14-15第二学期合肥工业大学线性代数B卷-答案
线性代数试题线性代数试卷及答案大全(173页大合集)

属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,
,
故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r
合肥工业大学试卷参考答案B卷

=
1 2π
π −π
X
2
(e
jω
)dω
所以
∫ ∫ ∫ 1
2π
π −π
X1 (e
jω
)X 2 (e
jω
)dω
=
{21π
π −π
X1 (e
jω
)dω}{21π
π −π
X
2 (e
jω
)dω}
第4页共4页
x(n) =
x(t) t =nTs
=
x(nTs ) =
x⎜⎜⎝⎛
n fs
⎟⎟⎠⎞
=
3
cos⎜⎜⎝⎛
2π
⎜⎛ ⎝
1 5
⎟⎞n ⎠
⎟⎟⎠⎞
+
5
sin⎜⎜⎝⎛
2π
⎜⎛ ⎝
3 5
⎟⎞n ⎠
⎟⎟⎠⎞
+
10
cos⎜⎜⎝⎛
2π
⎜⎛ ⎝
6 5
⎟⎞n ⎠
⎟⎟⎠⎞
=
3
cos⎜⎜⎝⎛
2π
⎜⎛ ⎝
1 5
⎟⎞n ⎠
⎟⎟⎠⎞
−
2π
⎜⎛ ⎝
1 5
⎟⎞n ⎠
⎟⎟⎠⎞
−
5 sin ⎜⎜⎝⎛
2π
⎜⎛ ⎝
2 5
⎟⎞n ⎠
⎟⎟⎠⎞
2. 设 x(n)的傅里叶变换为 X(ejω),试利用 X(ejω)表示下列序列的傅里叶变换:
(1) x1(n) = x(1 − n) + x(−1 − n) (2) x(n) = 1 [x(n) + x∗ (−n)]
一. 计算题(共 60 分,12 分/题) 1. 设模拟信号 x(t)=3cos2000πt +5sin6000πt +10cos12000πt,求: (1) 该信号的最小采样频率; (2) 若采样频率 fs=5000Hz,其采样后的输出信号; 解:(1)在模拟信号中含有的频率成分是
线性代数试题及答案

线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
合肥工业大学2014-2015第一学期《高等数学》试卷A试题

一、填空题(每小题3分,共15分) 1、极限2sin 0lim(13)x x x →+= .2、设2arctan()y x x =,则y ' . 3、设()f x 的一个原函数为2x e-,则()________xf x dx '=⎰.4、曲线xe y =过原点的切线方程为____________. 5、曲线2r eθ=从0=θ至2πθ=的一段弧长=l ____________.二、选择题(每小题3分,共15分) 1、当1x →-时,31x +与3(1)x +为()(A) 高阶无穷小 (B) 低阶无穷小(C) 等价无穷小 (D) 同阶但不等价无穷小2、若()f x 的导函数为sin ,x 则()f x 的一个原函数是( )(A) 1sin x + (B) 1sin x - (C) 1cos x + (D) 1cos x -3、设()f x 在0x =处连续,且0()lim 11cos x f x x→=-,则在点0x =处( ). (A) (0)f '不存在 (B) (0)0f '=,且(0)f 为()f x 的极小值 (C) (0)f '存在,且(0)0f '≠ (D) (0)0f '=,且(0)f 为()f x 的极大值4、下列广义积分发散的是( )(A)1+∞⎰(B)111sin dx x -⎰ (C)221ln dx x x+∞⎰(D) 2x xe dx +∞--∞⎰5、曲线2211x x e y e--+=-()(A) 没有渐近线 (B) 仅有水平渐近线 (C) 仅有铅直渐近线 (D) 既有水平渐近线又有铅直渐近线三、计算下列各题(每小题6分,共36分)1、222111lim ()2n n n n n n πππ→∞++++++L . 2、)cos 1)(1(1cossin 3lim 20x e x x x xx +---→. 3、求sin (0)xy xx =>的导数()y x '. 4、已知()2ln 1,arctan ,x t y t ⎧=+⎪⎨=⎪⎩求22d d ,d d y yx x . 5、2arctan x dx x ⎰. 6、设2ln(1)0()101x x f x x x +≥⎧⎪=⎨<⎪+⎩,求20(1)f x dx -⎰. 四、(本题满分10分)设 ()()22021cos , 0, 1, 0,1cos d , 0,xx x x f x x t t x x ⎧-<⎪⎪==⎨⎪⎪>⎩⎰ 讨论()f x 在0x =处的连续性和可导性.五、(本题满分10分)设曲线2xe y =,切线2ey x =及y 轴围成的平面图形为D ,求D 绕y 轴旋转一周所得旋转体体积V .六、(本题满分8分)证明不等式:0>x 时,有11ln ≥+xx . 七、(本题满分6分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,0)(≠x f (01x <<),且0)1()0(==f f ,证明:在)1,0(内至少存在一点ξ,使()2015()f f ξξ'=.。
合肥工业大学2014-2015第一学期《高等数学》试卷A .答案

一、填空题1.6e ;2. 42212)arctan(x x x ++ ;3.2222x x x e e C ----+;4. ex y =; 5.1)e π-. 二、选择题1. C ;2. B ;3. B ;4. B ;5. D . 三、解:1.利用夹逼准则,2222222111ππ2πππn n n n n n n n n n ⎛⎫<+++<⎪+++++⎝⎭ 再由22π1lim lim 11πn n n n n n →∞→∞==++,222π1lim lim 11πn n n n n →∞→∞==++ 222111lim ()12n n n n n n πππ→∞+++=+++ 2.原式23-0)(-3211cos x -3sinx lim 2120x =+=-=→x x ;3.两边取对数 , 化为隐式ln sin ln y x x =⋅,两边对 x 求导,1sin cos ln x y x x y x'=⋅+ sin sin (cos ln )x xy x x x x'∴=⋅+; 4.2223d 1d 1, d 2d 4y y t x t x t+==-; 5.解:22arctan 1111arctan ()arctan 1x dx xd x dx x x xx x =-=-+⋅+⎰⎰⎰ 221111arctan ()arctan ln ln(1)12x x dx x x x C x x x x =-+-=-+-+++⎰6.210121101(1)()(1)1f x dx f x dx dx ln x dx x ---==+++⎰⎰⎰⎰ 2ln 214π=+-.四、解 ()()221cos lim lim 1x x x f x x --→→-==()22000cos d cos lim limlim 11xx x x t t x f x x+++→→→===⎰ 故()()()0lim lim 0x x f x f x f -+→→==.因此()f x 在 0x =处连续. 又()()()()2300021cos 0limlim 00x x f x f x x f x x ---→→---'===- ()()()20200cos d 00lim lim00xx x t t x f x f f x x +++→→--'===-⎰故()f x 在 0x =处可导,且()00f '=.五、解 定积分应用:旋转体体积。
合肥工业大学学生课表(微电子学院)

下
午
5
6
马克思主义基本原理概论Ⅰ0002班(1-8周)翠六教103刘金
离散数学0001班(1—8周)
翠六教205汪荣贵
大学英语(2)0067班(4-14双周)三号机房高扬,高扬
软件技术基础0001班(1-8周)翠五教102易茂祥,毛剑波
形势与政策A(2)0027班(9-15单周)翠三教204崔景明
7
8
离散数学0001班(1—8周)
翠六教205汪荣贵
模拟电子线路0001班(1-14周)翠四教312刘士兴,刘平
晚
9
10
模拟电子线路0001班(1-14周)翠四教312刘士兴,刘平
电路分析基础0002班(1-14周)翠六教408杞宁
合肥工业大学学生课表
2014—2015学年第二/三学期
级别:2014学院:微电子学院班级:2014级本硕班
星期一
星期二
星期三
星期四
星期五
星期六
星Байду номын сангаас日
上
午
1
2
大学英语(2)0067班(3-16周)翠六教110高扬,高扬
高等数学B(2)0001班(1-16周)
翠七教206于春华
线性代数0018班(1-16周)
翠一教201许莹
电路分析基础0002班(1-14周)翠六教408杞宁
3
4
大学体育基础(2)135班(1-12周)风雨操场柴业宏
软件技术基础0001班(1-8周)翠五教102易茂祥,毛剑波
线性代数0018班(13-16周)
翠五教404许莹
大学物理B(1)0028班(1-16周)翠八教209王春华
高等数学B(2)0001班(1-16周)
合工大-线性代数习题册参考解答

第一章 行列式1、求下列排列的逆序数,并确定它们的奇偶性。
(1)1347265;(2)321)1( -n n 。
【解】(1)62130000)1347265(=++++++=τ,偶排列; (2)2)1()1(210]321)1([-=-++++=-n n n n n τ。
当14,4+=k k n 时,2),14(22)1(-=-k k k n n 当34,24++=k k n 时,4)(12(2)1(+=-k n n 排列。
■2、用行列式定义计算x x x x x f 111231112)(=中4x 和3x 的系数,并说明理由。
2;(4,4)的元素乘积项,而10=+,611061203110225161103110612022516011301160212152323112241324--=---=--=↔↔++-r r c c r r r r r r D930003003110225123242-=--=--r r r r 。
■ 4、求84443633224211124=D 。
【解】性质(三角化法)+行和相等的行列式:211112111121111224844436332242111243212432434r r r r r r r D +++÷÷÷===12010100010111112014,3,2==-=r r k k 。
■mnn11))((-=--∑n ni i m m x 。
■6、求nn a a a D 01001011110211=+,其中021≠n a a a 。
【解】箭形行列式(爪形行列式):利用对角线上元素将第一行(或列)中元素1化为零。
为此,第一列减去第k 列的ka 1(n k ,,3,2 =)可得: n n i inni in a a a a a a a a D2112111)1(0000000001111∑∑==+-=-=。
■ 7、求7111141111311112=D 。
线性代数B模拟试卷参考答案

线性代数B模拟试卷参考答案线性代数B 模拟试卷参考答案模拟试卷⼀⼀、(15分)填空题:1.设123456110A ??=-,则 |A|= , A*=,A -1=.2.设4维向量α=(1,2,0,-3)T , β=(2,-1,5,0)T ,则α与β的内积(α,β)= , 夹⾓<α,β>= .3.齐次线性⽅程组123412341234123423024025200ax x x x x x x x x x x x x x x x +++=??-+-=??+--=??+++=?有⾮零解,则a= . (由系数⾏列式为0推得) 4.设矩阵123456A ??=??-??,1224510B ??=??-??,初等矩阵P 满⾜:AP=B,则P=.(A 的第3列-第1列得B ,所以P 为E 的第3列-第1列所得初等阵) 5. α1,α2,α3,α4均为3维向量,则向量组α1,α2,α3,α4必线性关. (ch3/Th7/推论2)⼆、(15分)选择题: 1.设3阶⾏列式112233112233112233a x a x a x Db y b y b yc z c z c z +++=++++++则(). (A )123123123123123123a a a x x x D b b b y y y c c c z z z =+;(B )122331223312233122331223312233a a x a x x a x a x D b b y b y y b y b y c c z c z z c z c z ++++=+++++++++ (C )123123123123123123123123123a a x a x a x a a Db b y b y b y b bc c z c z c z c c =++. (ch1/⾏列式性质5)2.设矩阵A 的秩R(A)=r,则().(A)A 中只有⼀个r 阶⼦式不为零,其余的r 阶⼦式全为零;(B) A 中存在⼀个r 阶⼦式不为零,所有的r+1阶⼦式(若有)全为零; (C) A 中所有的r 阶⼦式均不为零,⽽⾼阶⼦式全为零.3. 设线性⽅程组12312321231ax x x x ax x a x x ax a ++=??++=??++=?有唯⼀解,则(). (A)a=1;(B)a=-2;(C)a ≠1且a ≠-2.4.设向量组α1,α2,…,αs 线性相关,则().(A) α1⼀定可由α2,α3,…,αs 线性表⽰; (B) α1⼀定不可由α2,α3,…,αs 线性表⽰;(C) 其中⾄少有⼀个向量可由其余s-1个向量线性表⽰. 5.n 阶⽅阵A 与对⾓阵相似,则().(A)A 有n 个不同的特征值;(B) A 有n 个相同的特征值;(C) A 有n 个线性⽆关的特征向量. 三、(14分)设n 维向量αT = (1/2,0,…,0,1/2),⼜A=E-ααT , B=E+2ααT ,其中E 为n 阶单位矩阵,求AB,A -1,B -1,并写出A -1与B -1的具体形式.四、(16分)设向量组α1=(1,2,3,4)T , α2=(2,3,4,5)T , α3=(3,4,5,6)T , α4=(4,5,6,7)T ,求该向量组的秩及⼀个最⼤⽆关组,并将其余向量表⽰成最⼤⽆关组的线性组合. 五、(14分)求⾮齐次线性⽅程组1234123412342546235843622x x x x x x x x x x x x +-+=??-+-=??-+-=?的通解.六、(18分)设⼆次型f=2x 12+3x 22+3x 32+4x 2x 3. 1.写出f 的矩阵;2.求A 的特征值与特征向量;3.⽤正交变换X=QY 将f 化为标准形,并写出正交矩阵Q. 七、(8分)证明:若为A 正交矩阵,则A 的伴随矩阵A*也为正交矩阵.模拟试卷⼆⼀、(15分)填空题:1.在4阶⾏列式det[aij]中,含有因⼦a 11a 32的项有:.130121A ??=A T 为A 的转置矩阵,则矩阵乘积AA T = ,A T A= .3. 矩阵103211000000A =??的秩= . 4.设B,C 为可逆矩阵,分块矩阵O B A C O ??=??, 则A -1= 5. ⽤矩阵形式表⽰⼆次型f=x 12+x 1x 2+2x 22+3x 32-2x 2x 3,f= X T AX ,其中X=123x x x ?? ?,.⼆、(15分)选择题:1.设α=(1,2,3)T , β=(1,1/2,1/3)T ,A=αβT ,则A 10=().(A )310; (B) 911/21/33212/333/21;(C )10101010101011123221()333()12. .2.设线性⽅程组1231232312(2)(2)33(2)3x x x x a x b x ax a b x +-=?++-+=??-++=-?有⽆穷多组解,则().(A)a=b ≠0;(B) a ≠0且a ≠b;(C)a=b=0.. 向量组α1,α2,…,αs 线性⽆关的充要条件为().(A) α1不能由α2,α3,…,αs 线性表⽰;(B)α1,α2,…,αs 的秩⼩于s ; (C) α1,α2,…,αs 的秩等于s. 4.设b A a ??=为正交矩阵,则(). (b=(B) a=b=(C) a=b=0. 5.设3阶⽅阵A 与对⾓阵100020003??-??相似,则().(A)A -1有特征值1,2,-3;(B) A+E 有特征值2,3,-2;(C) A 2有特征向量1,2,-3 三、(18分)设矩阵1201512031001000A=,,试求1.|A|;2.A -1;3.|A 4|. 2.12011000100000015120010002011001[|]31000010010000131000000101200105r A E-?--1000001100001010000130100001300011025001001/21/210020011200011025r r--→→---???---, ∴A -1=0001001301/21/211025-?--??-??. 3.|A 4|=|A|4=16.四、(16分)求齐次线性⽅程组1234123412342546235843622x x x x x x x x x x x x +-+=??-+-=??-+-=?的通解.五、(16分)设向量组α1=(1,2,3,4)T , α2=(-1,1,-1,0)T ,α3=(2,-1,3,1)T , α4=(0,3,2,4)T ,求该向量组的秩及⼀个最⼤⽆关组,并将其余向量表⽰成最⼤⽆关组的线性组合.六、(20分)设对称矩阵A=2000120211.求A 的特征值与特征向量;2.求⼀个正交矩阵Q 和对⾓阵Λ,使得Q -1AQ=Λ.模拟试卷三⼀、(15分)填空题:1.设n 阶⽅阵A 的⾏列式|A|=2,则A 的伴随阵的⾏列式|A*|= .123110,111A =--??121111,110B ??=--矩阵X 满⾜: AX=B,则X=A -1B=3. 设ξ1=(2,0,-1)T, ξ2=(1,0,0)T 为线性⽅程组1231231232112225x x x x x x ax bx cx ++=??-+=??++=? 的两个解向量,则⽅程的通解为 .(⽅程解不唯⼀,故系数⾏列式|A|=0,R (A )=2,AX=0基础解系有n- R (A )=3-2=1个解向量, ξ=ξ1-ξ2=(1,0,-1)T 为基础解系)4. 向量组α1=(1,2,-3)T , α2=(-2,1, 0)T , α3=(0,5,-6)T ,线性关.5. 设n 阶⽅阵A 与B 相似,A 有特征值1,2,-3,则 B -1+E 有特征值 . ⼆、(15分)多项选择题:1.设A,B 均为n 阶可逆⽅阵,则().(A)齐次线性⽅程组ABX=0只有零解; (B)(A+B)-1=A -1+B -1; (C) A 的特征值全不为零.2.设A,B 均为n(n ≠1)阶矩阵则(). (A)(AB)T =A T B T ;(B)|AB|=|A||B|;(C)|2A|=2|A|.3.设λ为n 阶可逆矩阵A 的特征值,则(). (A)1/λ为A -1的特征值;(B) λ2为A 2的特征值; (C)φ(λ) 为φ(A)的特征值,其中φ(x)为x 的多项式.4.n 阶⾏列式.....................a b b b a bb b a的值为(). (A)(a+nb)(a-b)n-1;(B) (a-b)n +nb(a-b)n-1;(C)[a+(n-1)b](a-b)n-1. 5.设α1=(1,-2,5)T , α2=(-2,4,-10)T ,则().(A)(α1,α2)= -60;(B) α1 与α2正交;(C) α1,α2线性相关. 三、(10分)求⾮齐次线性⽅程组四、(10分)求向量组α1= (1,1,2,3)T , α2=(1,-1, 1,1)T , α3=(1,3,3,5)T , α4=(4,4,8,12)T ,的秩及五、(15分)问a,b 为何值时,线性⽅程组1231231234324ax x x x bx x x bx x ++=??++=??++=?有唯⼀解?有⽆穷多组解?⽆解?六、(20分)设对称矩阵A=120 220 001-1.求A的特征值与全部特征向量;2.求⼀个正交矩阵Q和对⾓阵Λ,使得Q-1AQ=Λ.七、证明题:1.(7分)设A,B均为n阶正交矩阵,试证A-1B也是正交矩阵.2.(8分)设向量组α1,α2,…,αs(s>1)线性⽆关,⼜β1=α2+α3+…+αs,β2=α1+α3+…+αs ,β3=α1+α2+α4+…+αs,… ,βs=α1+α2+…+αs-1,证明向量组β1, β2,…,βs线性⽆关.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 1 4 r 0 ~ 4 0 9 0
4 1 1 0 3 B ' b1 , b2 , b3 , b4 , b5 0 0 1 3 0 0 0 0
0 1 0
x1 a 1 x 2 a 2 x 3 a 3 x 4 a 4 x 5 a 5 0 x1b1 x2 b2 x3 b3 x4 b4 x5 b5 0
A 2E
则
AB 2B A
B E
2
E
A 2E
可逆,
A 2E
1
B E .
2
4
1 0 0 0
1 1 1 1 B0 0 1 0 0
A0 的 3 个列向量就是矩阵 A 的列向量组的一个最大无关组. 为把 a3, a5 表示成 a1, a2, a4 的线性组合,可矩阵 A 再变成行最简形矩阵
2
1 2 1 1 1 1 2 1 A a1 , a2 , a3 , a4 , a5 4 6 2 2 6 9 7 3
1 0 2015 一、1.-48 ;2.4 ;3. A 0 1 0 ;4.3 ;5. 2. 0 0 1
二、1.C;2.C ; 3.B ; 4 A;5.C.
x a1
三、 (8 分)计算行列式 Dn
x x
x a1
x x , 其中 a i 0, i 1,2, , n .
1 1 1 4 5 6 , 求矩阵 . 四、 (10 分)已知 X 0 1 1 X 1 0 1 1 2 3
1 1 1 4 5 6 解:X= 0 1 1 1 2 3 1 0 1
同解.即矩阵 A 的列向量组与矩阵 B 的列向量组有相同的线性关系.可以看出:
b3 b1 b2 ,
b5 4b1 3b2 3b4
所以
a3 a1 a2 a5 4a1 3a2 3a4
2 2 2 七、 (10 分)解: f ( x1 , x 2 , x 3 ) x T Ax ax1 3 x2 3 x3 2 bx 2 x 3 b 0
2 3
3
对于
,
,
,分别解 , ,
,得基础解系
单位化可得
√ √ 令 , ,
,
√ √
,正交变化为
2 2 2 标准形为 f ( y1 , y 2 , y 3 ) y1 2 y2 5 y3
八、 (6 分)证:已知 n 阶方阵 A , B 满足条件 A B
A 2B
,则
A 2E B A A 2E B A 2E 2E A 2E B A 2E 2E A 2 E B E 2 E
1 2 1
行阶梯形矩阵有 3 个非零行,故 R(A) = 3 . 找 B 的一个 3 阶非零子式.可取行阶梯形矩阵中非零行的第一个非零元所在的列,与之对应 的是选取矩阵 A 的第一、二、四列.
1 2 1 1 1 1 r A0 ( a1 , a2 , a4 ) ~ 4 6 2 6 7 3
x x
x 0
x a2
x an
x a1
解: Dn
x
a1
a2
a1
0 an
a1 a x 1 x x x a2 an 0 a2 0 0 0 an
( x a1
n a a1 1 x 1 x )a 2 a n (1 x )a1 a 2 a n an a2 i 1 a i
1
1 1 0 4 5 6 = 1 0 1 1 2 3 1 1 1
=
3 2 1 . 0 2 1
五、 (14 分) 解: 因为系数矩阵 A 是方阵, 所以方程组有唯一解的充分必要条件是 |A| ≠ 0 .
1 1 | A | 1 1 1 1
a 0 0 A 0 3 b 0 b 3
由于二次型的矩阵 A 的迹为 8, A 10 ,则
a 3 8
a 9 b 2 10
即a 2 ,b 2
2 0 令 A E 0 3 0
0 2 (1 )( 2 ) 5 0 ,得 1 1, 2 2, 3 5
1 0 1 0 1 1 2 1 r 3 ~ 0 1 1 2 B 1 2 1 1 1 2 3 0 0 0 0
R(A) = R(B) = 2 ,方程组有无限多个解,其通解为
x1 1 1 x2 c 1 2 1 0 x 3
1 1 1
(3 ) 2
于是当 ≠ 0 且 ≠-3 时,方程组有唯一解. 当 = 0 时,
1
1 1 1 0 1 1 1 0 r B 1 1 1 3 ~ 0 0 0 1 1 1 1 0 0 0 0 0
R(A) = 1, R(B) = 2 ,方程组无解. 当 = -3 时,
六、 (12 分)解:用初等行变换把矩阵 A 化成行阶梯形矩阵.
1 2 1 1 1 1 2 1 A 4 6 2 2 6 9 7 3
2 1 4 r 0 ~ 4 0 9 0
4 1 1 1 0 B 0 0 1 3 0 0 0 0