《数学模型》
数学模型姜启源 ppt课件

《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介
《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。
《数学模型(第三版)》习题参考解答

《数学模型(第三版)》习题参考解答一、选择题(一)、单项选择1、数学教学就是数学活动的教学,就是师生之间、学生之间(3)的过程。
①交往互动②共同发展③交往互动与共同发展2、教师必须积极主动利用各种教学资源,创造性地采用教材,学会(2)。
①教教材②用教材教3、算法多样化属学生群体,(2)每名学生把各种算法都学会。
①要求②不要求4、新课程的核心理念就是(3)①联系生活学数学②培养学习数学的爱好③一切为了每一位学生的发展5、根据《数学课程标准》的理念,解决问题的教学必须横跨于数学课程的全部内容中,不再单独发生(3)的教学。
①概念②计算③应用题6、“三维目标”就是指科学知识与技能、(2)、情感态度与价值观。
①数学思考②过程与方法③解决问题7、《数学课程标准》中采用了“经历(体会)、体验(体会)、积极探索”等刻画数学活动水平的(1)的动词。
①过程性目标②知识技能目标8、创建蜕变记录就是学生积极开展(3)的一个关键方式,它能充分反映出来学生发展与进步的历程。
①自我评价②相互评价③多样评价9、学生的数学自学活动应就是一个生动活泼的、主动的和(2)的过程。
①单一②富有个性③被动10、“用数学”的含义就是(2)①用数学学习②用所学数学知识解决问题③了解生活数学11、以下现象中,(d)就是确认的。
a、后天下雪b、明天有人走路c、天天都有人出生d、地球天天都在转动1 2、《标准》精心安排了(b)个自学领域。
a)三个 b)四个 c)五个 d)不确定13、教师由“教书匠”转型为“教育家”的主要条件就是(d)a、坚持学习课程理论和教学理论b、认真备课,认真上课c、经常编写教育教学论文d、以研究者的眼光校对和分析教学理论与教学实践中的各种问题,对自身的行为进行反思14、崭新课程标准通盘考虑了九年的课程内容,将义务教育阶段的数学课程分成(b)个阶段。
a)两个 b)三个 c)四个 d)五个15、以下观点不恰当的就是(d)a)《标准》并不规定内容的呈现顺序和形式b)《标准》倡导以“问题情境——创建模型——表述、应用领域与开拓”的基本模式呈现出科学知识内容c)《标准》努力体现义务教育的普及性、基础性和发展性d)年全国教育工作会议后,制定了中小学各学科的“教学大纲”,以逐步替代原来的“课程标(二)、多项选择1、义务教育阶段的数学课程应当注重彰显(acd),并使数学教育面向全体学生。
数学建模的原理

数学建模的原理
数学建模是一种以数学方法和工具为基础,对现实问题进行抽象和表达的过程。
其原理可以简单概括为以下几个步骤。
1. 问题抽象:将现实问题转化为数学模型。
在这一步骤中,需要明确问题的目标、限制条件和相关因素,并对它们进行数学化的描述。
2. 假设建立:基于对问题的理解和分析,提出相关的假设并建立相应的数学关系。
这些数学关系可以是方程、函数、概率模型等,用来表达问题中的变量间的关系。
3. 模型求解:利用数学方法,对所建立的数学模型进行求解。
这包括求解方程组、优化问题、概率分布等。
通常需要运用数学分析、优化方法、概率统计等工具以及计算机编程进行模型求解。
4. 模型评价:对得到的解进行评价,检验模型的有效性和可行性。
这可以通过与现实数据对比、敏感性分析、误差分析等方式来进行。
5. 结果分析:根据模型的求解结果,对问题的解释和分析。
分析模型的局限性、推断模型的适用范围,探究问题的深层次原因等。
6. 结论表达:将建模过程和结果进行总结和表达。
可以通过报告、论文、演示等形式对建模过程和结果进行系统化的呈现。
在数学建模过程中,需要深入理解问题本质和实际应用背景,结合数学理论和方法,进行抽象和简化,以符合现实问题的特点和需求。
同时,建模者需要具备良好的数学基础、逻辑思维能力、计算机编程技能等,并注重模型的可靠性、有效性和实用性。
数学模型姜启源-(第五版)名师公开课获奖课件百校联赛一等奖课件

例2 奶制品旳生产销售计划 在例1基础上深加工
12h 1桶 牛奶 或
3kgA1 1kg 2h, 3元
获利24元/kg 0.8kgB1
获利44元/kg
8h
4kgA2
50桶牛奶, 480h
1kg 2h, 3元
获利16元/kg 0.75kgB2
获利32净利润最大
Objective value:
3460.800
Total solver iterations:
2
Variable
Value Reduced
Cost
X1 0.000000
1.680000
X2 168.0000
0.000000
X3 19.20230
0.000000
X4 0.000000
0.000000
O
c l5
l3 D x1
z=0 z=2400
在B(20,30)点得到最优解.
目的函数和约束条件是线性函数 可行域为直线段围成旳凸多边形 目旳函数旳等值线为直线
最优解一定在凸多边 形旳某个顶点取得.
模型求解
软件实现
LINGO
model: max = 72*x1+64*x2; [milk] x1 + x2<50; [time] 12*x1+8*x2<480; [cpct] 3*x1<100; end
决策 变量
目的 函数
8h
4kg A2
1kg
2h, 3元
出售x1 kg A1, x2 kg A2,
获利16元/kg
0.75kg B2
获利32元/kg
x3 kg B1, x4 kg B2
《数学建模》课程教案

《数学建模》课程教案教学文档一、教学内容本节课选自《数学建模》教材第四章:线性规划及其应用。
详细内容包括线性规划的基本概念、线性规划模型的建立、单纯形方法及其应用。
二、教学目标1. 理解线性规划的基本概念,掌握线性规划模型的建立方法。
2. 学会运用单纯形方法求解线性规划问题,并能将其应用于实际问题。
3. 培养学生的数学建模能力,提高解决实际问题的能力。
三、教学难点与重点难点:线性规划模型的建立、单纯形方法的运用。
重点:线性规划的基本概念、线性规划模型的求解。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:教材、笔记本、计算器。
五、教学过程1. 导入:通过一个实际情景,引出线性规划问题。
实践情景:某工厂生产两种产品,产品A和产品B。
生产每个产品A需要2小时工时和3平方米厂房面积,生产每个产品B需要4小时工时和1平方米厂房面积。
工厂每天有8小时工时和6平方米厂房面积可用。
如何分配生产时间和厂房面积,使得工厂每天的生产利润最大?2. 知识讲解:1) 线性规划的基本概念。
2) 线性规划模型的建立。
3) 单纯形方法及其应用。
3. 例题讲解:例题1:求解导入环节提出的实际线性规划问题。
例题2:求解一个标准形式的线性规划问题。
4. 随堂练习:让学生独立求解一个线性规划问题,并给出解答。
六、板书设计1. 线性规划基本概念2. 线性规划模型的建立3. 单纯形方法4. 例题解答七、作业设计1. 作业题目:习题4.1:求解线性规划问题。
习题4.2:应用单纯形方法求解实际问题。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对线性规划的基本概念和求解方法掌握程度,以及对实际问题的建模能力。
2. 拓展延伸:探讨线性规划的其他求解方法,如内点法、对偶问题等。
引导学生关注线性规划在实际问题中的应用,如物流、生产计划等。
重点和难点解析1. 线性规划模型的建立。
2. 单纯形方法的运用。
3. 例题讲解与随堂练习的设置。
《数学建模》课程教案

《数学建模》课程教案一、教学内容本节课的教学内容选自《数学建模》教材的第五章,主要内容包括线性规划模型的建立、图与网络模型的建立、整数规划模型的建立以及非线性规划模型的建立。
通过本节课的学习,使学生掌握数学建模的基本方法和技巧,培养学生解决实际问题的能力。
二、教学目标1. 让学生掌握线性规划、图与网络、整数规划和非线性规划模型的建立方法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生的团队协作能力和创新意识。
三、教学难点与重点1. 教学难点:线性规划、图与网络、整数规划和非线性规划模型的建立及求解。
2. 教学重点:线性规划模型的建立和求解。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入:以一个工厂生产安排的问题为例,引入线性规划模型的建立和求解。
2. 知识点讲解:(1)线性规划模型的建立:讲解目标函数的设定、约束条件的确定以及线性规划模型的标准形式。
(2)图与网络模型的建立:讲解图的概念、图的表示方法以及网络模型的建立。
(3)整数规划模型的建立:讲解整数规划的概念和建立方法。
(4)非线性规划模型的建立:讲解非线性规划的概念和建立方法。
3. 例题讲解:选取具有代表性的例题,讲解模型建立和求解的过程。
4. 随堂练习:让学生分组讨论并解决实际问题,巩固所学知识。
六、板书设计板书设计如下:1. 线性规划模型:目标函数约束条件标准形式2. 图与网络模型:图的概念图的表示方法网络模型的建立3. 整数规划模型:整数规划的概念整数规划的建立方法4. 非线性规划模型:非线性规划的概念非线性规划的建立方法七、作业设计1. 作业题目:(1)根据给定的条件,建立线性规划模型,并求解。
(2)根据给定的条件,建立图与网络模型,并求解。
(3)根据给定的条件,建立整数规划模型,并求解。
(4)根据给定的条件,建立非线性规划模型,并求解。
2. 答案:(1)线性规划模型的目标函数为:Z = 2x + 3y,约束条件为:x + y ≤ 6,2x + y ≤ 8,x ≥ 0,y ≥ 0。
数学中的数学模型

数学中的数学模型数学是一门精确而抽象的学科,它通过建立数学模型,来描述和解决各种实际问题。
数学模型是数学思维在实际应用中的体现,它可以帮助我们理解和预测客观世界的现象。
本文将探讨数学中的数学模型及其在现实生活中的应用。
一、数学模型的概念及分类数学模型是对实际问题的抽象描述,它由数学符号、方程、不等式等组成。
数学模型可以分为确定性模型和随机性模型两类。
确定性模型是指在一定条件下,能够准确预测事物发展趋势或结果的模型。
比如,线性规划模型可以用来求解一组线性约束条件下的最优解,常微分方程模型可以描述物理系统中的变化规律等。
随机性模型是指含有随机因素的模型,无法准确预测事物发展趋势或结果,只能给出概率性的结果。
概率论和统计学是随机性模型的基础,通过对大量数据的分析与推理,能够得出一定的结论和预测。
二、数学模型在实际中的应用1. 自然科学中的应用数学模型在自然科学中有广泛的应用。
比如,在物理学中,质点运动的数学模型可以用微积分方程来描述;在天文学中,行星运动和天体力学的数学模型可以帮助天文学家预测行星轨道和彗星轨道的运动;在生物学中,生物种群的增长和传染病的传播可以用差分方程和微分方程来模拟。
2. 社会科学中的应用数学模型在社会科学中也有很多应用。
比如,在经济学中,经济增长模型和供需模型可以帮助经济学家研究宏观经济现象和预测市场行情;在社会学中,网络模型和社会网络分析可以研究社会系统的结构和相互关系;在心理学中,数理心理学模型可以研究人类思维和行为的规律等。
3. 工程技术中的应用数学模型在工程技术中有着广泛的应用。
比如,在电力系统中,电力负荷的预测模型可以帮助电力公司合理调配电力资源;在交通规划中,交通流量分析模型可以帮助交通规划师科学规划交通路网;在通信系统中,信道编码和调制解调技术的数学模型可以提高信息传输的稳定性和可靠性等。
三、数学模型的建立和求解建立数学模型的重要步骤包括:问题的分析与理解、模型的假设与建立、模型参数的确定等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学模型》考试大纲适应专业:数学与应用数学、信息与计算科学、统计学、应用统计学专业一、课程性质与目的要求数学模型课亦称为数学建模课,它是数学与应用数学、信息与计算科学、统计学、应用统计学专业必修课或限选课,教育部1998年颁布的高等学校本科专业目录中,把“数学模型”课作为数学类专业的必开课。
数学模型是架于实际问题与数学理论之间的桥梁。
数学模型就是应用数学语言和方法,对于现实世界中的实际问题进行抽象、简化和假设所得到的数学结构。
本课程是研究数学建模的理论、思想和方法,研究建立数学模型、简单的优化模型、数学规划模型、微分方程模型、代数方程与差分方程模型、稳定性模型、离散模型、概率模型等。
数学模型课需要用到数学分析、高等代数、微分方程、图论、概率统计、运筹学等数学知识,它是学生所学数学知识的综合应用,是培养学生综合素质以及应用数学知识解决实际问题的能力的良好课程。
该课程的考试评价依据是按照课程目标、教学内容和要求,把握合适的难易程度出试卷,用笔试的方法对学生学习情况和学习成绩做出评价。
二、课程内容和考核要求第一章建立数学模型1、考核知识点:数学建模的背景及重要意义、数学模型与数学建模、数学模型的分类与特点、数学建模的基本方法和步骤、数学建模举例等。
2、考核要求:(1)理解数学建模的背景及意义、原型、模型、数学模型、数学建模等概念。
(2)理解数学模型的各种分类、数学模型的特点。
(3)理解数学建模的基本方法和步骤、通过实例初步了解数学建模的思想和方法。
第二章简单的优化模型1、考核知识点:存储模型、生猪的出售时机、森林救火、冰山运输等。
2、考核要求:(1)掌握应用微积分理论建立存储问题模型。
(2)理解应用微积分理论建立生猪的出售时机模型和森林灭火模型。
(3)理解应用微积分理论建立冰山运输问题模型。
第三章数学规划模型1、考核知识点:数学规划问题的基本概念、数学规划问题图解法步骤、生产安排问题、奶制品的生产与销售等。
2、考核要求:(1)掌握数学规划问题的基本概念、数学规划问题图解法步骤。
(2)掌握生产安排问题的模型及图解法。
(3)理解奶制品的生产与销售的模型及求解。
第四章微分方程模型1、考核知识点:传染病模型、正规战与游击战、药物在体内的分布与排除、香烟过滤嘴的作用等。
2、考核要求:(1)理解传染病问题的建模及讨论。
(2)理解战争问题、房室问题的建模及讨论。
(3)了解香烟过滤嘴作用问题的建模及讨论。
第五章代数方程与差分方程模型1、考核知识点:量纲、量纲齐次原理、量纲分析法、差分方程的基本概念、市场经济中蛛网模型、节食与运动问题等。
2、考核要求:(1)掌握量纲、量纲齐次原理、量纲分析法建模及解法步骤。
(2)掌握市场经济中蛛网模型及解法步骤。
(3)理解理解差分方程的基本概念、减肥问题的建模思想。
第六章稳定性模型1、考核知识点:捕鱼业的持续收获、军备竞赛2、考核要求:(1)掌握捕鱼业的持续收获问题的建模、解法步骤及相关讨论。
(2)理解军备竞赛问题的建模及分析讨论。
第七章离散模型1、考核知识点:层次分析法的概念、思想和方法,循环比赛的名次问题,公平席位分配问题2、考核要求:(1)理解层次分析法的概念、思想、方法和建模思想。
(2)理解循环比赛及竞赛图的思想和方法。
(3)知道应用初等数学理论来构造公平席位分配的数学模型。
第八章概率模型1、考核知识点:传送系统的效率、报童的诀窍、蛋糕问题、随机存贮策略。
2、考核要求:(1)理解传送系统效率问题的建模与讨论。
(2)掌握报童等相关问题建模与讨论。
(3)了解随机存贮策略问题的建模思想。
三、考试形式、试卷结构及样题1、考试形式为闭卷、笔试。
2、试卷满分为100分,考试时间为120分钟。
成绩采用百分制. 总成绩=平时30%+期末笔试70%。
3、试题类型与比例:填空题约占16%;简答题约占24%;应用计算题约占60%。
4、样题与目标定位示例:1)填空题:着重考察学生对概念知识的了解、理解程度。
例:1.数学建模方法大体上可分为 和 两种.2.按照对模型结构的了解程度来分类的模型名称有: 、 、 .3.n 阶正互反阵A 是一致阵的充要条件为 .4.一般的n 个顶点的竞赛图具有以下性质(1) ;(2) .5.从层次分析法的原理、步骤、应用等方面的讨论看出它有以下优点: ; ; .6.甲乙双方在t 时刻的军备分别记作()x t 和()y t ,其变化过程可用方程组 ()()x t x ky g yt lx y αβ=-++⎧⎨=-⎩ 表示,则平衡点00(,)x y 为0x = ,0y = . 7.考虑传送系统效率:n 个工人的生产是相互独立的,一周期内带走的产品数s 与生产的全部产品数之比D ,若能对一周期内的m 只钩子求出每只钩子非空(即挂上产品)的概率p ,则=s .8. 每对顶点之间都有一条边相连的 称为竞赛图; 称为双向连通图.2)简答题:着重考察学生对知识的理解、掌握程度。
例:1.一饲养场每天投入5元资金用于饲料、设备、人力,估计可使一头70公斤重的生猪每天增加r 公斤.目前生猪出售的市场价格为每公斤10元,但是预测每天会降低g 元,试写出生猪最佳出售时机的纯利润函数(目标函数).2. 基于思想性、艺术性、娱乐性、票房等四项因素,拟用层次分析法在电影A 、电影B 、电影C 这三个方案中选一个,画出目标为“评选影片”的层次结构图.3. 考虑正规战争问题. 假设甲乙交战双方时刻t 的兵力分别为()t x 和()t y ,其战斗减员率都与对方兵力成正比,比例系数分别为a 、b ;甲乙双方的增援率函数分别为()t u 和()t v ;而非战争减员率与本方的兵力成正比,比例系数分别为α、β. 试写出正规战争数学模型.4.简述层次分析法的基本步骤,并写出一致性指标的定义.3)应用计算题:着重考察学生对知识的掌握与应用程度。
例:1.已知深水中波的传播速度v 与波长λ、水深d 、水的密度ρ和重力加速度g 有关,试用量纲分析方法给出波的速度v 的表达式.2. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和114-++⎛⎫= ⎪⎝⎭k k k y y x g .试建立关于商品价格k y 的差分方程模型,并讨论稳定平衡条件.3. 设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规为:()[1dx t rx dt = 其中r 为固有增长率,N 为环境容许的最大鱼量,而单位捕捞量为h Ex =.(1).求渔场鱼量的非负平衡点,并讨论其稳定性;(2).试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m h .4.某生产作坊每天要生产A 、B 两种肉制品,已知生产单位产品A 所需1台机器设备和4kg 的猪肉,生产单位产品B 所需1台机器设备和4kg 的牛肉,该生产作坊可供生产的机器设备一共是8台,并且每天的猪肉库存为16kg ,牛肉库存为12kg.每单位产品A 可获利2元,每单位产品B 可获利3元.如何安排生产,使得该作坊的获利最大?四、学习用书与参考书目1、姜启源、谢金星、叶俊编《数学模型》(第四版)[M]..北京:高等教育出版社.2011.1.2、韩中庚编著. 数学建模方法及其应用(第二版)[M]. 北京:高等教育出版社.2009.6.五、其它模拟练习题1. 写出5个按照建立模型的目的分类的数学模型名称;写出5个按照建立数学模型的数学方法分类的模型名称.叙述数学模型的概念,并给出建立数学模型的基本步骤?数学建模的全过程分为哪几个阶段?2. 4个顶点的竞赛图共有几种形式? 循环比赛(竞赛图的定义、由得分向量写出竞赛图或邻接矩阵、双向连通图、排名次等).3. 层次分析法的基本步骤, 层次分析模型(写出层次结构图、一致性矩阵定义等).4.求正互反矩阵的最大特征根和特征向量的实用算法?n 阶正互反阵A 是一致阵的充要条件?5.有4支球队A 、B 、C 、D 进行单循环赛,比赛结果是这样的:A 胜B 和C ,B 胜C 和D ,C 胜D ,D 胜A.试给出这4支球队比赛对应的竞赛图或其邻接矩阵,得分向量.它是否为双向连通图?并给出这4支球队的名次.6.已知5个顶点A 、B 、C 、D 、E 的竞赛图P 的得分向量为)0,1,2,3,4(=s .试作出满足条件的竞赛图,并写出此图对应的邻接矩阵.7. 基于经济效益、社会效益、学术创新、环境效益、技术创新五项因素来评价科技成果,拟用层次分析法在项目A 、项目B 、项目C 这三个科技成果中选一个,画出目标为“科技成果评价”的层次结构图.8.已知水泵的输出功率N 与单位体积水的重量=g γρ、单位体积流量Q 、扬程高度H 有关,用量纲分析方法求水泵输出功率的表达式.9.某工厂生产甲、乙两种化工产品,生产每吨产品需要电消耗、煤消耗、劳动力人.试安排每天的生产任务,使产值最大,并求出最大产值.10. 与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:x N rx dt t dx ln )(.= 其中r 和N 的意义与Logistic 模型相同 设渔场鱼量的自然增长服从这个模型,又单位捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .11.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和1111()22k k k x g y y +-=+.试建立关于商品价格k y 的差分方程模型,并讨论稳定平衡条件.。