线性代数 (12)

线性代数 (12)
线性代数 (12)

21世纪全国应用型本科计算机系列实用规划教材 联合编写学校名单(按拼音顺序排名)

1 安徽财经大学

2 安徽工业大学

3 安阳师范学院

4 北华大学

5 北京化工大学

6 北京建筑工程学院

7 北京理工大学

8 渤海大学

9 长春大学

10 长春工业大学

11 长春理工大学

12 长春税务学院

13 滁州学院

14 楚雄师范学院

15 东北电力大学

16 福建工程学院

17 福建师范大学

18 广西财经学院

19 桂林工学院

20 哈尔滨理工大学

21 海南大学

22 韩山师范学院23 杭州师范学院

24 合肥工业大学

25 合肥学院

26 河北经贸大学

27 河南科技学院

28 黑龙江八一农垦大学

29 黑龙江科技学院

30 湖南大学

31 湖北经济学院

32 孝感学院

33 湖州师范学院

34 华北科技学院

35 华南师范大学

36 华中农业大学

37 华中师范大学

38 华北水利水电学院

39 淮北煤炭师范学院

40 黄石理工学院

41 吉林农业大学

42 集美大学

43 江汉大学

44 江苏科技大学

45 内蒙古大学

46 南昌工程学院

47 南京航空航天大学

48 南开大学

49 南阳理工学院

50 宁波工程学院

51 平顶山学院

52 青岛理工大学

53 青岛科技大学

54 青海民族学院

55 曲阜师范大学

56 山西大学

57 山西广播电视大学

58 陕西理工学院

59 上海第二工业大学

60 上海海事大学

61 沈阳大学

62 沈阳化工学院

63 石家庄铁道学院64 苏州大学

65 台州学院

66 太原理工大学

67 太原师范学院

68 唐山师范学院

69 同济大学

70 皖西学院

71 武汉大学

72 武汉科技学院

73 武汉理工大学

74 武夷学院

75 忻州师范学院

76 新疆石油学院

77 许昌学院

78 玉溪师范学院

79 浙江工业大学之江学院

80 衢州广播电视大学

81 中国农业大学

82 中国石油大学

线性代数期末试题及答案

工程学院2011年度(线性代数)期末考试试卷样卷 一、填空题(每小题2分,共20分) 1.如果行列式233 32 31 232221 131211 =a a a a a a a a a ,则=---------33 32 31 232221 13 1211222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

线性代数习题集(带答案)

第一部分专项同步练习 第一章行列式 一、单项选择题 1.下列排列是 5 阶偶排列的是( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ). n! (A) k (B) n k (C) k 2 n(n 1) (D) k 2 3. n 阶行列式的展开式中含a11a12 的项共有( )项. (A) 0 (B) n 2 (C) (n 2)! (D) (n 1)! 0 0 0 1 4. 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 0 0 1 0 5.0 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 2x x 1 1 6.在函数 1 x 1 2 f (x) 中 3 2 x 3 3 x 项的系数是( ). 0 0 0 1 (A) 0 (B) 1 (C) 1 (D) 2 1

7. 若 a a a 11 12 13 1 D a a a ,则 21 22 23 2 a a a 31 32 33 2a a 13 a 33 a 11 a 31 2a 12 2a 32 11 D 2a a a 2a ( ). 1 21 23 21 22 2a 31 (A) 4 (B) 4 (C) 2 (D) 2 a a 11 ,则 12 8.若 a a a 21 22 a 12 a 11 ka 22 ka 21 ( ). 2 (D) k2a (A) ka (B) ka (C) k a 9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ). (A) 0 (B) 3 (C) 3 (D) 2 8 7 4 3 10. 若 6 2 3 1 D ,则D 中第一行元的代数余子式的和为( ). 1 1 1 1

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数期末考试试卷答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号填“√”,错误的在括号填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 £ s £ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示

线性代数第四章总结

总结§4.1—§4.3 一、线性表示 1. 向量β可由向量组m ααα ,,21线性表示 ?存在数m k k k ,,,21 使得,m m k k k αααβ ++=2211 ?方程组βααα=++m m x x x 2211有解(即是β=Ax 有解) ? ()=m R ααα ,,21()βααα,,,21m R (即是()()β,A R A R =) 2. 向量组12,,l βββ 可由向量组m ααα ,,21线性表示?()=m R ααα ,,21 ()1212,,,,,m l R αααβββ (即是()(),R A R A B =) 向量组12,,l βββ 可由向量组m ααα ,,21线性表示?()12,,l R βββ≤ ()12,,m R ααα (即是()()R B R A ≤) 3. 向量组m ααα ,,21与向量组12,,l βββ 等价?()=m R ααα ,,21 ()12,,l R βββ =()1212,,,,,m l R αααβββ (即是()()(),R A R B R A B ==) 二、线性相关与线性无关 1. 向量组m ααα ,,21线性相关?存在不全为零的数m k k k ,,,21 使得, .02211=++m m k k k ααα ?方程组02211=++m m x x x ααα 有非零解. ?0=Ax 有非零解. ?()m R m <ααα ,,21 ?()m A R < 其中()m A ααα ,,21= 2. 向量组m ααα ,,21线性无关?如果,02211=++m m k k k ααα 则有 .021====m k k k ?方程组02211=++m m x x x ααα 只有零解 ?0=Ax 只有零解 ?()m R m =ααα ,,21 ?()m A R = 其中()m A ααα ,,21=

线性代数期末复习题

线性代数 一. 单项选择题 1。设A 、B 均为n 阶方阵,则下列结论正确的是 . (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b )若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d )若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b ) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A )=m 时,则方程组 。 (a ) 可能无解 (b)有唯一解 (c)有无穷多解 (d )有解 4.矩阵A 与对角阵相似的充要条件是 。 (a )A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5。A 为n 阶方阵,若02 =A ,则以下说法正确的是 。 (a ) A 可逆 (b ) A 合同于单位矩阵 (c ) A =0 (d ) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B)CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A |=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

线性代数第17讲

线性代数 第45讲 线性空间(1) ( 教材 p.130 -- P.133 ) 关键词:线性空间 §5.1 线性空间的概念 我们已经把平面和空间的几何向量推广到由有序数组定义的n 维向量,并把n 维向量的全体所构成的集合n R 叫做n 维向量空间. 这里要说明一点:由n 维行向量组成的空间与由n 维列向量组成的空 间在结构上是完全相同的,所以都记为n R . 但人们在讨论各种问题时,常常遇到各种不同的集合与运算(该集合元素未必是有序数组). 例如,讨论全体n m ? 矩阵所构成的集合,我们可以定义它们的加法和数乘,并且我们知道这些运算满足交换律、结合律、分配律等8条规律. 当抽去这些集合中对象(也称元素)的具体属性及定义运算的具体规则(例如函数的加法规则与向量的加法规则是完全不同的),我们考虑这些集合的结构:其对象的“线性运算”和它的“运算规律”,从而就可以建立一个数学模型:线性空间. 设V 是一个非空集合,其元素用字母 ,,,γβα表示;F 是 ,,μλ表示数域 F 中的数. (线性空间的定义)称非空集合V 是数域 F 上的线性空间, 如果集合V 具备下列两个条件: 1. F 中定义了加法运算, 即给出一个规则,使得对于任意V V ∈∈βα,, 由这个规则可唯一确定一个元素 ,V ∈+=βαγ γ

叫做元素α与 β的和. 这个加法运算须满足如下4条基本运算规律: )i ( .αββα+=+ (加法交换律) )i i ( ).()(γβαγβα++=++ (加法结合律) )i i i ( V 中有零元素,0 使αα0=+对任何元素V ∈α成立. )v i ( 对每个元素V ∈α,都有负元素)(α-存在,使+α0α=-)(. 2. F 中的数与V 中的元素之间定义了数乘运算, 即给出一个规则,使得对于任意指定的数F ∈λ及元素 ,V ∈α由这个规则可唯一确定一个元素 ,V ∈αλαλ叫做数λ与元素α的乘积. 这个数乘运算须满足如下4条基本运算规律: )v ( .1αα= )i v ( .)(βαβαλλλ+=+ )i i v ( .)(αααμλμλ+=+ )i i i v ( .)()(ααμλμλ= (简言之, 定义了线性运算, 且此运算满足8条法则的集合叫线性空间) 借用几何语言, 把线性空间V 的元素也称为向量. 线性空间又可称为向量空间. 把V 称为线性空间是因为它所具有“加法”与“数乘”运算,而这两种运算合称为线性运算. 实数域R 上的线性空间简称为实空间, 复数域C 上的线性空间简称为复空间. 我们主要讨论实空间. 在不做特殊说明时, 线性空间均指实线性空间. 我们把分量为数域F 中的数的全体n 维向量(有序数组)所构成的线性空间记作 n F . 当 F 为实数域时, 此n 维向量空间记作n R . 当 3,2,1=n 时,它就是直观的几何空间;当 3>n 时,n R 不再有. 数域 F 上的全体n m ?矩阵(即矩阵的元素均为F 中的数)关于矩阵加法及数乘矩阵的运算构成一个F 上的线性空间,记作 ).(F M n m ? (因:易知线性运算封闭,且满足8条规则) 当数域 F 为实数域R 时,此实线性空间记作).(R n m M ?

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数讲义

线性代数讲义 线性代数攻略 线性代数由两部分组成: 第一部分:用矩阵解方程组(判断解的存在性,用有限个解表示所有的解)第二部分:用方程组解矩阵(求特征值,特征向量,对角化,化简实二次型)主观题对策 1. 计算题精解 计算题较之选择题与填空题难度几乎没有增加,但计算量大大增加,故出错的机会大幅增长,因此应力求用简便方法解决问题. 一.行列式的计算: 单纯计算行列式的题目大概永远不会出现.所以需要结合其它的知识点. l 核心内容 范德蒙行列式/余子式/代数余子式/Cramer法则: l 典型方法 降阶法(利用Gauss消元法化为三角矩阵:常常是将所有的行或列加到一起)/特征值法(矩阵的行列式等于其特征值之积)/行列式的其它性质(转置矩阵/逆矩阵/伴随矩阵/矩阵之积) 例1 计算下述三个n阶矩阵的行列式: . 解先算|B|=xn;再算|A|: 故|C|= |A|(-1)(1+?+n)+[(n+1)+…+(2n)] |B-1| =(-1)(1+2n)n(n+x)/x. 例2(2004-4) 设矩阵 ,矩阵B满足ABA*=2BA*+E,则|B|=[ ]. 分析化简可得(A-2E)BA*=E;于是|A-2E||B||A*|=1. 又|A*|=9,|A-2E|=1,所以|B|=1/9. (切忌算B=(A-2E)-1(A*)-1.) 例3 设4×4矩阵A=(x,a,b,g), B=(h,b,g,a). 若|A|=1, |B|=2,则行列式|A+B|=[ ].

正解:|A+B|=|x+h, a+b, b+g, g+a|=|x+h, 2(a+b+g), b+g, g+a|=2|x+h, a+b+g, b+g, g+a| =2|x+h, a, b+g, g+a|=2|x+h, a, b+g, g|=2|x+h, a, b, g|=2(|x, a, b, g|+|h, a, b, g|)=2(|A|+|B|)=6. 巧解:正解令人羡慕,但可能想不起来.于是令A=E,则.但|B|=2,所以取最简单的 .于是 ,故|A+B|=6. 例4 若四阶方阵A的特征值分别为-1,1,2,3,则行列式|A-1+2A*|=[ ]. 解此题考查对特征值的理解.特征值的性质中最重要(也是最简单的)的有两条,即所有特征值的和等于矩阵的迹(=对角线元素之和),而所有特征值的积等于矩阵的行列式.因此|A|= -6!剩余的就是简单的变形了: A-1+2A* = A-1 (E+2A A*) = A-1 (E+2|A|E)=-11A-1. 故|A-1+2A*|=|-11A-1|=(-11)4|A-1|=-114/6. 本题有巧解,你想到了吗?对!就让A是那个满足条件的最简单的矩阵! 例2(上海交大2002) 计算行列式 其中,. 本题只要对特征多项式有一定认识,则易如反掌.所求行列式对应的矩阵A=xE+B, 其中B=(aibj)的任意两行均成比例,故其秩为1(最重要的矩阵类型之一)或0,但由题中所给条件,B10,于是,B至少有n-1个特征值为0,另有一特征值等于trB= a1b1+ a2b2+…+ anbn10. 从而,A有n-1个特征值x,另有一个特征值x+trB.OK 例3(2001) 设A为三阶矩阵,X为三维向量,X,AX, A2X线性无关,A3X=4AX-3A2X.试计算行列式|2A2+3E|. 很多人觉得此题无从下手,实在冤枉了出题人.由A3X=2AX-3A2X可知, A(A2+3A-4E)X=0.由此知, |A|=0:否则,A可逆,X,AX, A2X将线性相关,矛盾!从而(A2+3A-4E)X=0:故X是齐次线性方程组(A2+3A-4E)Y=0的非零解.于是|A2+3A-4E|=0.故A的三个特征值为0,1,-4.于是2A2+3E的三个特征值为3,5,35.所以, |2A2+3E|=3′5′35=525. 例4(1995) 设n阶矩阵A满足AA¢=I,|A|<0,求|A+I|. 解首先, 1=|AA¢|=|A|2,所以|A|=-1. 其次, |A+I|=|A+AA¢|=|A||I+A¢|=|A||I+A|=-|I+A|, 故|A+I|=0. (涉及的知识点: |A|=|A¢|, (A+B)¢=A¢+B¢.) 例5(1999)设A是m′n矩阵,B是n′m矩阵,则

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷) 试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:

《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分) 二、填空题(每小题3分,共18分)

1、 256; 2、 132465798?? ? --- ? ???; 3、112 2 112 21122 000?? ?- ? ?-?? ; 4、 ; 5、 4; 6、 2 。 三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法: 2312112 01012 010******* 12101 141103311033102321102721 002781 002780 11410 101440 10144001103001103001103---?????? ? ? ? -??→-??→-- ? ? ? ? ? ?--? ?? ?? ?-?????? ? ? ? ??→--??→-??→-- ? ? ? ? ? ??????? ―――――(6分) 所以1 278144103X A B -?? ?==-- ? ??? .―――――(8分) 四.解:对向量组12345,,,,ααααα作如下的初等行变换可得: 12345111 4 3111431132102262(,,,,)21355011313156702262ααααα--???? ? ? ----- ? ? = → ? ? --- ? ? ? ?---???? 11 1 431 2 12011310 1131000000 0000000000 0000--???? ? ? ---- ? ? →→ ? ? ? ? ? ?? ???――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩 12345{,,,,}ααααα=2(8分)

线性代数期末试题(同济大学第五版)(附答案)

线性代数试题(附答案) 一、填空题(每题2分,共20分) 1.行列式0 005002304324321= 。 2.若齐次线性方程组?? ? ??=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。 3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。 4.A 为n n ?阶矩阵,且ο=+-E A A 232,则1-A 。 5. 321,,ξξξ和321,,ηηη是3R 的两组基,且 32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。 7.设=?? ?? ? ?????---=??????????)(,111012111,321212113AB tr AB B A 之迹则 。 8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--?A A 。 9.二次型x x x x x x f 2 32 22 132123),,(--=的正惯性指数为 。 10.矩阵?? ?? ? ?????1042024λλA 为正定矩阵,则λ的取值范围是 。 二、单项选择(每小题2分,共12分)

1.矩阵()==≠≠???? ? ???????=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。 A 、1 B 、2 C 、3 D 、4 2. 齐次线性方程组???=--=++-020 23214321x x x x x x x 的基础解系中含有解向量的个数是( ) A 、1 B 、2 C 、3 D 、4 3.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( ) A 、-1 B 、-2 C 、0 D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( ) A 、B=E B 、A=E C 、A=B D 、AB=BA 5.已知=?? ?? ? ?????==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或2 6.下列矩阵中与矩阵合同的是??? ? ???? ? ?-50 00210 002 ( ) A 、??????????---200020001 B 、?? ??? ?????-500020003 C 、?? ?? ??????--100010001 D ????? ?????100020002 三、计算题(每小题9分,共63分) 1.计算行列式),2,1,0(00000 022 11 210n i a a c a c a c b b b a i n n n ΛΛ ΛΛΛΛΛΛΛΛ=≠其中

线性代数试题库(1)答案

线性代数试题库(1)答案 一、选择题:(3×7=21分) 1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。 A ij =(-1) n M ij C 。A ij =(-1)j i +M ij D 。A ij =-M ij 2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1Λ}的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1Λ}的矩阵是( C ) A .A+B B .aA+B C .aA+bB D .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D ) A 1α, 2α线性无关 B .32,αα线性无关 C .13,αα线性无关 D .321,,ααα中必有一个向量是其余向量的线性组合。 5.R n 中下列子集,哪个不是子空间( C ) A .R n B .∑===∈n i i i n a n i R a a a 1 1}0,,1,|),,{(且ΛΛ C .∑===∈n i i i n a n i R a a a 1 1}1,,1,|),,{(且ΛΛ D .{0}

6.两个二次型等价当且仅当它们的矩阵( A ) A 。相似 B .合同 C .相等 D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C ) A .)1,1|,(|),,(1321x x x x =σ B .),,1(),,(321321x x x x x x +=σ C .)0,,(),,(32321x x x x x =σ D .),,(),,(2322 21321x x x x x x =σ 二.填空题(3X10=30分) 1.当且仅当k=(-1或3)时,齐次线性方程组??? ??=++=+-=++0 9030 322132`1321x k x x kx x x x x x 有非零解 2.设A=()0,,,0321321≠=≠??? ? ? ??b b b B a a a ,则秩(AB )为(1)。 3.向量(x ,y ,z )关于基(0,1/2,0),(1/3,0,0),(0,0,1/4)的坐标为 。 4.设向量空间F 2的线性变换 =--=+=),)((),0,(),(),,(),(,21212122121x x x x x x x x x x x τστστσ则为(2x 1,x 2)。 5.已知V={}02|),,,(4214321=-+x x x x x x x ,则dimV=(3)。 6.已知实矩阵A= 是正交阵,则b=(0)。 7.设,,V 43214321,,,ααααααααα--+=的一个标准正交基是四维欧氏空间 ()()().1),(,6,3,,2||,321=?? ? ??==??=-+=βαπθβαβαααααβd 的夹角与则 三、计算题 1.求矩阵方程的解 ??? ? ??=???? ??+???? ??3113101121101x , (10分) )0(,3131>? ????? ??a b a ? ?? ? ?41,21,31

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数作业任务第四章

第四章 向量组的线性相关性(二) 1. 判断下列向量集合在向量加法和数乘运算下是否为向量空间,若是向量空 间,试求其维数,并给出一个基. 1) }0,0,,,,),,,,({322154321543211=+=+∈==x x x x x x x x x x x x x x V ,且R α 2) }1,,,),,,({2121212=-∈==x x x x x x x x V n n ,且R α 3) },,){3213322113R ∈++==k k k k k k V αααα,其中)0,1,1(1=α,)1,0,1(2=α, )1,1,2(3=α

2. 已知三维向量空间3R 的一组基)0,1,1(1-=α,)1,0,1(2=α,)1,1,1(3-=α.试用 施密特正交化方法由321,,ααα构造3R 的一组标准正交基.

3. 已知4维向量空间4R 的两个基 (I) ???????====) 0,0,1,2()0,0,2,3()3,2,0,0()4,3,0,0(4321αααα, (II) ?????? ?====) 0,1,2,1()2,1,1,2()2,2,1,0() 1,0,1,2(432 1ββββ 1) 求由基(I)到基(II)的过渡矩阵; 2) 求)4,3,2,1(=α在基(I)下的坐标; 3) 判断是否存在在两组基下坐标相同的非零向量.

4. 已知向量空间3R 的两个基为(I)321,,ααα和(II) 321,,βββ.设3R ∈α在基(I) 与基(II)下的坐标分别为()T 321,,x x x =x ,()T 321,,y y y =y ,且满足 3211x x x y ++=,212x x y +=,13x y =. 1) 求由基(I)变为基(II)的过渡矩阵; 2) 求31ββα+=在基(I)下的坐标.

相关文档
最新文档