线性代数 (12)
线性代数复习第1-6章典型例题

按最后一列展开再提取每列的公因子
-8-
Dn = ( −1) n+1 (a1 − a n )(a 2 − a n )⋯(a n−1 − a n ) ×
1 a1
2 a1
1 a2
2 a2
⋯
1
1 a n −1
2 a n −1
⋯ a n− 2
2 ⋯ a n− 2
⋮
n a1 − 2
⋮
⋮
⋮
n− 2 a n −1 ( n −1 )
n
x2 ⋯ xn a2 ⋱ an
xk yk ) = a 2 a 3 ⋯ a n (a1 − ∑ k = 2 ak
-6-
n
例9
范德蒙德(Vandermonde)行列式 行列式 范德蒙德
1 a1 Dn =
2 a1
1 a2
2 a2
⋯
1
2 a n −1
1 an
2 an
− an − an
⋯ a n −1 ⋯ ⋮
n n− 2 a 2 − 2 ⋯ a n− 2
Dn = ( a n − a1 )(a n − a 2 )⋯(a n − a n−1 ) Dn −1
Dn − 1 = (a n − 1 − a1 )(a n − 1 − a 2 ) ⋯ (a n − 1 − a n − 2 ) Dn − 2
⋯⋯
D3 = (a 3 − a1 )(a 3 − a 2 ) D2 D2 = (a 2 − a1 ) D1 = a 2 − a1
-17-
例8
设 n 阶方阵 A 满足 A2 = E ,
证明 r ( E + A) + r ( E − A) = n
证
A 2 = E ⇒ ( A + E )( A − E ) = O
线性代数

系数行列式
二阶行列式. 二阶行列式.
13
二. 三阶行列式 类似地, 类似地 为讨论三元线性方程组
a11 x 1 + a 12 x 2 + a13 x 3 = b1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b2 a x + a x + a x = b 32 2 33 3 3 31 1
经 济 数 学 基 础
1
课程的作用
线性代数( 线性代数(Linear Algebra)是代数学的一个分 这一词在我国出现较晚, 支,“Algebra”这一词在我国出现较晚,清代著名的数 学家、翻译家李善兰将它翻译成代数学,一直沿用至今。 学家、翻译家李善兰将它翻译成代数学,一直沿用至今。 线性代数是一门非常重要的基础课。 线性代数是一门非常重要的基础课。线性代数主要 处理线性关系的问题,其含义不断扩大, 处理线性关系的问题,其含义不断扩大,它的理论不仅 渗透到了数学的许多分支中,而且还在国民经济、工程 渗透到了数学的许多分支中,而且还在国民经济、 技术、理论物理、理论化学、航天、 技术、理论物理、理论化学、航天、航海等领域中都有 广泛的应用。 广泛的应用。 该课程对于培养学生的逻辑推理和抽象思维能力, 该课程对于培养学生的逻辑推理和抽象思维能力,空 间想象能力具有重要作用。通过线性代数的学习, 间想象能力具有重要作用。通过线性代数的学习,能使 学生获得应用学科中常用的矩阵、线性方程组等理论, 学生获得应用学科中常用的矩阵、线性方程组等理论, 具有熟练的矩阵运算能力和用矩阵方法解决实际问题的 能力。 能力。
a11 D = a21 a31 a12 a22 a32 a13 a23 a33
记
a11 b1 a13 D2 = a21 b2 a23 a31 b3 a33
线性代数部分习题解答与提示

线性代数难题解答∙73页习题4. 证明, 在自然数1,2,…,n的所有排列中, 一定存在这样的排列, 它不能经过小于n-1次对换变为标准排列12…n.提示:对任意排列σ, 定义σ的块数为最大的整数k使得{1,2,…,n}可分解为k个无交子集的并, 而且每个子集在σ的作用下保持不变. 对任意对换τ, τ(σ)的块数≥σ的块数-1.∙116页习题1. (12) 计算行列式.提示:.∙116页习题1. (13) 计算行列式.提示:.∙118页习题3. (Burnside) 设n阶方阵A=(a ij)满足a ij=-a ji, 1≤i,j≤n, 则方阵A称为斜对称方阵. 证明, 奇阶斜对称方阵的行列式恒为零, 而偶阶斜对称方阵的行列式是一个完全平方.提示:当n为偶数时, 设, 其中A1为偶阶斜对称方阵, 则A 4-A3A1-1A2也是偶阶斜对称方阵.∙133页习题1. (4) 计算矩阵乘积.提示:令, 则原式.∙144页习题4. (3) 计算行列式.提示:.∙155页习题1. (4) 计算n阶方阵的逆矩阵.提示:令, 其中.∙156页习题10. 设A ij是n阶方阵A=(a ij)的行列式detA的元素a ij的代数余子式. 证明, .提示:不妨设i=k=1, j=l=2. 设, 则有.∙157页习题14. 设A∈R2n×2n, 且. 证明, detA=1.提示:设. 当A1可逆时, 由Schur公式易证. 当A1不可逆时, 设, 则A1+A2S可逆, 考虑.∙169页习题3. (2) 求矩阵的逆矩阵.提示:原矩阵.∙169页习题3. (3) 求矩阵的逆矩阵.提示:对于一般Cauchy矩阵, 有,, 其中.∙183页习题4. 设A和B为n阶方阵, AB=BA=0, 并且rank(A2)=rank(A). 证明, rank(A+B)=rank(A)+rank(B).提示:.∙337页习题8. 设n维复线性空间V的线性变换A与B可交换. 证明线性变换A与B具有公共特征向量.提示:对A的一个特征子空间用归纳法.∙337页习题9. 设n阶复方阵A与B可交换. 证明存在n阶可逆方阵P, 使得P-1AP 与P-1BP都是上三角方阵.提示:结合337页习题8和330页例1.∙364页习题5. 证明, A为循环变换的充分条件是, A的最小多项式等于A的特征多项式.提示:先对V作根子空间分解, 寻找每个根子空间的循环向量. 再构造V 的循环向量.∙365页习题11. 设A是数域F上n维线性空间V的线性变换, 而且V的任意一个与A可交换的线性变换B都可表为A的多项式. 证明, A为循环变换.提示:反证法. 若A不为循环变换, 则存在极大循环子空间C≠V. 然后构造直和分解V=C+U, 其中U为不变子空间. 于是可构造B与A可交换, 但不可表为A的多项式.∙469页习题5. 证明, n阶实方阵A为规范的必要且充分条件是, 存在实系数多项式f(λ), 使得A*=f(A).提示:插值多项式f(λ)的系数为实数.勘误表∙89页习题 5. 给定n阶方阵A=(a ij). 证明,∙109页最后一行∙115页习题1. (6)∙117页习题1. (17)∙133页习题1. (4)∙133页习题1. (7)∙170页习题8. 设A∈R m×n. 证明, rankAA'=rankA'A=rankA.∙183页第6行∙184页习题6. 设A∈F m×n, B∈F n×m. 证明, rankAB=rankA的必要且充分条件是, 存在C∈F m×n, 使得A=ABC. 在此条件下证明, 如果方阵AB幂等, 则方阵BA也幂等.∙192页例1倒数第二行.∙194页例2倒数第二行.∙223页习题9. 命题错误.∙260页习题2. 命题错误.∙249页例4. 证明, 无限数域F上线性空间V不能被它的有限个真子空间所覆盖.∙252页习题6. (2) 等式U∩(V+(U∩W))=(U∩V)+(U∩W)恒成立.∙253页习题11. 命题错误.∙253页习题13. 证明, 如果β∈U, 但β不∈W, 则α∈K.∙253页习题16. A,B,C的意义同上题. 证明, 如果rankB=rankAB则rankBC=rankABC. ∙260页习题4. 设U,V和W是线性空间L的子空间. 如果其中每一个都与另外两个之和的交是零子空间,则这三个子空间称为无关的. 证明, L=U⊙(V⊙W)的必要且充分条件是, U,V,W是无关的, 并且L=U+V+W.∙417页习题3. 证明, 任意一个实方阵A都实相似于准对角形, 其对角块具有如下形式:, 或者,其中λ0,a和b都是实数, 且a2<4b.∙444页习题12. 设α=β+iγ是正交方阵O的属于特征值λ的特征向量, 其中β与γ是实向量, i2=-1. 证明, |λ|=1, 而且当λ非实数时, 实向量β与γ正交, 范数相等.∙454页习题2. 设A与B是n维Euclid空间V的线性变换, A与B可交换, A*与A可交换. 证明, A*与B也可交换.∙454页习题8. 设{α1,α2,...,αn}是n维Euclid空间V的标准正交基, V的线性变换A在这组基下的方阵A=(a ij)n×n. 证明, a ij=(A*(αi),αj), 1≤i,j≤n.∙477页习题8. 设n阶正交方阵O的特征值不等于-1. 证明方阵I n+O可逆, 方阵K=(I n-O)(I n+O)-1是斜对称方阵, 且O=(I n-K)(I n+K)-1.∙504页习题14. 证明, n阶实方阵A规范的必要且充分条件是, 方阵A具有极分解A=SO=OS, 其中S≥0, O为正交方阵.∙504页习题15. 命题错误, 除非将477页习题7中“A的不变子空间U”改为“A的子空间U”.∙504页习题18. 证明,“实方阵A的所有奇异值都是特征值且重数相同”的必要且充分条件是A≥0.∙538页习题3. (3) 命题错误.∙552页习题2. 设H是n阶正定Hermite方阵, A是n×m列满秩矩阵. 求逆矩阵.∙552页习题3. ...... 设H1与H1是n阶Hermite方阵, 其中H1≥0, rank H1=r, 且......∙556页倒数第10行。
线性代数 §12 n阶行列式 习题与答案

§1.2 n 阶行列式为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念。
为此,先介绍排列的有关知识。
㈠排列与逆序:(课本P4)1、排列的定义:由数码1,2,…,n ,组成一个有序数组12n i i i ,称为一个n 级排列。
【例1】1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列。
(课本P4中例)【例2】由数码1,2,3 组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个。
【例3】数字由小到大的n 级排列1234…n 称为自然序排列。
2、逆序的定义:在一个n 级排列12n i i i 中,如果有较大的数t i 排在si 的前面,则称t i 与s i 构成一个逆序。
(课本P4)【例4】在4 级排列3412中, 31,32,41,42,各构成一个逆序,在5 级排列34152中, 31,32,41,42,52,共构成5个逆序。
3、逆序数的定义:一个n 级排列12n i i i 中逆序的总数,称为这个排列的逆序数,记为12()n N i i i 。
(课本P4)【例5】排列3412的逆序数为N (3412) = 4,排列52341的逆序数为N (52341) = 7, 自然序排列的逆序数为0。
4、奇、偶排列的定义:如果排列12n i i i 的逆序数12()n N i i i 是奇数,则将12n i i i 称为奇排列;如果排列12n i i i 的逆序数12()n N i i i 是偶数,则将12n i i i 称为偶排列。
(课本P4)【例6】由于N (3412) = 4,知排列3412是偶排列,由于N (52341) =7,知排列52341是奇排列, 由于N (123…n ) = 0,知自然排列123…n 是偶排列。
【例7】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个,其中,奇排列有132,213,321三个,偶排列有123,312,231三个。
《线性代数》学习笔记十二

主 题: 《线性代数》学习笔记 内 容:《线性代数》学习笔记十二 ——二次型1、二次型的矩阵表示 定义1 n 个变量12,,n x x x 的二次齐次多项式212111121211(,,)22n n n f x x x a x a x x a x x =+++2222223232222n n na x a x x a x x ax ++++++称为n 元二次型,简称二次型(quadratic form).当ij a 为复数时,称f 为复二次型;当ij a 为实数时,称f 为实二次型.我们仅讨论实二次型. 取ij ji a a =,于是上式可写为二次型f 的和式表示.212111121211221122222221122(,,)n n n n nn n n n nf x x x a x a x x a x x a x x a x a x x a x x a x x ax =+++++++++++11n nij i ji j a x x ===∑∑二次型f 的矩阵表示1112111222221212(,,,)n n n n n nn n a a a x a a a x f x x x a a a x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭A '=x x 这里,显然有A A '=,即A 为实对称矩阵. 例如:二次型用矩阵可表示为()22223120213,,1223012f x y z xy yz x x y z y z =-+-+⎛⎫- ⎪⎛⎫ ⎪ ⎪=-- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭二次型f 还可表示成向量内积形式()[][]f A A A '==x x x =x,x x,x .二次型与对称矩阵之间存在一一对应关系.由此可见,如果,A B 都是n 阶对称矩阵,且f A B ''=x x =x x ,则A B =.因此,若f A '=x x ,其中A A '=,则称A 为二次型f 的矩阵;称f 为对称矩阵A 的二次型;称()R A 为f 的秩. 例1 写出二次型221231233(,,)(22)f x x x x x x x =++-的矩阵A ,并求f 的秩. 2、二次型的标准形对于二次型11n nij i ji j f a x x ===∑∑,我们讨论的主要问题是:寻找可逆的线性变换C x =y ,使二次型只含平方项,使得2221122n nf y y y λλλ=+++,称为二次型f 的标准形.即2221122112212()(,,).n nn n n f A C AC y y y y y y y y y '''=+++⎛⎫⎛⎫ ⎪⎪'==Λ ⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭x x =y y =y y λλλλλλ其中Λ=diag 12(,,,)n λλλ.因此,我们的问题就转化为:对给定对称矩阵A ,求可逆矩阵C ,使得C AC '为对角阵.一般地,有以下定义:定义2 设,A B 为n 阶矩阵,若有可逆矩阵C ,使B C AC '=,则称A 与B 合同. 因为若C 可逆,则C '也可逆,所以,由定义,若A 与B 合同,则A 与B 等价.从而,我们有(1)矩阵的合同关系具有反身性:A E AE '=;对称性:由B C AC '=即得11()A C BC --'=;和传递性:由111A C AC '=和2212A C AC '=即得21212()()A C C A C C '=; (2)若A 与B 合同,则()()R A R B =.(3)若A 是对称矩阵,且若A 与B 合同,则B 也是对称矩阵. 3。
线性代数第一章答案12

1. 计算下列行列式 3 4 (1) 3 5 4 2 15 8 7 2 5 1 2 (2) 1 7 2 6 7 12 6 7 cosα sinα (3) cosα cosα sinα sinα cosα 1 0 1 (4) 1 2 0 1 3 2 1 2 2 0 0 1 1 1 3 — 1 4 2 1 1 0 0 2 0 1 3 1 0
19 sinα cos α sin α 1
0 2 4 (5) 0 6 0 0 2 6 1 6 0 4
3 2 1 3 2 2 4 0
3
0
1 0
0 3
0
2 —2
24 0 0 0 0 0 24 a b c (6) b c a acb bac cba c c a b a 2.当实数a,b 为何值时,行列式 b 1 a 解: b 1 所以当a b a 0 b 0 0 =a 1 0 0 0 a b 1 b a 0 b a 0 b
y x+ y x y x
x+ y x y x+ y −y −x
= 2( x + y ) 1 x + y
0 x− y
= 2( x + y )
x− y
= 2( x + y )[(− x 2 ) + y ( x − y )]
= 2( x + y )(− x 2 + xy − y 2 ) = −2( x 3 + y 3 )
4 1 2 3
c1 + 2c2 (−100)
1 2 (4) 3 4 2 3 4 1 3 4 1 2
解: (化为上三角形矩阵)
1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3 r2 − r1 , r3 − r1 r4 − r1
《线性代数》电子教程之十二(1)(基础解系)

程 解的充要条件是系数矩阵的秩 R( A) n.
组 的
▪ n个未知数的非齐次线性方程组 Ax b有解
解 的充要条件是系数矩阵 A的秩等于增广矩阵 B
的 的秩;且当 R( A) R(B) n时方程组有惟一解,
结 当 R( A) R(B) n 时方程组有无限多个解.
构3Biblioteka 二、齐次线性方程组的解的构造
组 数矩阵的秩与全体解向量的秩之间的关系,
熟悉基础解系的求法;理解非齐次线性方程
续 组的通解的构造.
()
2
一、复习
第 四
1. 系数矩阵是方阵的线性方程组
节 设A为方阵,若 det A 0,则线性方程组
线 Ax b有惟一解.(克莱默法则)
性 2. 系数矩阵是一般矩阵的线性方程组
方 ▪ n个未知数的齐次线性方程组 Ax 0有非零
1. 齐次线性方程组的解的性质
性质1 若 1 ,2 为Ax 0 的解,则 1 2也是 Ax 0的解. 性质2 若为Ax 0 的解,k为实数,则 k 也是 Ax 0的解.
4
2. 齐次线性方程组的解空间
设齐次线性方程组 Ax 0的所有解组成的集
合为 S ,显然 S 非空, 根据性质1知, S对于加法封闭,根据性质2知,
xr br1c1 br 2c2 br,nrcnr .
9
即
x1 b11c1 b12c2 b1,nrcnr ,
x2
b21c1
b22c2
b c 2,nr nr
,
xr
br1c1
br 2c2
br,nr cnr ,
xr1 c1 ,
xr2 c2
,
xn cnr .
S对于数乘封闭, 所以 S 是一个向量空间,称为的解空间.
线性代数课后答案(高等教育出版社)

第一章行列式1.利用对角线法则计算下列三阶行列式:(1)38114112---;解38114112---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(3)222111cbacba;解222111cbacba=bc2+ca2+ab2-ac2-ba2-cb2=(a-b)(b-c)(c-a).4.计算下列各行列式:(1)71125102214214;解7112510221421411423102211021473234-----======cccc34)1(143102211014+-⨯---=143102211014--=014171721099323211=-++======cccc.(2)265232112131412-;解265232112131412-265321221341224--=====cc412321221341224--=====rr321221341214=--=====rr.(3)efcfbfdecdbdaeacab---;解efcfbfdecdbdaeacab---ecbecbecba d f---=a b c d e fa d fbc e4111111111=---=.(4)dcba111111---.解dcba111111---dcbaabarr11111121---++=====dcaab1111)1)(1(12--+--=+111123-+-++=====cdcadaabdcccdadab+-+--=+111)1)(1(23=abcd+ab+cd+ad+1.6. 证明:(1)1112222bbaababa+=(a-b)3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((ab a a b a b +--==(a -b)3 .(2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x byax bx az z bx az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x byax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22z y x yx z x z y b y x z x z y z y x a 33+=y x z xz y z y x b y x z x z y z y x a 33+=y x z xz y z y x b a )(33+=.8. 计算下列各行列式(Dk 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解a a a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开))1()1(10 00 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a ann n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=an -an -2=an -2(a2-1).(2)x a a a x aa ax D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ;解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a](x -a)n第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a11x1+a12x2+a13x3 a12x1+a22x2+a23x3 a13x1+a23x2+a33x3)⎪⎪⎭⎫⎝⎛321xx x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B , 求3AB -2A 及A TB . 解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z1, z2, z3到x1, x2, x3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x . 4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B)(A -B)=A2-B2吗? 解 (A +B)(A -B)≠A2-B2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A2-B2.5. 举反列说明下列命题是错误的:(1)若A2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A2=0, 但A ≠0. (2)若A2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A ,⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求Ak .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A kk k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ .用数学归纳法证明:当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明BTAB 也是对称矩阵. 证明 因为A T =A , 所以 (BTAB)T =BT(BTA)T =BTA TB =BTAB , 从而BTAB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫⎝⎛--=1225.(3)⎪⎪⎭⎫⎝⎛---145243121; 解⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a1a2⋅ ⋅ ⋅an ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 .12. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A8(5E -6A +A2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114. 21. 设Ak =O (k 为正整数), 证明(E -A)-1=E +A +A2+⋅ ⋅ ⋅+Ak -1.证明 因为Ak =O , 所以E -Ak =E . 又因为 E -Ak =(E -A)(E +A +A2+⋅ ⋅ ⋅+Ak -1), 所以 (E -A)(E +A +A2+⋅ ⋅ ⋅+Ak -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A2+⋅ ⋅ ⋅+Ak -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由Ak =O , 有E =(E -A)+(A -A2)+A2-⋅ ⋅ ⋅-Ak -1+(Ak -1-Ak) =(E +A +A2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A2+⋅ ⋅ ⋅+Ak -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A2+⋅ ⋅ ⋅+Ak -1.22. 设方阵A 满足A2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A2-A -2E =O 得 A2-A =2E , 即A(A -E)=2E ,或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A2-A -2E =O 得A2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 EA E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A2-A -2E =O 得A2-A =2E , 两端同时取行列式得 |A2-A|=2, 即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A2, |A +2E|=|A2|=|A|2≠0, 故A +2E 也可逆. 由 A2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E ⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201; 解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r2+(-2)r1, r3+(-3)r1. )~⎪⎪⎭⎝--231(下一步: r2÷(-1), r3÷(-2). )~⎪⎪⎭⎫⎝⎛--131121(下一步: r3-r2. )~⎪⎪⎭⎫⎝⎛--331121(下一步: r3÷3. )~⎪⎪⎭⎫⎝⎛--131121(下一步: r2+3r3. )~⎪⎪⎭⎫⎝⎛-11121(下一步: r1+(-2)r2, r1+r3. )~⎪⎪⎭⎫⎝⎛111.(3)⎪⎪⎪⎭⎫⎝⎛---------1243323221453334311;解⎪⎪⎪⎭⎫⎝⎛---------1243323221453334311(下一步: r2-3r1, r3-2r1, r4-3r1. )~⎪⎪⎪⎭⎫⎝⎛--------1010566388434311(下一步: r2÷(-4), r3÷(-3) , r4÷(-5). )~⎪⎪⎪⎭ ⎝---2210022********(下一步: r1-3r2, r3-r2, r4-r2. )~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011.3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z1, z2, z3到x1, x2, x3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123; 解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/12/1121112/33/26/71故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----2121211233267.(2)⎪⎪⎪⎭⎫⎝⎛-----1212321122123.解⎪⎪⎪⎭⎫⎝⎛-----11111212321122123~⎪⎪⎪⎭⎫⎝⎛----131111225941212321~⎪⎪⎪⎭⎫⎝⎛--------214311112111212321~⎪⎪⎪⎭⎫⎝⎛-------10612431111111212321~⎪⎪⎪⎭⎫⎝⎛----------1061263111`1221111121~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010*********故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B . 解 考虑A TXT =BT . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TTB A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r , 所以⎪⎪⎭⎫⎝⎛---==-417142)(1TTTB A X , 从而⎪⎭⎫⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫⎝⎛-0000001000001010001100001,此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A , 问k 为何值, 可使 (1)R(A)=1; (2)R(A)=2; (3)R(A)=3.解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R(A)=1; (2)当k =-2且k ≠1时, R(A)=2;(3)当k ≠1且k ≠-2时, R(A)=3. P106/1.已知向量组A : a1=(0, 1, 2, 3)T , a2=(3, 0, 1, 2)T , a3=(2, 3, 0, 1)T ;B : b1=(2, 1, 1, 2)T , b2=(0, -2, 1, 1)T , b3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示.证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r知R(A)=R(A , B)=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B知R(B)=2. 因为R(B)≠R(B , A), 所以A 组不能由B 组线性表示.4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ;(2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A , 所以R(A)=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为22200043012||≠=-=B ,所以R(B)=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关?a1=(a , 1, 1)T , a2=(1, a , -1)T , a3=(1, -1, a)T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R(A)<3, 此时向量组线性相关.9.设b1=a1+a2, b2=a2+a3, b3=a3+a4, b4=a4+a1, 证明向量组b1, b2, b3, b4线性相关. 证明 由已知条件得a1=b1-a2, a2=b2-a3, a3=b3-a4, a4=b4-a1, 于是 a1 =b1-b2+a3=b1-b2+b3-a4 =b1-b2+b3-b4+a1, 从而 b1-b2+b3-b4=0,这说明向量组b1, b2, b3, b4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a1=(1, 2, -1, 4)T , a2=(9, 100, 10, 4)T , a3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R(a1, a2, a3)=2. 因为向量a1与a2的分量不成比例, 故a1, a2线性无关, 所以a1, a2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫ ⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~r r r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125,所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫ ⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---141131302151201221113142~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------22201512015120122112343~r r r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211,所以第1、2、3列构成一个最大无关组.13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T 的秩为2, 求a , b .解 设a1=(a , 3, 1)T , a2=(2, b , 3)T , a3=(1, 2, 1)T , a4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R(a1, a2, a3, a4)=2, 所以a =2, b =5.20.求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A , 于是得⎩⎨⎧+=-=43231)4/1()4/3(4xx x x x . 取(x3, x4)T =(4, 0)T , 得(x1, x2)T =(-16, 3)T ; 取(x3, x4)T =(0, 4)T , 得(x1, x2)T =(0, 1)T .因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A , 于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(xx x x x x . 取(x3, x4)T =(19, 0)T , 得(x1, x2)T =(-2, 14)T ; 取(x3, x4)T =(0, 19)T , 得(x1, x2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B .与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=2 13 843231x x x x x .当x3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=0 43231x x x x x .当x3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x .解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x .当x3=x4=0时, 得所给方程组的一个解 η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x .分别取(x3, x4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系 ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21世纪全国应用型本科计算机系列实用规划教材 联合编写学校名单(按拼音顺序排名)
1 安徽财经大学
2 安徽工业大学
3 安阳师范学院
4 北华大学
5 北京化工大学
6 北京建筑工程学院
7 北京理工大学
8 渤海大学
9 长春大学
10 长春工业大学
11 长春理工大学
12 长春税务学院
13 滁州学院
14 楚雄师范学院
15 东北电力大学
16 福建工程学院
17 福建师范大学
18 广西财经学院
19 桂林工学院
20 哈尔滨理工大学
21 海南大学
22 韩山师范学院23 杭州师范学院
24 合肥工业大学
25 合肥学院
26 河北经贸大学
27 河南科技学院
28 黑龙江八一农垦大学
29 黑龙江科技学院
30 湖南大学
31 湖北经济学院
32 孝感学院
33 湖州师范学院
34 华北科技学院
35 华南师范大学
36 华中农业大学
37 华中师范大学
38 华北水利水电学院
39 淮北煤炭师范学院
40 黄石理工学院
41 吉林农业大学
42 集美大学
43 江汉大学
44 江苏科技大学
45 内蒙古大学
46 南昌工程学院
47 南京航空航天大学
48 南开大学
49 南阳理工学院
50 宁波工程学院
51 平顶山学院
52 青岛理工大学
53 青岛科技大学
54 青海民族学院
55 曲阜师范大学
56 山西大学
57 山西广播电视大学
58 陕西理工学院
59 上海第二工业大学
60 上海海事大学
61 沈阳大学
62 沈阳化工学院
63 石家庄铁道学院64 苏州大学
65 台州学院
66 太原理工大学
67 太原师范学院
68 唐山师范学院
69 同济大学
70 皖西学院
71 武汉大学
72 武汉科技学院
73 武汉理工大学
74 武夷学院
75 忻州师范学院
76 新疆石油学院
77 许昌学院
78 玉溪师范学院
79 浙江工业大学之江学院
80 衢州广播电视大学
81 中国农业大学
82 中国石油大学。