2013艺术生高考数学复习学案(三)
广州艺术生高考数学复习资料3三角函数性质与图像

三角函数性质与图像 知识清单:..........函数s i n ()y A x ωϕ=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x=−−−−→图例变化为②sin()y A x ωϕ=+(A >0,ω>0)相应地,①的单调增区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦−−−→变为2222k x k πππωϕπ-+++≤≤的解集是②的增区间.注:⑴)sin(ϕω+=x y 或cos()y x ωϕ=+(0≠ω)的周期ωπ2=T ;⑵sin()y x ωϕ=+的对称轴方程是2x k ππ=+(Z k ∈),对称中心(,0)k π;cos()y x ωϕ=+的对称轴方程是x k π=(Z k ∈),对称中心1(,0)2k ππ+;)tan(ϕω+=x y 的对称中心(0,2πk ).课前预习1.函数sin cos y x x =-的最小正周期是 2π . 2. 函数1π2sin()23y x =+的最小正周期T = 4π .3.函数sin2x y =的最小正周期是2π4.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是]65,3[ππ5.函数22cos()()363y x x πππ=-≤≤的最小值是16.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向左平移3π个单位长度7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移3π个单位,所得图象的解析式是y=sin(21x+6π).8.函数sin y x x =+在区间[0,2π]的最小值为___1___.9.已知f (x )=5sin x cos x -35cos 2x +325(x ∈R )⑴求f (x )的最小正周期;y=5sin(2x-3π) T=π ⑵求f (x )单调区间;[k 12ππ-,k π+125π], [k 125ππ+,k π+1211π]k Z ∈⑶求f (x )图象的对称轴,对称中心。
2013届高考数学-考点单元复习教案3

2013届高考数学-考点单元复习教案3不等式1.理解不等式的性质及其证明.2.掌握两个(注意不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用.3.掌握分析法、综合法、比较法证明简单的不等式.4.掌握简单不等式的解法.5.理解不等式| a |-| b| ≤| a+b |≤| a |+| b |.设a,b∈R,则a>b⇔;a=b⇔;a<b⇔ .实数的大小比较法则,它是比较两个实数大小的依据,要比较两个实数的大小,只要考察它们的就可以了.实数的大小比较法则与实数运算的符号法则一起构成了证明其它不等式性质的基础.2、不等式的5个性质定理及其3条推论定理1(对称性) a>b ⇔定理2(同向传递性) a>b,b>c⇒定理3 a>b⇔a+c > b+c推论 a>b,c>d⇒定理4 a>b,c>0⇒a>b,c<0⇒推论1 (非负数同向相乘法)a>b≥0,c>d≥0⇒推论2 a>b>0 ⇒nn ba> (n∈N且n>1)定理5 a>b>0⇒>n a n b (n∈N且n>1)例1. 设f(x)=1+logx 3,g(x)=2logx2,其中x>0,x≠1.比较f(x)与g(x)的大小.典型解:(1)(x 2-y 2)(x +y)<(x 2+y 2)(x -y)(2)a ab b>a bb a变式训练1:不等式log 2x+3x 2<1的解集是____________.答案:{x|-23<x <3且x≠-1,x≠0}。
解析::2231023x x x +>⎧⎨<<+⎩或()()202313,,11,00,3223x x x x <+<⎧⎛⎫∴∈---⎨ ⎪>+⎝⎭⎩。
例2. 设f(x)=1+log x 3,g(x)=2log x 2,其中x >0,x ≠1.比较f(x)与g(x)的大小.解:当0<x <1或x >34时,f(x)>g(x);当1<x <34时,f(x)<g(x); 当x =34时,f(x)=g(x).变式训练2:若不等式(-1)na <2+nn 1)1(+-对于任意正整数n 恒成立,则实数a 的取值范围是 .例3. 函数)(x f =ax 2+bx 满足:1≤)1(-f ≤2,2≤)1(f ≤4,求)2(-f 的取值范围.解:由f (x)=ax 2+bx 得f (-1)=a -b ,f (1)=a +b ,f (-2)=4a -2b a =21[f (1)+f(-1)],b =21[f (1)-f(-1)] 则f(-2)=2[f (1)+f (-1)]-[f (1)-f (-1)]=3f (-1)+f (1)由条件1≤f(-1)≤2,2≤f (1)≤4可得3×1+2≤3f(-1)+f(1)≤3×2+4 得f (-2)的取值范围是5≤f (-2)≤10.变式训练3:若1<α<3,-4<β<2,则α-|β|的取值范围是 . 解: (-3,3)例4. 已知函数f (x)=x 2+ax +b ,当p 、q 满足p +q =1时,试证明:pf (x)+qf (y)≥f (px +qy)对于任意实数x 、y 都成立的充要条件是o≤p≤1.证明:∵pf (x)+qf (y)-f (px +qy)=pq(x -y)2=p(1-p)(x -y)2充分性:当0≤p≤1时,2))(1(y x p p --≥0从而)()()(qy px f y qf x pf +≥+必要性:当)()()(qy px f y qf x pf +≥+时,则有2))(1(y x p p --≥0,又2)(y x -≥0,从而)1(p p -≥0,即0≤p≤1.综上所述,原命题成立.变式训练4:已知a >b >c ,a +b +c =0,方程ax 2+bx +c =0的两个实数根为x 1、x 2.(1)证明:-21<a b<1;(2)若x 21+x 1x 2+x 22=1,求x 21-x 1x 2+x 22;(3)求| x 21-x 22|.解:(1)∵a >b >c ,a +b +c =0,∴3a >a +b +c ,a >b >-a -b ,∴a >0,1>a b a b -->1 ∴-121<<a b(2)(方法1)∵a +b +c =0 ∴ax 2+bx +c =0有一根为1,不妨设x 1=1,则由1222121=++x x x x 可得 ,0)1(22=+x x 而)03(0212=++<<==c b a c acx x x ,∴x 2=-1, ∴3222121=+-xx x x(方法2)∵acx x a b x x =-=+2121,由222221221222121)(a b a c ab x x x x x x x x =-=-+=+++ 1122=++=+a bab a b a ,∴,022=+aba b ∵,0,121=∴<<-aba b ∴2121222121x x x x x x x +=+-3)(21212212122=++=-=-+ab a x x x x x (3)由(2)知,1)1()(11222222221-+=+-=-=-a b ab a ac x x ∴2121<+<a b ,∴4)1(412<+<ab ∴31)1(432<-+<-ab∴[)3,02221∈-x x归纳1.不等式的性质是证明不等式与解不等式的重要而又基本的依据,必须要正确、熟练地掌握,要弄清每一性质的条件和结论.注意条件的放宽和加强,条件和结论之间的相互联系.2.使用“作差”比较,其变形之一是将差式因式分解,然后根据各个因式的符号判断差式的符号;变形之二是将差式变成非负数(或非正数)之和,然后判断差式的符号.3.关于数(式)比较大小,应该将“相等”与“不等”分开加以说明,不要笼统地写成“A≥B(或B≤A)”.第2课时算术平均数与几何平均数1.a>0,b>0时,称为a,b的算术平均数;称为a,b的几何平均数.2.定理1 如果a、b∈R,那么a2+b22ab(当且仅当时取“=”号)3.定理2 如果a、b∈+R,那么2ba+≥(当且仅当a=b时取“=”号)即两个数的算术平均数不小于它们的几何平均数.4.已知x、y∈+R,x+y=P,xy=S. 有下列命题:(1) 如果S是定值,那么当且仅当x=y时,x+y 有最小值 .(2) 如果P 是定值,那么当且仅当x =y 时,xy 有最大值 .例1.设a 、b ∈R +,试比较2b a +,ab,222b a +,ba 112+的大小.解:∵a、b ∈R +,∴b a 11+≥2ab1即ba 112+≤ab,当且仅当a =b 时等号成立. 又42)2(222abb a ba ++=+≤42222b a b a +++=222b a + ∴2b a +≤222b a +当且仅当a =b 时等号成立. 而ab≤2ba + 于是ba 112+≤ab≤2ba +≤222b a +(当且仅当a =b 时取“=”号). 说明:题中的ba 112+、ab、2b a +、222b a +分别叫做正数的调和平均数,几何平均数,算术平均数,平方平均数.也可取特殊值,得出它们的大小关系,然后再证明. 变式训练1:(1)设,a R ∈b ,已知命题:p a b =;命题222:22a b a bq ++⎛⎫≤⎪⎝⎭,则p 是q 成立的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 解:B.解析: a b =是22222a b a b ++⎛⎫≤ ⎪⎝⎭等号成立的条件.(2)若,,a b c 为△ABC 的三条边,且222,S a b c p ab bc ac=++=++,则( )A .2S p ≥B . 2p S p <<C .S p >D .2p S p ≤< 解:D .解析:2222221()[()()()]0,2S p a b c ab bc ac a b b c a c S p-=++-++=-+-+-≥∴≥,又∵222222222||,||,||,2,2,2a b c b c a a c b a ab b c b bc c a a ac c b -<-<-<∴-+<-+<-+<∴2222(),2ab c ab bc ac S p++<++∴<。
2013高考数学第二轮复习学案_第1--8讲答案

1第1讲 二次函数一、课前热身1、D 2 110 3、D 4、(-∞,-1) 二、例题探究例1. 解:令sin t x =,[1,1]t ∈-,∴221()(2)24a y t a a =--+-+,对称轴为2at =,(1)当112a -≤≤,即22a -≤≤时,2max 1(2)24y a a =-+=,得2a =-或3a =(舍去).(2)当12a>,即2a >时,函数221()(2)24a y t a a =--+-+在[1,1]-单调递增,由max 111242y a a =-+-+=,得103a =.(3)当12a <-,即2a <-时,函数221()(2)24a y t a a =--+-+在[1,1]-单调递减,由max 111242y a a =---+=,得2a =-(舍去).综上可得:a 的值为2a =-或103a =.例2. 解法一:由题知关于x 的方程22(21)20x a x a --+-=至少有一个非负实根,设根为12,x x则120x x ≤或121200x x x x ∆≥⎧⎪>⎨⎪+>⎩,得94a ≤≤.解法二:由题知(0)0f ≤或(0)0(21)020f a >⎧⎪--⎪->⎨⎪∆≥⎪⎩,得94a ≤. 例3. 解:(1)2()3f x x x =--,0x 是()f x 的不动点,则2000()3f x x x x =--=,得01x =-或03x =,函数()f x 的不动点为1-和3.(2)∵函数()f x 恒有两个相异的不动点,∴2()(1)0f x x ax bx b -=++-=恒有两个不等的实根,224(1)440b a b b ab a ∆=--=-+>对b R ∈恒成立, ∴2(4)160a a -<,得a 的取值范围为(0,1). (3)由2(1)0ax bx b ++-=得1222x x b a +=-,由题知1k =-,2121y x a =-++,2设,A B 中点为E ,则E 的横坐标为21(,)2221b b a a a -++,∴212221b b a a a -=++,∴2112142a b a a a=-=-≥-++,当且仅当12(01)a a a =<<,即2a =时等号成立,∴b的最小值为4-.冲刺强化训练(1)1、A2、A3、C4、,或它们的某个子集。
高考数学总复习学案:数学思想专项训练(三)《分类讨论思想》(北师大版)

数学思想专项训练(三) 分类讨论思想一、选择题1.已知集合A ={a ,b,2},B ={2,b 2,2a },且A ∩B =A ∪B ,则a =( ) A .0 B.14 C .0,14D .-14,02.函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1, x ≥0,若f (1)+f (a )=2,则a 的所有可能值为( )A .1B .-22 C .1,-22D .1,223.若直线l 过点P (-3,-32)且被圆x 2+y 2=25截得的弦长是8,则直线l 的方程为( )A .3x +4y +15=0B .x =-3或y =-32C .x =-3D .x =-3或3x +4y +15=04.三棱柱底面内的一条直线与棱柱的另一底面的三边及三条侧棱所在的6条直线中,能构成异面直线的条数的集合是( )A .{4,5}B .{3,4,5}C .{3,4,6}D .{3,4,5,6}5.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是( ) A .a >1B .0<a <1C .0<a ≤12D .0<a <36.已知集合A ={x |x 2-4x +3<0},集合B ={x |x 2-ax +a -1<0},命题p :x ∈A ,命题q :x ∈B ,若綈q 是綈p 的必要不充分条件,则实数a 的取值范围是( )A .0<a ≤2B .0<a ≤1C .2≤a ≤4D .2<a <4二、填空题7.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a ,b 的取值范围是________. 9.若数列{a n }满足a 1a 2a 3…a n =n 2+3n +2,则数列{a n }的通项公式为________. 10.非负整数a ,b ,满足|a -b |+ab =1,记集合M ={(a ,b )},则集合M 中元素的个数为________.三、解答题11.在等差数列{a n }中,a 1+a 3=-8,a 2+a 4=-14. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为c 的等比数列,求数列{b n }的前n 项和S n .12.已知函数f (x )和g (x )的图像关于原点对称,且f (x )=x 2+2x . (1)求函数g (x )的解析式; (2)解不等式g (x )≥f (x )-|x -1|;(3)若h (x )=g (x )-λf (x )+1在[-1,1]上是增函数,求实数λ的取值范围.13.已知焦点在y 轴上的椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)经过点A (1,0),且离心率为32.(1)求椭圆C 1的方程;(2)过抛物线C 2:y =x 2+h (h ∈R )上P 点的切线与椭圆C 1交于不同的两点M ,N ,记线段MN 与P A 的中点分别为G ,H ,当直线GH 与y 轴平行时,求h 的最小值.答 案1.选C 由A ∩B =A ∪B 知A =B ,又根据集合元素的互异性,有⎩⎪⎨⎪⎧a =2a ,b =b 2,a ≠b ,或⎩⎪⎨⎪⎧a =b 2,b =2a ,a ≠b ,解得⎩⎪⎨⎪⎧a =0,b =1,或⎩⎨⎧a =14,b =12,故a =0或14.2.选C ∵f (1)=e 1-1=1,∴f (a )=1, 若a ∈(-1,0),则sin(πa 2)=1,∴a =-22. 若a∈[0,+∞),则e a -1=1,∴a =1. 因此a =1或a =-22. 3.选D 若直线l 的斜率不存在,则该直线的方程为x =-3,代入圆的方程解得y =±4,故直线l 被圆截得的弦长为8,满足条件;若直线l 的斜率存在,不妨设直线l 的方程为y +32=k (x +3),即kx -y +3k -32=0,因为直线l 被圆截得的弦长为8,故半弦长为4,又圆的半径为5,则圆心(0,0)到直线l 的距离为52-42=23321k k -+,解得k =-34,此时直线l 的方程为3x +4y +15=0.4.选D 如图所示,当直线l 在图(1)、(2)、(3)、(4)中所示的位置时,与l 异面的直线分别有3条、4条、5条、6条,故能构成异面直线的条数的集合是{3,4,5,6}.5.选A 设函数y =a x (a >0且a ≠1)和函数y =x +a ,则函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)的图象与函数y =x +a 的图象有两个交点.由图象可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x (a >1)的图象过点(0,1),而直线y =x +a 的图象与y 轴的交点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.6.选C 由x 2-4x +3<0得,1<x <3,即A ={x |1<x <3},由x 2-ax +a -1<0得,[x -(a -1)](x -1)<0,由綈q 是綈p 的必要不充分条件可知p 是q 的必要不充分条件,即p 不能推出q ,但q 能推出p ,∴B A .若B =∅,则a =2,若B ≠∅,则1<a -1≤3,即2<a ≤4,综上可知,a 的取值范围是[2,4].7.解:当a >1时,y =a x 在[1,2]上递增,故a 2-a =a 2,得a =32;当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或a =32.答案:12或328.解析:①当a >0时,需x -b 恒为非负数,即a >0,b ≤0. ②当a <0时,需x -b 恒为非正数.又∵x ∈[0,+∞), ∴不成立.综上所述,由①②得a >0且b ≤0. 答案:a >0且b ≤09.解析:∵a 1a 2a 3…a n =n 2+3n +2,①∴当n ≥2时,a 1a 2a 3…a n -1=(n -1)2+3(n -1)+2=n (n +1).② ①÷②得,a n =n 2+3n +2n (n +1)=n +2n =1+2n (n ≥2),又a 1=12+3×1+2=6,不满足a n =1+2n,∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧6, n =1,1+2n , n ≥2.答案:a n =⎩⎪⎨⎪⎧6 ,n =1,1+2n,n ≥210.解析:由非负整数a ,b 满足|a -b |+ab =1,得⎩⎪⎨⎪⎧ |a -b |=0,ab =1,或⎩⎪⎨⎪⎧|a -b |=1,ab =0,即⎩⎪⎨⎪⎧ a =1,b =1,⎩⎪⎨⎪⎧a =0,b =1,或⎩⎪⎨⎪⎧a =1,b =0,即M ={(1,1),(1,0),(0,1)},所以集合M 中元素的个数为3.答案:311.解:(1)设数列{a n }的公差为d ,∵a 1+a 3=-8,a 2+a 4=-14,∴⎩⎪⎨⎪⎧2a 1+2d =-8,2a 1+4d =-14,解得a 1=-1,d =-3. ∴数列{a n }的通项公式为a n =a 1+(n -1)d =-1-3(n -1)=-3n +2. (2)由数列{a n +b n }是首项为1,公比为c 的等比数列, 得a n +b n =c n -1,即-3n +2+b n =c n -1,∴b n =3n -2+c n -1, ∴S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+c n -1)=n (3n -1)2+(1+c +c 2+…+c n -1). ∴当c =1时,S n =n (3n -1)2+n =3n 2+n 2;当c ≠1时,S n =n (3n -1)2+1-c n 1-c =n (3n -1)2+c n -1c -1.综上,数列{b n}的前n 项和S n=⎩⎪⎨⎪⎧3n 2+n2, c =1,n (3n -1)2+c n-1c -1,c ≠1.12.解:(1)设函数y =f (x )的图象上任一点Q (x 0,y 0)关于原点的对称点为P (x ,y ), 则⎩⎪⎨⎪⎧x 0+x 2=0,y 0+y 2=0,即⎩⎪⎨⎪⎧x 0=-x ,y 0=-y .又∵点Q (x 0,y 0)在函数y =f (x )的图象上, ∴-y =x 2-2x ,∴y =-x 2+2x . 即g (x )=-x 2+2x .(2)由g (x )≥f (x )-|x -1|,可得 2x 2-|x -1|≤0.当x ≥1时,2x 2-x +1≤0,此时不等式无解; 当x <1时,2x 2+x -1≤0,∴-1≤x ≤12.因此,原不等式的解集为[-1,12].(3)h (x )=-(1+λ)x 2+2(1-λ)x +1.①当λ=-1时,h (x )=4x +1在[-1,1]上是增函数,故λ=-1适合题意. ②当λ≠-1时,对称轴的方程为x =1-λ1+λ.当λ<-1时,1-λ1+λ≤-1,解得λ<-1;当λ>-1时,1-λ1+λ≥1,解得-1<λ≤0.综上所述,λ≤0.故实数λ的取值范围为(-∞,0].13.解:(1)由题意知⎩⎪⎨⎪⎧1b 2=1,c a =32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,c =3,所以椭圆C 1的方程为y 24+x 2=1.(2)设P (t ,t 2+h ),由y ′=2x ,得抛物线C 2在点P 处的切线的斜率为k =y ′|x =t =2t , 所以直线MN 的方程为y =2tx -t 2+h , 代入椭圆方程得4x 2+(2tx -t 2+h )2-4=0, 化简得4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0,又直线MN 与椭圆C 1有两个不同的交点,故 Δ=16[-t 4+2(h +2)t 2-h 2+4]>0, ①设M (x 1,y 1),N (x 2,y 2),线段MN 中点的横坐标为x 0,则x 0=x 1+x 22=t (t 2-h )2(1+t 2),设线段P A 中点的横坐标为x 3,则x 3=1+t2,由已知得x0=x3,即t(t2-h)2(1+t2)=1+t2,显然t≠0,h=-(t+1t+1),当t>0时,t+1t≥2,当且仅当t=1时取得等号,此时h≤-3,不符合①式,故舍去;当t<0时,(-t)+(-1t)≥2,当且仅当t=-1时取得等号,此时h≥1,满足①式.综上,h的最小值为1.。
2013高考数学教案和学案(有答案)--第8章__学案39

学案39 空间的平行关系导学目标:1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面、面面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系的简单命题.自主梳理1.空间直线与平面、平面与平面的位置关系(1)直线a和平面α的位置关系有三种:________、__________、__________.(2)两个平面的位置关系有两种:________和________.2.直线与平面平行的判定与性质(1)判定定理:如果平面外一条直线和这个________________平行,那么这条直线与这个平面平行.(2)性质定理:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.3.平面与平面平行的判定与性质(1)判定定理:如果一个平面内有________________都平行于另一个平面,那么这两个平面平行.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线________.自我检测1.下列各命题中:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;④垂直于同一直线的两个平面平行.不正确的命题个数是________.2.经过平面外的两点作该平面的平行平面,可以作______个.3.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是________.4.(2010·济南模拟)已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的________条件.5.(2010·南京二模)在四面体ABCD中,M、N分别是△ACD、△BCD的重心,则四面体的四个面中与MN平行的是________________.探究点一线面平行的判定例1已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ.求证:PQ∥平面CBE.变式迁移1 在四棱锥P—ABCD中,四边形ABCD是平行四边形,M、N分别是AB、PC的中点,求证:MN∥平面PAD.探究点二面面平行的判定例2在正方体ABCD—A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP ∥平面A1BD.变式迁移2 已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.(1)求证:平面G1G2G3∥平面ABC;(2)求S△G1G2G3∶S△ABC.探究点三平行中的探索性问题例3 如图所示,在四棱锥P —ABCD 中,CD ∥AB ,AD ⊥AB ,AD =DC =12AB ,BC ⊥PC .(1)求证:PA ⊥BC ;(2)试在线段PB 上找一点M ,使CM ∥平面PAD ,并说明理由.变式迁移3 如图所示,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO?1.直线与平面平行的主要判定方法:(1)定义法;(2)判定定理;(3)面与面平行的性质定理.2.平面与平面平行的主要判定方法:(1)定义法;(2)判定定理;(3)利用结论:a⊥α,a⊥β⇒α∥β. 3.线线平行、线面平行、面面平行间的相互转化:(满分:90分)一、填空题(每小题6分,共48分)1.下列命题中真命题的个数为________.①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.2.给出下列命题,其中正确的命题是________(填序号).①直线上有两点到平面的距离相等,则此直线与平面平行;②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面;③直线m⊥平面α,直线n⊥m,则n∥α;④a、b是异面直线,则存在唯一的平面α,使它与a、b都平行且与a、b距离相等.3.设l1、l2是两条直线,α、β是两个平面,A为一点,有下列四个命题,其中正确命题的个数是________.①若l1⊂α,l2∩α=A,则l1与l2必为异面直线;②若l1∥α,l2∥l1,则l2∥α;③若l1⊂α,l2⊂β,l1∥β,l2∥α,则α∥β;④若α⊥β,l1⊂α,则l1⊥β.4.在四面体ABCD 中,截面PQMN 是正方形,则下列命题中,正确的为________(填序号). ①AC ⊥BD ;②AC ∥截面PQMN ;③AC =BD ;④异面直线PM 与BD 所成的角为45°.5.下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________(写出所有符合要求的图形序号).6.(2010·大连模拟)过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的有______条.7. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.8.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且PA =6,AC =9,PD =8,则BD 的长为________.二、解答题(共42分)9.(12分) 如图所示,在三棱柱ABC —A 1B 1C 1中,M 、N 分别是BC 和A 1B 1的中点. 求证:MN ∥平面AA 1C 1C .10.(14分)(2010·湖南改编)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.11.(16分) (2010·济宁一模)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE,且点F在CE上.(1)求证:AE⊥BE;(2)求三棱锥D—AEC的体积;(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.学案39 空间的平行关系答案自主梳理1.(1)平行 相交 在平面内 (2)平行 相交 2.(1)平面内的一条直线 3.(1)两条相交直线 (2)平行 自我检测1.1 2.0或1 3.平行 4.必要不充分 5.面ABC 和面ABD 课堂活动区例1 解题导引 证明线面平行问题一般可考虑证线线平行或证面面平行,要充分利用线线平行、线面平行、面面平行的相互转化.证明 方法一如图所示,作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N ,连结MN . ∵矩形ABCD 和矩形ABEF 全等且有公共边AB ,∴AE =BD . 又∵AP =DQ ,∴PE =QB , 又∵PM ∥AB ∥QN ,∴PM AB=EP EA ,QN DC =BQ BD,∴PM AB=QN DC.∴PM 綊QN ,∴四边形PQNM 为平行四边形, ∴PQ ∥MN又MN ⊂平面BCE ,PQ ⊄平面BCE , ∴PQ ∥平面BCE . 方法二如图所示,连结AQ ,并延长交BC 于K ,连结EK ,∵AE =BD ,AP =DQ , ∴PE =BQ ,∴AP PE =DQ BQ. ①又∵AD ∥BK ,∴DQ BQ =AQ QK. ②由①②得AP PE =AQ QK,∴PQ ∥EK .又PQ ⊄平面BCE ,EK ⊂平面BCE , ∴PQ ∥平面BCE . 方法三如图所示,在平面ABEF 内,过点P 作PM ∥BE ,交AB 于点M ,连结QM . ∵PM ∥BE ,PM ⊄平面BCE , ∴PM ∥平面BCE ,且AP PE =AM MB. ①又∵AP =DQ ,∴PE =BQ ,∴AP PE =DQ BQ. ②由①②得AM MB =DQ QB,∴MQ ∥AD ,∴MQ ∥BC ,又∵MQ ⊄平面BCE ,BC ⊂平面BCE ,∴MQ ∥平面BCE .又∵PM ∩MQ =M ,∴平面PMQ ∥平面BCE , 又PQ ⊂平面PMQ ,∴PQ ∥平面BCE . 变式迁移1 证明 方法一取CD 中点E ,连结NE 、ME 、MN . ∵M 、N 分别是AB 、PC 的中点, ∴NE ∥PD ,ME ∥AD .又∵NE ,ME ⊄平面PAD ,PD ,AD ⊂平面PAD , ∴NE ∥平面PAD ,ME ∥平面PAD . 又NE ∩ME =E ,∴平面MNE ∥平面PAD . 又MN ⊂平面MNE , ∴MN ∥平面PAD .方法二 取PD 中点F ,连结AF 、NF 、NM . ∵M 、N 分别为AB 、PC 的中点, ∴NF 綊12CD ,AM 綊12CD ,∴AM 綊NF .∴四边形AMNF 为平行四边形,∴MN ∥AF . 又AF ⊂平面PAD ,MN ⊄平面PAD , ∴MN ∥平面PAD .例2 解题导引 面面平行的常用判断方法有:(1)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行; (2)利用垂直于同一条直线的两个平面平行;关键是利用“线线平行”、“线面平行”、“面面平行”的相互转化.证明 方法一如图所示,连结B 1D 1、B 1C . ∵P 、N 分别是D 1C 1、B 1C 1的中点, ∴PN ∥B 1D 1.又∵B1D1∥BD,∴PN∥BD.又PN⊄面A1BD,∴PN∥平面A1BD.同理MN∥平面A1BD.又PN∩MN=N,∴平面MNP∥平面A1BD.方法二如图所示,连结AC1、AC.∵ABCD—A1B1C1D1为正方体,∴AC⊥BD.又CC1⊥面ABCD,BD⊂面ABCD,∴CC1⊥BD,∴BD⊥面ACC1,又∵AC1⊂面ACC1,∴AC1⊥BD.同理可证AC1⊥A1B,∴AC1⊥平面A1BD.同理可证AC1⊥平面PMN,∴平面PMN∥平面A1BD.变式迁移2(1)证明如图所示,连结PG1、PG2、PG3并延长分别与边AB、BC、AC交于点D、E、F,连结DE、EF、FD,则有PG1∶PD=2∶3,PG2∶PE=2∶3,∴G1G2∥DE.又G 1G 2不在平面ABC 内,DE 在平面ABC 内, ∴G 1G 2∥平面ABC . 同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC .(2)解 由(1)知PG 1PD =PG 2PE =23,∴G 1G 2=23DE .又DE =12AC ,∴G 1G 2=13AC .同理G 2G 3=13AB ,G 1G 3=13BC .∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △G 1G 2G 3∶S △ABC =1∶9.例3 解题导引 近几年探索性问题在高考中时有出现,解答此类问题时先以特殊位置尝试探究,找到符合要求的点后再给出严格证明.(1)证明 连结AC ,过点C 作CE ⊥AB ,垂足为E . 在四边形ABCD 中,AD ⊥AB ,CD ∥AB ,AD =DC , ∴四边形ADCE 为正方形. ∴∠ACD =∠ACE =45°.∵AE =CD =12AB ,∴BE =AE =CE .∴∠BCE =45°.∴∠ACB =∠ACE +∠BCE =45°+45°=90°. ∴AC ⊥BC .又∵BC ⊥PC ,AC ⊂平面PAC ,PC ⊂平面PAC ,AC ∩PC =C , ∴BC ⊥平面PAC .∵PA ⊂平面PAC ,∴PA ⊥BC . (2)解 当M 为PB 的中点时,CM ∥平面PAD .方法一 取AP 的中点F ,连结CM ,FM ,DF . 则FM 綊12AB .∵CD ∥AB ,CD =12AB ,∴FM 綊CD .∴四边形CDFM 为平行四边形.∴CM ∥DF . ∵DF ⊂平面PAD ,CM ⊄平面PAD , ∴CM ∥平面PAD . 方法二在四边形ABCD 中,设BC 的延长线与AD 的延长线交于点Q , 连结PQ ,CM . ∵CD ∥AB ,∴QC QB=CD AB =12.∴C 为BQ 的中点.∵M 为BP 的中点,∴CM ∥QP . ∵PQ ⊂平面PAD ,CM ⊄平面PAD , ∴CM ∥平面PAD . 方法三取AB 的中点E , 连结EM ,CE ,CM .在四边形ABCD 中,CD ∥AB ,CD =12AB ,E 为AB 的中点,∴AE ∥DC ,且AE =DC .∴四边形AECD 为平行四边形.∴CE ∥DA . ∵DA ⊂平面PAD ,CE ⊄平面PAD , ∴CE ∥平面PAD .同理,根据E ,M 分别为BA ,BP 的中点,得EM ∥平面PAD . ∵CE ⊂平面CEM ,EM ⊂平面CEM ,CE ∩EM =E , ∴平面CEM ∥平面PAD .∵CM ⊂平面CEM ,∴CM ∥平面PAD .变式迁移3 解 当Q 为CC 1的中点时,平面D 1BQ ∥平面PAO . ∵Q 为CC 1的中点,P 为DD 1的中点,∴QB ∥PA . ∵P 、O 为DD 1、DB 的中点,∴D 1B ∥PO .又PO ∩PA =P ,D 1B ∩QB =B ,D 1B ∥平面PAO ,QB ∥平面PAO ,∴平面D 1BQ ∥平面PAO . 课后练习区1.1 2.②④ 3.0 4.①②④ 5.①③解析 ①∵面AB ∥面MNP ,∴AB ∥面MNP , ②过N 作AB 的平行线交于底面正方形的中心O ,NO ⊄面MNP ,∴AB 与面MNP 不平行.③易知AB ∥MP , ∴AB ∥面MNP ;④过点P 作PC ∥AB ,∵PC ⊄面MNP , ∴AB 与面MNP 不平行. 6.6解析 如图,EF ∥E 1F 1∥AB ,EE 1∥FF 1∥BB 1,F 1E ∥A 1D , E 1F ∥B 1D ,∴EF 、E 1F 1、EE 1、FF 1、F 1E 、E 1F 都平行于平面ABB 1A 1,共6条. 7.223a解析如图所示,连结AC , 易知MN ∥平面ABCD ,又∵PQ 为平面ABCD 与平面MNQP 的交线, ∴MN ∥PQ .又∵MN ∥AC ,∴PQ ∥AC , 又∵AP =a3,∴DP AD =DQ CD =PQ AC =23,∴PQ =23AC =223a . 8.24或245解析 分两种情况:图(1)中,由α∥β得AB ∥CD ,求得BD =24,图(2)中,同理得AB ∥CD ,求得BD =245.9.证明 设A 1C 1的中点为F ,连结NF ,FC , ∵N 为A 1B 1的中点,∴NF ∥B 1C 1,且NF =12B 1C 1,又由棱柱性质知B 1C 1綊BC ,(4分) 又M 是BC 的中点, ∴NF 綊MC ,∴四边形NFCM 为平行四边形. ∴MN ∥CF ,(8分) 又CF ⊂平面AA 1C 1C ,MN ⊄平面AA 1C 1C ,∴MN ∥平面AA 1C 1C .(12分)10.解 在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE .证明如下:如图所示,分别取C 1D 1和CD 的中点F ,G ,连结B 1F ,EG ,BG ,CD 1,FG .因为A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形,因此D 1C ∥A 1B .又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B .这说明A 1,B ,G ,E 四点共面,所以BG ⊂平面A 1BE .(7分)因为四边形C 1CDD 1与B 1BCC 1都是正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG =C 1C =B 1B ,因此四边形B 1BGF 是平行四边形,所以B 1F ∥BG .而B 1F ⊄平面A 1BE ,BG ⊂平面A 1BE ,故B 1F ∥平面A 1BE .(14分)11.(1)证明 由AD ⊥平面ABE 及AD ∥BC , 得BC ⊥平面ABE ,BC ⊥AE ,(2分) 而BF ⊥平面ACE ,所以BF ⊥AE ,(4分) 又BC ∩BF =B ,所以AE ⊥平面BCE , 又BE ⊂平面BCE ,故AE ⊥BE .(6分)(2)解 在△ABE 中,过点E 作EH ⊥AB 于点H , 则EH ⊥平面ACD .由已知及(1)得EH =12AB =2,S △ADC =22.故V D —AEC =V E —ADC =13×22×2=43.(10分)(3)解 在△ABE 中,过点M 作MG ∥AE 交BE 于点G ,在△BEC 中过点G 作GN ∥BC 交EC 于点N , 连结MN ,则由CN CE =BG BE =MB AB =13,得CN =13CE .由MG ∥AE ,AE ⊂平面ADE ,MG ⊄平面ADE ,则MG ∥平面ADE .(12分)再由GN ∥BC ,BC ∥AD ,AD ⊂平面ADE ,GN ⊄平面ADE , 得GN ∥平面ADE ,所以平面MGN ∥平面ADE . 又MN ⊂平面MGN ,则MN ∥平面ADE .(15分) 故当点N 为线段CE 上靠近点C 的一个三等分点时,MN ∥平面ADE .(16分)。
2013届高考数学备考复习教案3.doc

专题一:集合、常用逻辑用语、不等式、函数与导数第三讲函数与方程及函数的实际应用【最新考纲透析】1.函数与方程(1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。
(2)根据具体函数的图象,能够用二分法求相应方程的近似解。
2.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
【核心要点突破】要点考向一:函数零点问题考情聚焦:1.函数的零点是新课标的新增内容,其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为新课标高考命题的热点.2.常与函数的图象、性质等知识交汇命题,多以选择、填空题的形式考查。
考向链接:1.函数零点(方程的根)的确定问题,常见的类型有(1)零点或零点存在区间的确定;(2)零点个数的确定;(3)两函数图象交战的横坐标或有几个交点的确定;解决这类问题的常用方法有:解方程法、利用零点存在的判定或数形结合法,尤其是那些方程两端对应的函数类型不同的方程多以数形结合法求解。
2.函数零点(方程的根)的应用问题,即已知函数零点的存在情况求参数的值或取值范围问题,解决该类问题关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解。
例1:(2010²福建高考文科²T7)函数223,0()2ln ,0⎧+-≤=⎨-+>⎩x x x f x x x 的零点个数为( )A.2B.3C.4D.5 【命题立意】本题从分段函数的角度出发,考查了学生对基本初等函数的掌握程度。
【思路点拨】作出分段函数的图像,利用数形结合解题。
【规范解答】选C ,⎪⎩⎪⎨⎧>≤-+=0,ln 0,4)1()(22x exx x x f ,绘制出图像大致如右图,所以零点个数为2。
2013高考数学教案和学案(有答案)----第3章__学案13

第3章 导数及其应用 学案13 导数的概念及运算导学目标: 1.了解导数概念的实际背景,理解函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.2.能根据导数定义,求函数y =C (C 为常数),y =x ,y =x 2,y =1x的导数.熟记基本初等函数的导数公式(c ,x m (m 为有理数),sin x ,cos x ,e x ,a x ,ln x ,log ax 的导数),能利用基本初等函数的导数公式及导数的四则运算法则求简单函数的导数.自主梳理1.函数f (x )在区间[x 1,x 2]上的平均变化率为________________________. 2.函数y =f (x )在x =x 0处的导数 (1)定义设f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值ΔyΔx =____________________无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).(2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0))的____________. (3)导数的物理意义:函数s =s (t )在点t 0处的导数s ′(t 0),是物体的运动方程s =s (t )在t 0时刻的瞬时速度v ,即v =__________;v =v (t )在点t 0处的导数v ′(t 0),是物体的运动方程v =v (t )在t 0时刻的瞬时加速度a ,即a =____________.3.函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内任一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作y ′或f ′(x ).4.基本初等函数的导数公式表5.导数运算法则(1)[f (x )±g (x )]′=____________; (2)[f (x )g (x )]′=________________;(3)⎣⎢⎡⎦⎥⎤f xg x ′=________________________ [g (x )≠0]. 6.复合函数的求导法则:若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a . 自我检测1.(2011·中山期末统一考试)已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t=2时的速度为________.2.设y =x 2·e x ,则y ′=______________.3.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.4.(2009·海南、宁夏)曲线y =x e x +2x +1在点(0,1)处的切线方程为 . 5.(2009·湖北)已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)=________.探究点一 利用导数的定义求函数的导数 例1 利用导数的定义求函数的导数: (1)f (x )=1x在x =1处的导数;(2)f (x )=1x +2.变式迁移1 求函数y =x 2+1在x 0到x 0+Δx 之间的平均变化率,并求出其导函数.探究点二 导数的运算例2 求下列函数的导数:(1)y =(1-x )⎝ ⎛⎭⎪⎪⎫1+1x ;(2)y =ln x x ; (3)y =x e x ;(4)y =tan x .变式迁移2 求下列函数的导数: (1)y =x 2sin x ;(2)y =3x e x -2x +e ;(3)y =ln xx 2+1.探究点三 求复合函数的导数 例3 求下列函数的导数:(1)y =(2x -3)5; (2)y =3-x ;(3)y =ln(2x +5).变式迁移3 求下列函数的导数: (1)y =11-3x 4;(2)y =sin ⎝⎛⎭⎪⎫2x +π3;(3)y =x 1+x 2.探究点四 导数的几何意义 例4 已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程; (3)求满足斜率为1的曲线的切线方程.变式迁移4 求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.1.准确理解曲线的切线,需注意的两个方面:(1)直线与曲线公共点的个数不是切线的本质特征,若直线与曲线只有一个公共点,则直线不一定是曲线的切线,同样,若直线是曲线的切线,则直线也可能与曲线有两个或两个以上的公共点.(2)曲线未必在其切线的“同侧”,如曲线y =x 3在其过(0,0)点的切线y =0的两侧. 2.曲线的切线的求法:若已知曲线过点P (x 0,y 0),求曲线过点P 的切线则需分点P (x 0,y 0)是切点和不是切点两种情况求解. (1)点P (x 0,y 0)是切点的切线方程为y -y 0=f ′(x 0)(x -x 0). (2)当点P (x 0,y 0)不是切点时可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程.3.求函数的导数要准确地把函数分割为基本初等函数的和、差、积、商及其复合运算,再利用运算法则求导数.在求导过程中,要仔细分析函数解析式的结构特征,紧扣法则,联系基本初等函数求导公式,对于不具备求导法则结构形式的要适当变形.(满分:90分)一、填空题(每小题6分,共48分)1.(2010·南通模拟)已知函数f (x )=13x 3-12x 2+6x ,当Δx →0时,f 1+Δx -f 12Δx →常数A ,则A =________.2.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是__________.3.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为______________. 4.(2010·辽宁改编)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是____________.5.(2009·福建)若曲线f (x )=ax 2+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 6.(2009·安徽改编)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围为______________.7.已知函数y =f (x ),y =g (x )的导函数的图象如图所示,那么y =f (x ),y =g (x )的图象可能是________(填上正确的序号).8.设点P 是曲线y =32333x y x x =---上的一个动点,则以P 为切点的切线中,斜率取得最小值时的切线方程是 .二、解答题(共42分)9.(12分)求下列函数在x =x 0处的导数. (1)f (x )=e x 1-x +e x1+x,x 0=2;(2)f (x )=x -x 3+x 2ln xx 2,x 0=1.10.(14分)求经过点P (2,0)的曲线y =1x的切线方程.11.(16分)设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f (x )的解析式;(2)证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.答案 自主梳理1.f x 2-f x 1x 2-x 1 2.(1)f x 0+Δx -f x 0Δx(2)切线的斜率 (3)s ′(t 0) v ′(t 0) 4.0 αx α-1 cosx -sin x a x ln ae x1x ln a 1x5.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x )(3)f ′xg x -f x g ′x [g x ]2自我检测1.134 2.(2x +x 2)e x 3.3 4. y =3x +1 5.1 课堂活动区例1 解题导引 (1)用导数定义求函数导数必须把分式ΔyΔx中的分母Δx 这一因式约掉才可能求出极限,所以目标就是分子中出现Δx ,从而分子分母相约分.(2)第(1)小题中用到的技巧是“分子有理化”.“有理化”是处理根式问题常用的方法,有时用“分母有理化”,有时用“分子有理化”.(3)用导数的定义求导的步骤为:①求函数的增量Δy ;②求平均变化率ΔyΔx;③化简取极限.解 (1)Δy Δx =f 1+Δx -f 1Δx =11+Δx-1Δx=1-1+ΔxΔx1+Δx =1-1+Δx Δx1+Δx 1+1+Δx=-ΔxΔx 1+Δx +1+Δx =-11+Δx +1+Δx,从而,当Δx →0时,Δy Δx →-12,∴f ′(1)=-12.(2)Δy Δx =f x +Δx -f x Δx =1x +2+Δx -1x +2Δx=x +2-x +2+Δx Δx x +2x +2+Δx =-1x +2x +2+Δx ,从而,当Δx →0时,ΔyΔx →-1x +22,∴f ′(x )=-1x +22.变式迁移1 解 ∵Δy =x 0+Δx 2+1-x 20+1=x 0+Δx 2+1-x 20-1x 0+Δx 2+1+x 20+1=2x 0Δx +Δx 2x 0+Δx 2+1+x 20+1,∴ΔyΔx=2x 0+Δxx 0+Δx 2+1+x 20+1.∴Δx →0时,ΔyΔx→x x 2+1.∴y ′=xx 2+1.例2 解题导引 求函数的导数要准确地把函数分割为基本函数的和、差、积、商及其复合运算,再利用运算法则求导数.在求导过程中,要仔细分析函数解析式的结构特征,紧扣求导法则,联系基本函数求导公式.对于不具备求导法则结构形式的要适当恒等变形.解 (1)∵y =(1-x )⎝⎛⎭⎪⎪⎫1+1x =1x -x =1122x x --, ∴y ′=(12x-x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=⎝ ⎛⎭⎪⎫ln x x ′=ln x ′x -x ′ln x x 2=1x·x -ln xx 2=1-ln xx 2.(3)y ′=x ′e x +x (e x )′=e x +x e x =e x (x +1).(4)y ′=⎝ ⎛⎭⎪⎫sin x cos x ′=sin x ′cos x -sin x cos x ′cos 2x=cos x cos x -sin x -sin x cos 2x=1cos 2x. 变式迁移2 解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(3x e x )′-(2x )′+(e)′=(3x )′e x +3x (e x )′-(2x )′ =3x ln 3·e x +3x e x -2x ln 2=(ln 3+1)(3e)x -2x ln 2. (3)y ′=ln x ′x 2+1-ln x x 2+1′x 2+12=1xx 2+1-ln x ·2x x 2+12=x 2+1-2x 2ln x x x 2+12.例3 解题导引 (1)求复合函数导数的思路流程为: 选定中间变量→分解复合关系→分层求导(2)由复合函数的定义可知,中间变量的选择应是基本函数的结构,解这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外向内,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程.解 (1)设u =2x -3,则y =(2x -3)5由y =u 5与u =2x -3复合而成. ∴y ′=y ′u ·u ′x =5u 4·2=10u 4=10(2x -3)4.(2)设u =3-x ,则y =3-x 由y =u 12与u =3-x 复合而成.∴y ′=y ′u ·u ′x =12u -12(-1)=-12u -12=-123-x .(3)设u =2x +5,则y =ln(2x +5) 由y =ln u 与u =2x +5复合而成. ∴y ′=y ′u ·u ′x =1u ·2=2u =22x +5.变式迁移3 解 (1)设u =1-3x ,y =u -4.则y ′=y u ′·u x ′=-4u -5·(-3)=121-3x 5. (2)设u =2x +π3,则y =sin u ,∴y ′=y ′u ·u ′x =cos u ·2=2cos(2x +π3).(3)y ′=(x1+x 2)′=x ′·1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=1+2x 21+x 2.例4 解题导引 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异;过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)求函数对应曲线在某一点处的切线的斜率,只要求函数在该点处的导数即可. (3)解决“过某点的切线”问题,一般是设出切点坐标来解决. 解 (1)∵y ′=x 2,∴在点P (2,4)处的切线的斜率k =4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =x 20. ∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 0,y 0),则切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝ ⎛⎭⎪⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1, 即3x -3y +2=0和x -y +2=0.变式迁移4 解 f ′(x )=3x 2-6x +2.设切线的斜率为k .(1)当切点是原点时k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 30-3x 20+2x 0,k =f ′(x 0)=3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,② 由①②得x 0=32,k =-14. ∴所求曲线的切线方程为y =-14x . 综上,曲线f (x )=x 3-3x 2+2x 过原点的切线方程为y =2x 或y =-14x . 课后练习区1.3 2.1秒或2秒末 3.4x -y -3=0 4.⎣⎢⎡⎭⎪⎫3π4,π 5.a <0解析 由题意可知该函数的定义域为{x |x >0},且f ′(x )=2ax +1x.因为曲线存在垂直于y 轴的切线,故此时斜率为0,问题转化为x >0范围内导函数f ′(x )=2ax +1x 存在零点.令2ax +1x=0,即2ax 2+1=0,即x 2=-12a ,显然只有a <0,方程2ax 2+1=0才有正实数根,故实数a 的取值范围是a <0.6.[2,2]解析 ∵f ′(x )=sin θ·x 2+3cos θ·x , ∴f ′(1)=sin θ+3cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π3, 又θ∈⎣⎢⎡⎦⎥⎤0,5π12.∴π3≤θ+π3≤3π4, ∴22≤sin ⎝ ⎛⎭⎪⎫θ+π3≤1,∴2≤f ′(1)≤2. 7.④解析 由导函数y =f ′(x )的图象可知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的图象上任意一点切线的斜率为单调递减,故可排除①、③.又由图象知y =f ′(x )与y =g ′(x )在点x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线斜率相同,故可排除②.8. 12x +3y +8=0解析 设切线的斜率为k ,则k =f'(x )=x 2-2x -3=(x -1)2-4.当x =1时,k 有最小值-4.又f (1)=203, 所以切线方程为y +203=-4(x -1),即12x +3y +8=0. 9.解 (1)∵f ′(x )=⎝ ⎛⎭⎪⎫2e x 1-x ′=2e x ′1-x -2e x 1-x ′1-x 2 =22-x e x1-x 2,∴f ′(2)=0.…………………………………………………………………(6分) (2)∵f ′(x )=(x -32)′-x ′+(ln x )′ =-32x -52-1+1x ,∴f ′(1)=-32.………………………………………………………(12分) 10.解 设切点为M (x 0,y 0)(x 0≠0),则y 0=1x 0. ∵切线过P (2,0),∴切线斜率为y 0-0x 0-2=1x 0x 0-2.…………………………………………………………(4分)又y ′=(1x )′=-1x 2,∴k =-1x 20.…………………………………………………………(6分) 由导数的几何意义知-1x 20=1x 0x 0-2.解得x 0=1.………………………………………………………………………………(10分)∴y 0=1x 0=1,∴M (1,1).∴切线斜率为k =-1, 故切线方程为y -1=-(x -1),即x +y -2=0.………………………………………(14分)11.(1)解 f ′(x )=a -1x +b 2,…………………………………………………………(2分) 于是⎩⎪⎨⎪⎧ 2a +12+b =3,a -12+b 2=0.解得⎩⎪⎨⎪⎧ a =1,b =-1,或⎩⎪⎨⎪⎧ a =94,b =-83.因为a ,b ∈Z ,故f (x )=x +1x -1.…………………………………………………………(6分)(2)证明 已知函数y 1=x ,y 2=1x都是奇函数, 所以函数g (x )=x +1x 也是奇函数,其图象是以原点为中心的中心对称图形.而f (x )=x -1+1x -1+1. 可知,函数g (x )的图象按向量a =(1,1)平移,即得到函数f (x )的图象,故函数f (x )的图象是以点(1,1)为中心的中心对称图形.………………………………(10分)(3)证明 在曲线上任取一点⎝ ⎛⎭⎪⎫x 0,x 0+1x 0-1, 由f ′(x 0)=1-1x 0-12知,过此点的切线方程为 y -x 20-x 0+1x 0-1=⎣⎢⎡⎦⎥⎤1-1x 0-12(x -x 0).…………………………………………………(12分)令x =1,得y =x 0+1x 0-1,切线与直线x =1的交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1; 令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1); 直线x =1与直线y =x 的交点为(1,1), 从而所围三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪⎪⎪2x 0-1|2x 0-2|=2. 所以,所围三角形的面积为定值2.……………………………………………………(16分)。
艺术生高考数学复习学案(1-36)

§1集合(1)【基础知识】集合中元素与集合之间的关系:文字描述为 和 符号表示为 和常见集合的符号表示:自然数集 正整数集 整数集有理数集 实数集集合的表示方法1 2 3集合间的基本关系:1相等关系:_________A B B A ⊆⊆⇔且 2子集:A 是B 的子集,符号表示为______或B A ⊇ 3 真子集:A 是B 的真子集,符号表示为_____或____不含任何元素的集合叫做 ,记作 ,并规定空集是任何集合的子集,是任何非空集合的【基本训练】1.下列各种对象的全体,可以构成集合的是(1)某班身高超过1.8m 的女学生; (2)某班比较聪明的学生;(3)本书中的难题 (4)使232x x -+最小的x 的值2. 用适当的符号(,,,,)∈∉=⊂⊃填空:___;Q π {}3.14____Q ; *___;N N {}{}21,____21,x x k k Z x x k k z =+∈=-∈3.用描述法表示下列集合: 由直线1y x =+上所有点的坐标组成的集合;4.若A B B ⋂=,则____A B ;若A B B ⋃=则_____;_____A B A B A B ⋂⋃5.集合{}{}35,A x x B x x a =-<=<,且A B ⊆,则a 的围是【典型例题讲练】例1 设集合11,,,2442k k M x x k Z N x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则_______M N练习: 设集合11,,,3663k k P x x k Z Q x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则______P Q 例2已知集合{}2210,,A x ax x x R a =++=∈为实数。
(1) 若A 是空集,求a 的取值围;(2) 若A 是单元素集,求a 的取值围;(3) 若A 中至多只有一个元素,求a 的取值围; 练习:已知数集1,,a P b b ⎧⎫=⎨⎬⎩⎭,数集{}20,,Q a b b =+,且P Q =,求,a b 的值【【课堂小结】集合的概念及集合元素的三个特性【课堂检测】1. 设全集,U R =集合{}1M x x =>,{}21P x x =>,则______M P2. 集合{}{}2320,10,P x x x Q x mx =-+==-=若P Q ⊇,则实数m 的值是3.已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个4.已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B A ⊆,则实数m = .5.已知含有三个元素的集合2{,,1}{,,0},b a a a b a =+求20042005a b +的值.§2集合(2)【典型例题讲练】例3 已知集合{}23100A x x x =--≤(1) 若{},121B A B x m x m ⊆=+≤≤-,数m 的取值围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§83 数系的扩张与复数的四则运算⑴【考点及要求】了解数系的扩充过程;理解复数的基本概念、代数表示法及复数相等的充要条件。
理解复数代数形式的四则运算法则,能进行复数代数形式的四则运算。
【基础知识】1.数的扩展:数系扩展的脉络是: → → ,用集合符号表示为 ⊆ ⊆ ,实际上前者是后者的真子集.2.复数的概念及分类:⑴概念:形如(,)a bi a b R +∈的数叫做 ,其中a b 与分别为它的 和 .⑵分类:①若(,)a bi a b R +∈为实数,则 ,②若(,)a bi a b R +∈为虚数,则 ,③若(,)a bi a b R +∈为纯虚数,则 ;⑶复数相等:若复数(,,,)a bi c di a b c d R +=+∈⇔ ; ⑷共轭复数:(,,,)a bi c di a b c d R ++∈⇔与共轭 ;3.复数的加、减、乘、除去处法则:设12|||2(z z z a a ---=12|z ||为正常数,2a<|z -z |)则 ⑴加法: 12()()z z a bi c di +=+++= ; ⑵减法: 12()()z z a bi c di -=+-+= ; ⑶乘法: 12()()z z a bi c di ∙=+∙+= ;⑷乘方: m nz z ∙= ;()m n z = ;12()nz z ∙= ;⑸除法:12z a bi z c di +==+12z a bi z c di+==+ = ; 4.复平面的概念:建立直角坐标系来表示复数的平面叫做 , 叫做实轴, 叫做虚轴;实轴上的点表示 ,除原点外,虚轴上的点都表示 .5.复数的模:向量OZ的模叫做复数(,)z a bi a b R =+∈的 (或 ),记作 (或 ),即||||z a bi =+= ;复数模的性质:⑴121212||||||||||z z z z z z -≤±≤+;⑵2222||||||||z z z z z z ====∙; 6. 常见的结论: ⑴4411nn i +=4n+24n+34n+4n n+1n+2n+3的运算律:i,i =i,i =-1,i =-i,i =1,i +i +i +i =0;⑵2(1)i ±= ;11i i +=- ;11ii-=+ ;⑶1,22i ωω-±3设=则= ;2ω= ;21ωω++= ; 【基本训练】1.若i b i i a -=⋅-)2(,其中,,a b R i ∈是虚数单位,则22a b +等于 . 2.设复数121,2()z i z x i x R =+=+∈,若12z z 为实数,则x 等于 . 3.若cos sin (z i i θθ=+是虚数单位),则使21z =-的θ值可能是 . 4.22)1(1)1(1i ii i -+++-等于______________. 5.已知复数032z i =+,复数z 满足025z i z z -∙=,则复数z = _______________. 6.i 是虚数单位,23482348i i i i i +++++ = ____________. 【典型例题】例1.已知:复数z =)()65()67(22R a i a a a a ∈--++-,试求实数a 分别取什么值时,复数z 分别为:⑴实数;⑵虚数;⑶纯虚数;⑷复数z 在复平面上对应的点在x 轴上方;练习:复数z 的实部和虚部都为整数,且满足z + z 10是实数,1 < z + z10≤6,求复数z.例2.计算下列各题: ⑴ 54)31()22(i i -+ ⑵2007)12(321,32i ii -+++- ⑶ )125)(1()32)(32(i i i i ---+ ⑷ii i i 2332)11(6-++-+【课堂检测】1.下列命题中:⑴两个复数一定不能比较大小;⑵z m ni =+,当且仅当0,0m n =≠时,z 为虚数;⑶如果22120z z +=,则120z z ==;⑷如果123,,z z z C ∈,则221223()()0z z z z -+-≥,其中正确的的命题的个数是 . 2.3321ii ++=_____; 2005)11(i i -+ = ______;复数4)11(i +=________; 复数z =i-11的共轭复数是______;3.已知复数z =,2321i +-则2320081z z z z +++++= . 4.若复数)2)(1(i bi ++是纯虚数(i 是虚数单位,b 是实数),则b = ______________. 5.设)()11()11()(Z n ii i i n f nn ∈--+-+=,则集合中的元素个数为 .6.已知复数1z i =+,如果i z z baz z -=+-++1122,求实数a 、b 的值.§84 数系的扩张与复数的四则运算⑵【基础训练】1.若复数2(1)(1)z m m m i =++-是纯虚数,则实数m 的值为 . 2.复数z =111-++-ii在复平面内所对应的点在 . 3.若u =,2321i +-v =,2321i --给出下列命题⑴1uv =;⑵33v u +2=;⑶111=+vu ;⑷2u v =其中正确的命题是 .4.如果1z 、2z C ∈且满足1212||||||1z z z z ==-=,则12||z z += . 【典型例题】例3.设z 为虚数,zz 1+=ω是实数,且21<<-ω, ⑴求||z 的值及z 的实部的取值范围; ⑵设zz u +-=11,求证:u 为纯虚数;⑶求2u -ω的最小值.练习:设x 、y 是实数,且ii y i x 315211-=---,求x y +的值.例4. 若关于x 的方程22(3)0x t t tx i +++=有纯虚数根,求实数t 的值和该方程的根.练习:关于x 的方程2(2)10,()x i x mi m R -+++=∈有一实根为n ,设复数(2)(12)z m i ni =+-,求m 、n 的值及复数z 的值.例5.设关于x 的方程2(tan )(2)0x i x i θ-+-+=.(1)若方程有实数根,求锐角θ和方程的实根; (2)证明:对任意()2k k Z πθπ≠+∈,方程无纯虚数根.练习:已知关于t 的方程2(2)2()0,(,)t i t xy x y i x y R ++++-=∈. (1)当方程有实根时,求点(,)x y 的轨迹方程; (2)若方程有实根,求此实根的取值范围.【课堂检测】 1.复数ii+1在复平面上对应的点位于第_______象限. 2.复数(m 2 – 3m – 4) + (m 2 – 5m – 6)i 表示的点在虚轴上,则实数m 的值是___________. 3.若复数z 满足|z| - z =i2110-,则z = _____________. 4.若复数z 满足方程220z +=,则3z = _______;5.若关于x 的一元二次实系数方程20x px q ++=有一根为1(i i +为虚数单位),则q = .6.设286z i =+,求310016z z z--的值.【课堂作业】1.已知复数z 1、z 2满足|z 1| = |z 2| = 1,且z 1 + z 2 = i ,求z 1、z 2 .2.已知复数z 满足|z – (4 – 5i)| = 1,求|z + i|的最大值与最小值.3.已知复数z 、w 满足w = iz+2,(1+3i)z 为纯虚数,|w| = 52,求w.4.已知()23,()63f z z z i f z i i =+-+=-. 求()f z -.5.已知关于x 的方程x 2 – (6 +i)x + 9 + ai = 0(a ∈R )有实数根b. (1)求实数a 、b 的值;(2)若复数z 满足|z - a – bi| - 2|z| = 0,求z 为何值时,|z|有最小值,并求出|z|的值.§85 复数的几何意义⑴【考点及要求】了解复数的代数表示法及几何意义;理解复数及复数加、减运算的几何意义,并能根据几何意义解决简单问题。
【基础知识】1.复平面内两点间的距离公式:两个复数 的就是复平面内与这两个复数对应的两点间的距离;设两个复数12z z 、在复平面内对应点分别为12,Z Z d 、为点12Z Z 、间的距离,则d = ; 2.常见的复数对应点的轨迹有:已知复平面内定点12z z 、,及动点z ①方程12||||z z z z -=-表示 ; ②1||(0z z r r -=>为常数)表示 ;③12||2(z z z a a -+-=12|z |为正常数,2a>|z -z |)表示 ; ④12|||2(z z z a a ---=12|z ||为正常数,2a<|z -z |)表示 ; 【基础训练】1.满足条件|z – i| = |3 + 4i|的复数z 在复平面内对应点的轨迹是____________.2.若关于x 的方程x 2 – mx + 2 = 0有一个虚根1 + i ,则实数m 的值为__________. 3.已知3z ai =+,且|2|2z -<,则实数a 的取值范围是_____________.4.已知复数z 满足|z + 1| + |z – 1| = 2,则z 在复平面内对应点的轨迹是____________. 5.“复数(,)a bi a b R +∈为纯虚数”是“0a =”的 条件. 6. 若35(,)44ππθ∈,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在第_________象限. 7.ABC ∆三个顶点所对应的复数1z 、2z 、3z ,复数z 满足123||||||z z z z z z -=-=-,则复数z 对应点的是ABC ∆的 .8.非零复数12z z 、满足关系1212z z z z |+|=|-|,则12z z 一定是__________. 【典型例题】例1.已知复数z 满足2z i +、iz -2均为实数(i 为虚数单位),且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.练习:已知集合}{}{22(3)(1),8,3,(1)(2)M a b i N i a b i =++-=-++,同时满足M ∩,M N M M N ⊂≠Φ ,求整数a 、b .例2.已知四边形OABC ,顶点O 、A 、C 对应的得数为0、32i +、24i -+,试求:⑴AO 表示的复数, BC 表示的复数;⑵对角线CA表示的复数;⑶求B 点对应的复数.练习:1.复平面上三点A 、B 、C 分别对应复数1,2i ,5 + 2i ,则A 、B 、C 所构成的三角形是____________. 2.复平面内有三点A 、B 、C ,点A 对应的复数为2i +,向量BA 对应的复数为12i +,向量BC 对应的复数是3i -,求C 点对应的复数. 【课堂检测】 1.若|z| = 1,则21zz+一定是___________. 2.如果ABC ∆是锐角三角形,则复数(cos sin )(sin cos )z B A i B A =-+-对应的点位于 . 3.已知平行四边形OABC 的三个顶点O 、A 、C 分别对应复数0,1 + i ,3 – i. 试求: (1)和表示的复数;(2)点B 对应的复数.§86复数的概念及几何意义⑵【典型例题】例3.设复数(,)z x yi x y R =+∈,在下列条件下求动点(,)Z x y 的轨迹.⑴ |2|2z i +=; ⑵|1||1|z i z i ++=--; ⑶|5||5|8z i z i +--=;⑷ |1|2|1|z z +=-; ⑸||||z i z i ++-=; ⑹||1||1|z z +--=; ⑺ 3z i =-;⑻ 3cos 4sin z i θθ=+.例4.已知z ∈C ,|z – 2| = 1,求|z + 2 + 5i|的最大值和最小值.练习:1.已知复数z 满足|34|2z i ++≤,则||z 的最大值为 . 2.已知复数(2)(,)z x yi x y R =-+∈的模为3,则12++x y 的最大值和最小值分别为 .例5.设复数1(,,0)z x yi x y R y =+∈≠,2cos sin ()z i R ααα=+∈,且2112z z R +∈,1z 在复平面上所对应的点在直线y x =上,求12||z z -的取值范围.例6.已知复数(,)z x yi x y R =+∈满足方程||||6z z ++-=, ⑴.求动点(,)P x y 的轨迹方程;⑵.试问是否存在直线l ,使l 与动点(,)P x y 的轨迹交于不同的两点M N 与,且线段MN 恰被直线12x =-平分?若存在,求出直线l 的斜率取值范围;若不存在,请说明理由;【课堂检测】1.已知|z 1| = 1,|z 2| = 1,|z 1 + z 2| =3,求|z 1 – z 2|.2.复平面内有A B C 、、三点,点A 对应的复数为2i +,向量BA对应的复数为12i +,向量BC 对应的复数是3i -,求C 点对应的复数.3.复数1z 满足1222123(,z z iz ai a R z z ∙+=+∈为的共轭复数),且其对应的点在第二象限,求a 的取值范围.§87命题的四种形式及充分条件与必要条件⑴【考点及要求】了解四种命题的形式及相互之间的关系;理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系.【基础知识】1.原命题:若p q 则;逆命题为: ;否命题为: ;逆否命题为: ;2. 四种命题的真假关系:两个命题互为逆否命题,它们有 的真假性;四种命题中真命题或假命题的个数必为 个.3. 充分条件与必要条件:⑴如果,p q p q ⇒则是的 ,q p 是 ; ⑵如果,p q q p ⇒⇒,则p 是q ;⑶如果 ,p q 则是的充分而不必要条件; ⑷如果 , p q 则是的必要而不充分条件; ⑸如果 ,p q 则是的既不充分也不必要条件;【基础训练】1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈” 的 条件.2.设原命题“若a+b ≥2,则a,b 中至少有一个不小于1”则原命题与其逆命题的真假情况是 .3.命题:“若a 2+b 2=0(a , b ∈R ),则a=b=0”的逆否命题是 . 4.设a ∈R ,则a>1是a1<1 的 条件. 5.若a 与c b -都是非零向量,则“c a b a ⋅=⋅”是“a ⊥(c b -)”的条件6.一次函数nx n m y 1+-=的图象同时经过第一、三、四象限的必要但不充分条件是 . 7.已知p ,q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则s 是q 的 条件,r 是q 的 条件,p 是s 的 条件.8.用充分、必要条件填空:①x ≠1且y ≠2是x+y ≠3的 ②x ≠1或y ≠2是x+y ≠3的 . 【典型例题】例1.填空:⑴B A ⊇是(A ∩C )⊇(B ∩C )成立的 条件. ⑵在空间四点中,无三点共线是四点共面的 条件.⑶“在△ABC 中,A =60°,且 co s B +co s C =1”是“△ABC 是等边三角形”的 条件. ⑷设集合A ={长方体},B ={正四棱柱},则“x ∈A ”是“x ∈B ”的 条件. ⑸一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是 .⑹命题甲:0122>++ax ax 的解集是实数集R;命题乙:10<<a ,则命题甲是命题乙成立的 条件.⑺已知0>h ,设命题甲为:两个实数b a ,满足h b a 2<-,命题乙为:两个实数b a , 满足h a <-1且h b <-1,那么甲是乙的 条件.⑻给出下列命题①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ” ;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 。