水稻雄性不育体系的遗传学,生物化学,分子生物学原理及应用
水稻基因功能和分子育种的研究进展

水稻基因功能和分子育种的研究进展随着人口的不断增长,粮食的需求也在不断上升。
在如何提高粮食产量方面,农业科技的作用一直是不可忽视的。
在水稻栽培中,遗传改良一直是一个重要的研究方向,因为水稻是许多人的主要粮食来源。
基因功能和分子育种的研究,为实现高产优质水稻的目标提供了新的追求。
本文将介绍水稻基因功能以及分子育种的研究进展。
一、基因功能的探究从人类基因组计划开始,基因测序和基因功能的研究已经成为了整个生命科学中必不可少的一个领域。
在20世纪60年代,稻米开始成为基因改良的对象,并成为一些实验室的研究人员的关注点。
当然在那个时候,还不可能进行广泛的基因测序和分析,因为许多必要的技术和工具还未被发明。
因此,在这个时候,探究基因功能的方法主要是基于随机诱变的筛选设计,以及与整合数据库时代相比更为原始的生物学技术。
但在1980年左右,技术进步和计算能力的提高使得基因测序变得越来越容易。
导致研究集中在了单基因疾病的研究中,同时,在水稻的研究方面,也以此为基础。
因此,对非许多基因的功能进行长期研究成为了一种必要的选择。
大多数的研究的结果都是基于遗传改良领域从其他的研究中已经被证实的方案转移到水稻种植中。
随着时间的推移,基因功能研究的技术也不断改进和更新,不断产生更新的重大成果。
遗传变异测序成为一个更加完善的方法和工具,可以进一步帮助我们精细化地了解基因与染色体交互作用,以及它们在实现遗传多样性和发展中的作用。
二、分子育种的应用分子育种的研究是栽培优化的积累了长期的基础,分子育种要比传统的育种方法更准确和可靠。
创造变异体只是育种的第一步,如何确定抗性基因、环境适应性、产量等性状就成了育种的多步骤。
由于分子生物学和基因组学的不断发展,现代育种与传统的育种方法已经大有不同。
与传统育种方法相比,分子育种可以更快,更容易关注种植与植物物质代谢关系的生物过程。
另外,现代分子育种将农业生产和技术处理的素材提供给了第二个生产阶段。
水稻的雄性不育性及其在杂种优势中的利用

水稻是我国主要的粮食作物,我国三分之二以上的人口以水稻为主食。
在过去的40多年里,水稻杂种优势利用为我国的粮食安全作出了重要贡献。
水稻是自花授粉作物,其颖花多且小,无法通过人工去雄的方法生产杂交种。
水稻利用杂种优势唯一可行的途径就是利用雄性不育系做母本与恢复系杂交生产杂交种。
利用雄性不育系可以省去繁杂的人工去雄程序,提高杂交制种的效率和杂交种子的产量。
雄性不育(male sterility)是指植物在有性繁殖过程中雄蕊发育不正常,不能产生正常可育的花粉,正常情况下不能自交受精结实;而雌蕊发育正常,能接受正常可育花粉并受精结实;雄性不育现象在植物中普遍存在,自1763年德国植物学家约瑟夫戈特利布克(JosephDOI:10.16605/ki.1007-7847.2021.08.0202水稻的雄性不育性及其在杂种优势中的利用梁满中,王锋,殷小林,肖翡翠,张聪枝,高琴梅,刘伟浩,胡舒畅,陈良碧*(湖南师范大学生命科学学院作物不育资源创新与利用湖南省重点实验室,中国湖南长沙410081)摘要:雄性不育性是植物界存在的普遍现象,雄性不育系在水稻杂种优势利用中起着重要作用。
我国水稻杂种优势的利用经历了“三系法”“两系法”和“第三代”杂交水稻的发展历程,该历程的实质就是水稻雄性不育系种子生产技术体系的发展。
本文综述了细胞质雄性不育系、两用核不育系和隐性核不育系在我国水稻杂种优势利用中的研究进展,展望了水稻雄性不育系在水稻杂种优势利用的发展前景,以期为我国杂交水稻的创新发展提供参考。
关键词:水稻;雄性不育;细胞质雄性不育;两用核不育;育性;杂种优势中图分类号:Q955文献标识码:A文章编号:1007-7847(2021)05-0377-09Male Sterility of Rice and Its Utilization in HeterosisLIANG Man-zhong,WANG Feng,YIN Xiao-lin,XIAO Fei-cui,ZHANG Cong-zhi,GAO Qin-mei,LIU Wei-hao,HU Shu-chang,CHEN Liang-bi *(Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application ,College of Life Sciences ,Hunan Normal University ,Changsha 410081,Hunan ,China )Abstract:Male sterility is a common phenomenon in plants.Male sterile lines play an important role in the utilization of heterosis in rice.The utilization of rice heterosis in China has experienced the development process of “three-line method ”,“two-line method ”and “third generation ”hybrid rice.The essence of this process is the development of rice male sterile lines seed production technology.This paper reviewed the re-search progress of cytoplasmic male sterile lines,dual-purpose genic male sterile lines and recessive genic male sterile lines in the utilization of heterosis in rice in China.It also described the prospect of male sterile lines in hope of providing a reference for innovative development of hybrid rice in China.Key words:Rice (Oryza sativa L.);male sterility;cytoplasmic male sterile;dual purpose genic male sterile;fertility;heterosis(Life Science Research ,2021,25(5):377~385)收稿日期:2021-08-23;修回日期:2021-10-06基金项目:湖南省重点研发计划项目(2016JC2023);国家科技重大专项资助项目(2016yFD0101107)作者简介:梁满中(1962—),男,湖南溆浦人,湖南师范大学教授,博士,主要从事水稻杂种优势利用研究;*陈良碧(1955—),男,湖南沅陵人,湖南师范大学教授,博士生导师,主要从事植物发育研究与分子生物学研究,E-mail:*******************。
作物雄性不育性在育种中的应用概评

作物雄性不育性在育种中的应用概评秦太辰【摘要】概述总结了作物雄性不育性的类别与遗传特点。
雄性不育性的遗传机理涉及细胞质遗传的现象,目前已初步探明玉米C群不育系的胞质基因可能是atp6-c,芝麻不育胞质基因拟为atpA。
雄性不育化杂交种在实践中主要应用于玉米、水稻和蔬菜中。
尽管现有近交理论、DNA甲基化效用、水稻胞质与核不育系遗传等理论提出,雄性不育化育种的基本理论尚需进一步探讨。
在雄性不育化育种技术上,要逐步解决难点作物,如小麦、荞麦、菜豆等的不育化育种问题。
%This paper summarized the type and genetic characteristics of male sterility. The mechanism of male sterility is involved in cytoplasmic heredity. It has been initially proved that atp6 c and aptA are the cytoplasmic genes of maize sterile line C group and namie male sterile line, respectively. Male sterility hybrids are extensively applied in corp production, shuch as maize, rice and vegetables. Despite some theories were proposed, such as inbreeding theory, DNA methlation and genetics of rice cytoplasm male sterile line, the basic theories of male sterile breeding requests further study. This paper suggested to gradually resolve the difficulties of crop male sterile hybridization breeding in wheat, buckwheat and navy beans.【期刊名称】《生物技术进展》【年(卷),期】2011(001)002【总页数】6页(P84-89)【关键词】雄性不育化;细胞质遗传;不育化制种;DNA甲基化;杂种优势【作者】秦太辰【作者单位】扬州大学农学院杂种优势研究与应用实验室,江苏扬州225009【正文语种】中文【中图分类】S512.1自1902年发现植物雄性不育现象[1],迄今已百余年,直到20世纪20~30年代才应用于生产。
某种水稻雄性不育基因的鉴定

某种水稻雄性不育基因的鉴定我国是一个农业大国,农业是我国经济的重要支柱。
因此,农业科技的发展对我国农业的发展至关重要。
其中,水稻的种植是我国农业的重要部分。
而在水稻的生产过程中,种子的质量直接关系到水稻的产量和质量。
因此,水稻的育种研究非常重要。
其中,水稻雄性不育基因的鉴定是水稻高产和优质的关键。
首先,我们需要了解水稻的繁殖方式。
水稻根据雌雄生殖器官所在的位置,可以分为两种类型:一型水稻和二型水稻。
一型水稻的雄蕊与花柱在同一高度,易受风媒或自交授精。
二型水稻的雄蕊与花柱高度相差一定,几乎都是昆虫传粉。
其中,一型水稻在自然条件下会自我授粉,而百分之九十的二型水稻都需要异花传粉,因此,如何利用异花授粉,又不引入病原体和杂质是雄性不育育种研究的关键。
接下来,我们需要了解什么是雄性不育基因。
雄性不育是指雄蕊不能正常发育或不能正常生产正常粉孢子,又称睾丸不育或花药不育。
在育种中,利用雄性不育基因,可以使水稻在不受人工控制情况下,自然地维持雌雄分离,达到孪生变异或杂种优势,从而实现高产和优质。
目前,雄性不育基因被广泛应用于水稻育种中。
然而,长期以来,雄性不育基因鉴定技术一直处于困境。
雄性不育基因是由基因突变所引起的,突变筛选相对非常困难,需要精密的实验手段和精细的筛选技术。
因此,我们需要开发出一种快速、准确、可靠的雄性不育基因鉴定技术。
近年来,国内外学者们在雄性不育基因鉴定技术方面开展了大量的研究。
他们通过分子生物学、生物化学、生物信息学和细胞遗传学等方法,成功鉴定出多种水稻雄性不育基因。
例如:阿维拉麦受体基因(ABA1)、细胞质保守蛋白基因(CMS)、粗粒双孢菌毒素基因(T、Rf3)、非加工米基因(nap)、膜磷酸二酯酶基因(PT)等。
其中,基于分子生物学的鉴定技术是目前最为先进和准确的方法。
它可以通过PCR扩增与特定基因相关的DNA序列,得到相应的DNA片段,并通过序列比对、酶切分析、核酸杂交、AP-PCR等多种方法进行分析。
备战高考情境:三系法杂交水稻(详细原理含习题)

备战高考情境:三系法杂交水稻我国水稻的六大稻区1973年,在各国普遍认为自花授粉的水稻没有杂种优势的情况下,袁隆平带领研究组成功实现杂交水稻三系配套,育成具有根系发达、穗大粒多等优点的强优势杂交水稻。
世界首次。
1976年,杂交水稻迅速扩大到208万亩,并在全国范围开始大面积应用于生产。
中国成为世界第一个在生产上成功利用水稻杂种优势的国家。
1995年,两系法杂交水稻研究取得突破性进展,大面积推广。
中国独创。
1996年开始实施的中国超级稻育种计划,在基础理论和品种选育方面都取得较大进展。
分别于2000、2004、2011、2014年实现了大面积示范亩产700、800、900、1000公斤的“四连跳”。
随后,超级杂交稻最高单产突破每公顷18吨,再次刷新世界纪录。
2002年,中国水稻(籼稻)基因组“精细图”正式完成,标志着我国水稻基因组研究正式进入世界前列,随后鉴定并克隆出控制水稻农艺性状的一系列关键基因。
近年来,我国育种技术推陈出新,与分子生物学、遗传学融合不断加深。
如2018年,由我国科学家李家洋、韩斌、钱前、王永红、黄学辉为代表的研究团队,历时逾20年合作完成的“水稻高产优质性状形成的分子机理及品种设计”项目荣获2017年度国家自然科学奖一等奖。
这项技术将极大推动作物传统育种向高效、精准、定向的分子设计育种转变。
2019年10月,兼有三系不育系育性稳定和两系不育系配组自由等优点的第三代杂交水稻首次公开测产,亩产达1046.3公斤,表现出株型优良、茎秆粗壮、耐肥抗倒、穗大粒多、籽粒充实饱满、不早衰等特性。
又是世界领先……(一)三系法杂交水稻三系法杂交稻的由来:两个遗传组成不同的亲本杂交产生的杂种F1代优于双亲的现象称为杂种优势。
具体地讲,杂种F1代在生长势、生活力、繁殖率、抗逆性、适应性、产量和品质诸方面比双亲优越。
杂种优势可分为超亲优势、平均优势和竞争优势。
人们常说的杂种优势利用通常是指利用作物的竞争优势。
水稻免疫机制的分子生物学研究

水稻免疫机制的分子生物学研究在人类粮食中占据重要地位的水稻,是世界上最主要的粮食作物之一,但在其生长过程中,极易受到细菌、真菌、病毒等病原微生物的攻击,造成严重的减产问题。
因此,研究水稻免疫机制的分子生物学成为了当今生物学研究的热点之一。
水稻免疫机制主要通过两种方式进行:一种是PTI(PAM-triggered immunity),指的是由细胞膜上PAMPs与PAMP受体发生相互作用而引发的通路;另一种是ETI(Effector-triggered immunity),指的是由病原体的效应蛋白(effector)与水稻细胞中植物保护蛋白(R蛋白)发生相互作用后引发的通路。
在PTI通路中,水稻细胞膜上的PAMPs受体(如LRKs和OsFLS2)可以与外部的PAMPs结合,激活植物内源性激素(如SA、JA),进而刺激水稻细胞产生一系列的抗菌物质,以达到对抗入侵病菌的作用。
在ETI通路中,水稻细胞中的R蛋白则起到了关键的作用。
R蛋白即是感知病原效应蛋白的受体蛋白,其下游的信号转导过程对于水稻抵抗病原微生物的作用至关重要。
根据实验研究,已发现数以千计的水稻R蛋白。
其中,转录因子类R蛋白可以通过改变这些蛋白的转录活性来激活目标基因,使水稻对病原微生物产生抵抗力,而调控性R蛋白(如DEAD-box RNA helicase)则可以负责在水稻免疫病程中的调控。
在水稻的抗病过程中,信号转导过程也是必不可少的。
不同的信号传导路线会对差异性引发反应,因此研究与水稻宿主响应有关的感官因子和信号转导分子是十分必要的。
在水稻抗病的信号转导过程中,除了SA、JA等内源激素的作用外,还有Ca2+、ROS、磷酸烯醇激酶等信号转导分子的参与。
例如,CA2+可以通过其结合的CML类蛋白调节一些酶的活性,而ROS的过多还可以引发水稻的凋亡反应。
近年来,大量的研究证实,cDNA克隆技术、基因工程技术等工具的应用对于水稻免疫机制的研究提供了有力的帮助。
水稻细胞质雄性不育分子生物学研究进展

核基 因组( ul r N ,D A 与其可能有一定 的关 N ca D A nN ) e 系。本文就有关水稻细胞质雄性不育与有关基因组分 子生物学研究进展作一综述 , 并对水稻细胞质雄性不 育分子机理和分子生物学研究进行 了展望。
在 明显 的差异 , 而且叶绿体蛋 白质、 叶绿体超微结构之 间均存在差异 , 因此认为高等植物的细胞质雄性 不育 与 c N 叶绿体蛋 白质及其超微结构之间存在某些 t A、 D
术 的发 展 , 国内外 的学 者对 c N mtN pD A和 t A、 D A、d N D
体育成 的不育系及相应的保持 系、 恢复系 、 不育系/ 恢 复系 F 、 保持系/ 恢复系 F等 1 2份水稻材料的剑叶叶 肉细胞 中的叶绿体超微结构, 结果表明 , 两种类型的质 供体育成的不育系都表现出部分 叶绿体不 同基粒间的 片层排列方 向不一致 , 呈现一定程度 的杂乱, 说明叶绿 体超微结构与细胞质雄性不育存在某些相关性; 当不 育系与恢复系杂交后 , 叶绿体全部从不育系的异 F代 常恢复正常, 而且 叶绿体基粒片层数少的质供体野败 与叶绿体基粒片层数多的核供体珍汕 9 7 B两者的质、 核共处 了2 3代之久 , 不育系的片层数仍与质供体野败 相近, 但与恢复系杂交后 , F 的片层数却大大增加, 说 明育性恢复因子的导入 , 使后代育性恢复的同时, 叶绿 体结构的异常现象也得到 了改善。侯磊等 用 3 2对
联系。郑兢贵等 用电镜 观察 了雄性败育的野生 稻 与雄性育性正常的栽培稻 G m i a和以它们 为质供 ab k a
1 水稻 C MS的分 子基 础
由于植物细胞质遗传物质主要包括叶绿体基因组 (tN 、 粒 体 基 因组 ( tN 、 粒 基 因 组 c A) 线 D mD A) 质 (d N ) pD A 和核基因组( D A , n N ) 人们 自然就将 C S M 与 这些遗传物质联 系起来。近年来 , 随着分子生物学技
水稻雄性不育系

目 录1概况
2水稻杂交不育的原因
3具体介绍
1概况基本特征: 雄性器官发育不正常,花药瘦小、干瘪、不开裂、内含败育花粉或无花粉,自交不能结实,多数情况下,有不同程度的包颈。