砝码重量(g或N)×力矩轮半径即力臂(cm)。 3.5 马达转向:从输出端看,顺时针方向旋转为CW,逆时针方向旋转为 CCW。 4 仪器清单 4.1 电源供应器(MEILI 牌 MCH-305DB )给马达提供工作电压(精确度: 0.01V)。 4.2 微电机寿命测试仪(欧捷电子)控制马达运转时间和停止时间及转动方向 (精确度:1S)。 4.3 力矩轮和吊线砝码作为马达的模拟负载(精确度:0.01g-cm)。 4.4 专用的夹具。 4.5 万用表(EZ牌DM-341T和VICTOR牌VC-9806+)使测量数据更为准 确(精确度:0.01V&0.01A)。 4.6 示波器(OSCILLOSCOPE牌V-212)使马达的真实性能反映的更为准 确。

5 准备工作 5.1 环境条件 除非有特殊注明之外,所有测试要在室温为15℃—35℃,相对湿 度在45%—75%的条件下进行. 5.2 夹具: 夹具一定要达到将马达固定的作用,避免在测试的过程中影响其 真实性能. 5.3 负载点: 根据性能测试实验的基本要求,测试的负载点要选性能曲线图中 最高效率的负载点 6 测试程序 6.1仔细阅读《马达测试工作单》,认真检查测试发起人所提供被测试之马 达是否与工作单一致,注意其它测试要求,并将《马达测试工作单》在 明显位置悬挂。 6.2挑选合适的负载(力矩轮,砝码) 6.1.1 力矩轮和砝码是提供标准负载的设备,为达到满足测试要 求的目的,一般情况下,砝码的选用请参照下列“表格一”中的 数据进行。 附表一

相关文档
最新文档