7.2.2 坐标方法的简单应用(2)

合集下载

7.2 坐标方法的简单应用 初中数学人教版七年级下册大单元教学设计

7.2 坐标方法的简单应用 初中数学人教版七年级下册大单元教学设计

7.2.1 用坐标表示地理位置基础过关练1.海事救灾船前去救援某海域失火货轮,需要确定( )A.方位B.距离C.方位和距离D.失火轮船的国籍【答案】C【解析】方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向,知道方向再有距离就能找到具体位置.【详解】海事救灾船前去救援海域失火轮船,需要确定方位角还有距离,故选C.【点睛】考查了方向角,关键是掌握方向角的定义.2.确定一个点的位置,下列说法正确的是()A.偏东10°,100米B.东南方向C.距这里150米D.由此向南100米【答案】D【解析】解:A.偏东10°,100米没有起始点,无法确定,故本选项错误;B.没有起始点和距离,无法确定,故本选项错误;C.没有方向,无法确定,故本选项错误;D.由此向南100米,位置明确,故本选项正确.故选D.点睛:本题考查了坐标确定位置,是基础题,位置的确定需要两个数据.3.从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则( )A.小强家在小红家的正东B.小强家在小红家的正西C.小强家在小红家的正南D.小强家在小红家的正北【答案】B【解析】解:以车站为原点建立平面直角坐标系,将整个行进过程置于平面直角坐标系中,小红家的坐标为(400,500),小强家的坐标为(-200,500),小红家和小强家在同一条平行于x轴的直线上,小强家在小红家的正西.故选B4.如图是李明家附近区域的平面示意图,如果宠物店所在位置的坐标为(2,-4),儿童公园所在位置的坐标为(0,-3),则学校所在的位置是( )A.(4,-3)B.(4,3)C.(5,-1)D.(2,1)【答案】B【解析】儿童公园所在位置的坐标为(0,-3),向右平移4个单位长度,再向上平移6个单位长度,得学校所在的位置是(4,3).故选B.5.如图,四艘船M,N,P,Q与灯塔O的距离均为50海里,则在灯塔O南偏西20°且与O 相距50海里的船是( )A.船M B.船N C.船P D.船Q【答案】C【解析】根据方位角的额定义,易得:在灯塔O南偏西20°且与O相距50海里的船是船P.故选C.6.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)【答案】D【解析】解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.7.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点A B.点B C.点C D.点D【答案】B【解析】由题意知(10,20)表示向东走10米,再向北走20米,故为B点.故选:B.8.以学校所在的位置为原点,分别以向东、向北方向为x轴、y轴正方向.若出校门向东走100米,再向北走120米记作(100,120),小强家的位置是(-150,200)的含义是_______;出校门向南走400米,再向东走150米是小明的家,则小明家的位置应记作_____________.【答案】出校门向西走150米,再向北走200米是小强家 (150,-400)【解析】以学校所在的位置为原点,分别以向东、向北方向为x轴、y轴正方向.得:小强家的位置是(-150,200)的含义是出校门向西走150米,再向北走200米是小强家;出校门向南走400米,再向东走150米是小明的家,则小明家的位置应记作(150,-400).故答案:(1). 出校门向西走150米,再向北走200米是小强家 (2). (150,-400).9.某飞行监控中心发现某飞机从某个飞机场起飞后沿正南方向飞行千米,然后向正西方向飞行千米,又测得该机场的位置位于监控中心的西千米,北千米的地方,若以监控中心为坐标原点,以正东、正北方向为轴、轴的正方向,请指出该飞机现在的位置________(用坐标表示).【答案】(-400,200)【解析】该机场的位置位于监控中心的西100千米,北300千米的地方,若以监控中心为坐标原点,则机场的坐标为(-100,300),沿正南方向飞行100千米,然后向正西方向飞行300千米,则飞机现在的位置(-400,200).故答案:(-400,200).10.如图,小刚在小明的北偏东60°方向的500 m处,则小明在小刚的_____方向的____处.(请用方向和距离描述小明相对于小刚的位置)【答案】南偏西60° 500m【解析】解:∵小刚在小明的北偏东60°方向的500m处,∴小明在小刚的南偏西60°方向的500m处.故答案为南偏西60°方向的500m处.点睛:本题考查了坐标确定位置,主要是对方向角的定义的考查,需熟记.11.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别是(-1,1),(-1,-1),(1,-1),则顶点D的坐标为_______.【答案】(1,1)【解析】∵正方形两个顶点的坐标为A(﹣1,1),B(﹣1,﹣1),∴AB=1﹣(﹣1)=2,∵点C的坐标为:(1,﹣1),∴第四个顶点D的坐标为:(1,1).故答案为:(1,1)12.王霞和爸爸妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出坐标原点O和x轴,y轴.只知道游乐园D的坐标为(1,﹣2)(1)请画出x轴,y轴,并标出坐标原点O.(2)写出其他各景点的坐标.【答案】(1)见解析;(2)望春亭(﹣3,﹣1),湖心亭(﹣4,2),音乐台(﹣1,4),牡丹亭(2,3).【解析】(1)根据游乐园的位置即可确定坐标轴及坐标原点;(2)根据第(1)问中的坐标系写出各景点坐标即可.【详解】解:(1)建立的平面直角坐标系如图所示:(2)由图知,望春亭的坐标为(﹣3,﹣1),湖心亭的坐标为(﹣4,2),音乐台的坐标为(﹣1,4),牡丹亭的坐标为(2,3)【点睛】本题主要考查直角坐标系,会根据已知坐标建立直角坐标系,确定坐标原点是解题的关键.13.如图,表示的是图书馆保龙仓、中国银行和餐馆的位置关系;(1)以图书馆为参照点,请用方向角和图中所标的距离分别表示保龙仓、中国银行和餐馆的位置;(2)火车站在图书馆的南偏东的方向上,并且火车站距图书馆的距离与中国银行距图书馆的距离相等,请在图中画出火车站的位置.【答案】(1)保龙仓在图书馆西偏南方向上,且距离图书馆;中国银行在图书馆东偏北方向上,且距离图书馆;餐馆在图书馆西偏北方向上,且距离图书馆;(2)见解析【解析】(1)结合图象利用各方位角以及所标距离求出答案;(2)利用火车站在图书馆的南偏东的方向上,并且火车站距图书馆的距离与中国银行距图书馆的距离相等,进而得出答案.【详解】解:(1)保龙仓在图书馆西偏南方向上,且距离图书馆;中国银行在图书馆东偏北方向上,且距离图书馆;餐馆在图书馆西偏北方向上,且距离图书馆.(2)如图所示:【点睛】本题考查的知识点是用坐标确定位置,掌握方位角的概念是解此题的关键.14.在一次夏令营活动中,老师将一份行动计划藏在没有任何标记的点C处,只告诉大家两个标志点A,B的坐标分别为,以及点C的坐标为(在方格中,每个小正方形的边长为)(1)请在图中建立直角坐标系并确定点C的位置;(2)若同学们打算从点B处直接赶往C处,请用方向角描述点C相对于点B的位置,写出从点B处走到C处至少两条路线.【答案】(1)图形见解析,点;(2)见解析(答案不唯一)【解析】(1)结合A,B坐标可建立直角坐标系,得出点C的位置;(2)利用所画图形,进而利用勾股定理可得出答案.【详解】解:(1)根据画出直角坐标系,描出点,如图所示:(2)点C在点B北偏东方向上,从B处走到C处路线如下:①先向东走,再向北走;②先向北走,再向东走(答案不唯一).【提升拔高】1.在参观北京世园会的过程中,小欣发现可以利用平面直角坐标系表示景点的地理位置,在正方形网格中,她以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,表示丝路驿站的点的坐标为.如果表示丝路花雨的点的坐标为,那么表示青杨洲的点的坐标为;如果表示丝路花雨的点的坐标为,那么这时表示青杨洲的点的坐标为()A.B.C.D.【答案】A【解析】由题意可知,当表示丝路花雨的点的坐标为,可知图中每个小方格表示2个单位长度,即可得出答案.【详解】解:由表示丝路花雨的点的坐标为可知下图中每个小方格表示2个单位长度,则此时表示青杨洲的点的坐标为.故选:A.【点睛】本题考查的知识点是用坐标表示位置,掌握点的坐标的有关性质是解题的关键.2.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )A.(2,2)B.(-2,2)C.(3,2)D.(3,1)【答案】C【解析】根据“车”的位置,向右2个单位,向下3个单位确定出坐标原点,建立平面直角坐标系,然后写出“炮”的坐标即可.【详解】解:∵“车”的坐标为(-2,3),“马”的坐标为(1,3),∴建立平面直角坐标系如图,∴“炮”的坐标为(3,2).故选:C.【点睛】本题考查了坐标位置的确定,确定出坐标原点的位置是解题的关键.3.如图为小杰使用手机内的微信跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为( )A.向北直走700米,再向西直走100米B.向北直走100米,再向东直走700米C.向北直走300米,再向西直走400米D.向北直走400米,再向东直走300米【答案】A【解析】根据对话画出图形,进而得出从邮局出发走到小杰家的路线.【详解】解:如图所示:从邮局出发走到小杰家应:向北直走700米,再向西直走100米,故选:A.【点睛】此题主要考查了坐标确定位置,根据题意画出图形是解题关键.4.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在( )A.点O1B.点O2C.点O3D.点O4【答案】A【解析】根据点A的位置记作A(8,30°),B(8,60°),C(4,60°),通过操作即可得出观测点的位置.【详解】如图所示,连接BC,并延长,经过点O1,可得观测点的位置应在点O1,故选A.【点睛】本题考查了坐标确定位置,正确利用已知点得出观测点是解题的关键.5.在平面直角坐标系中有A,B两点,若以B点为原点建立平面直角坐标系,则A点的坐标为(2,3),若以A点为原点建立平面直角坐标系(两直角坐标系x轴,y轴方向一致),则B点的坐标为( )A.(-2,-3)B.(-2,3)C.(2,-3)D.(2,3)【答案】A【解析】根据点A,B的相对位置的改变,可知B的坐标均为负数,先判断出所求的点的横纵坐标的符号,进而判断所在的象限,结合选项即可得到答案.【详解】如图,分别以点A、B为原点建立平面直角坐标系,可得以A点为原点建立平面直角坐标系(两直角坐标系x轴,y轴方向一致),则B点的坐标为在第三象限,坐标符号为(-,-);故选:A.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标符号特点,第一、二、三、四象限内点的坐标符号分别为:(+,+)、(-,+)、(-,-)、(+,-).6.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A.(66,34)B.(67,33)C.(100,33)D.(99,34)【答案】C【解析】试题分析:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C.考点:1.坐标确定位置;2.规律型:点的坐标.7.如图,在平面内取一个定点O,叫做极点,引一条射线Ox,叫做极轴,再选定一个单位长度和角度的正方向(通常取逆时针方向).对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫做点M的极坐标.若ON⊥Ox,且点N到极点O的距离为4个单位长度,则点N的极坐标可表示为______.【答案】(4,90°)【详解】解:点N的极坐标为(4,90°).故答案为(4,90°).点睛:本题考查了坐标确定位置,读懂题目信息,理解极坐标的定义是解题的关键.8.已知点A(a,5),B(2,2-b),C(4,2),且AB平行于x轴,AC平行于y轴,则a+b=________.【答案】1【详解】因为AC平行于y轴,所以A,C两点的横坐标相同,即a=4.又AB平行于x轴,所以A,B两点的纵坐标相同,即2-b=5,所以b=-3.所以a+b=1.9.将正整数按如图所示的规律排列.若用有序数对(a,b)表示第a排,从左至右第b个数.例如(4,3)表示的数是9,则(7,2)表示的数是_________.【答案】23【解析】根据图中所揭示的规律可知,1+2+3+4+5+6=21,所以第7排;应从左到右由小到大,从22开始数,第二个应是23,所以(7,2)表示的数是23.故答案是:23.10.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴,y轴.只知道游乐园D的坐标为(2,﹣2),请你帮她画出坐标系,并写出其他各景点的坐标.【答案】图见解析,各点坐标为:A(0,4),B(﹣3,2),C(﹣2,﹣1),E(3,3),F(0,0).【解析】根据D的坐标为(2,﹣2),进而建立平面直角坐标系得出各点坐标即可.【详解】解:如图所示:A(0,4),B(﹣3,2),C(﹣2,﹣1),E(3,3),F(0,0).【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.11.如图,传说中的一个藏宝岛图,藏宝人生前用直角坐标系的方法画了这幅图,现今的寻宝人没有原来的地图,但知道在该图上有两块大石头A(2,1),B(8,1),而藏宝地的坐标是(6,6),试设法在地图上找到藏宝地点.【答案】见解析【解析】根据题目中给出的坐标,建立直角坐标系,即可找到藏宝地点.【详解】解:连接AB,∵A(2,1),B(8,1),可以确定坐标原点的位置,进而可以确定藏宝地点.如图:C点为藏宝地点.【点睛】本题考查了坐标确定位置,由已知条件正确确定坐标轴的位置是解决本题的关键.12.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记作(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜.【答案】见解析【分析】根据A点的位置表示的坐标规律,结合五子棋中白棋已经有三个在一条直线上的情况,合理地选择黑棋的落点.【详解】∵白棋已经有三个在一条直线上,∴甲必须在(5,3)或(1,7)位置上落子,才不会让乙马上获胜.【点睛】本题考查了坐标确定点的位置的方法.关键是根据题目所给的表示方法,结合图形确定黑棋的落点.。

精品解析:人教版数学七年级下册7.2坐标方法的简单应用(解析版)

精品解析:人教版数学七年级下册7.2坐标方法的简单应用(解析版)

人教版数学七年级下册 7.2坐标方法的简单应用同步练习一、选择题1. 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )A. (1,3)B. (3,2)C. (0,3)D. ()3,3【答案】A【解析】【分析】 根据棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),进而得出原点的位置,进而得出答案.【详解】解:如图所示:帅的位置为原点,则棋子“炮”的点的坐标为(1,3).故选:A .【点睛】本题主要考查了坐标确定位置,正确得出原点的位置是解题关键.2. 将△ABC 的三个顶点的横坐标都加上-6,纵坐标都减去5,则所得图形与原图形的关系是( )A. 将原图形向x 轴的正方向平移了6个单位,向y 轴的正方向平移了5个单位B. 将原图形向x 轴的负方向平移了6个单位,向y 轴的正方向平移了5个单位C. 将原图形向x 轴的负方向平移了6个单位,向y 轴的负方向平移了5个单位D. 将原图形向x 轴的正方向平移了6个单位,向y 轴的负方向平移了5个单位【答案】C【解析】【分析】由于将△ABC 的三个顶点的横坐标都加上6,纵坐标都减去5,所以根据此规律即可确定选择项.【详解】解:∵将△ABC 的三个顶点的横坐标都加上-6,纵坐标都减去5,∴所得图形与原图形的位置关系是△ABC 先向左平移6个单位,再向下平移5个单位即可.故选C3. 将点A(-2,3)平移到点B(1,-2)处,正确的移法是()A. 向右平移3个单位长度,向上平移5个单位长度B. 向左平移3个单位长度,向下平移5个单位长度C. 向右平移3个单位长度,向下平移5个单位长度D. 向左平移3个单位长度,向上平移5个单位长度【答案】C【解析】点A(-2,3)平移到点B(1,-2)处,∵-2+3=1,3-5=-2,∴平移方法为向右平移3个单位长度,向下平移5个单位长度.故选C.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4. 生态园位于县城东北方向5千米处,如图中表示准确的是( )A. B. C. D.【答案】B【解析】【分析】根据方向角的定义,东北方向是指北偏东45°解答即可.【详解】∵生态园位于县城东北方向5公里处,∴生态园在县城北偏东45°距离县城5公里.故选B.【点睛】本题考查了坐标确定位置,熟练掌握方向角的定义是解题的关键.5. 将点P(m+2,2m+4)向右平移1个单位得到P′,且P′在Y轴上,那么P′坐标是()A. (-2,0)B. (0,-2)C. (1,0)D. (0,1)【答案】B【解析】本题考查坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解:将点P(m+2,2m+4)向右平移1个单位到P′点,且P′Y轴上∴P点的横坐标加1,为0∴m+2+1="0." m=-3∴P′的坐标是(0,-2)故选B6. 在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A. (−4,−2)B. (2,2)C. (−2,2)D. (2,−2)【答案】D【解析】【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为D7. 如图是创星中学的平面示意图,其中宿舍楼暂未标注,已知宿舍楼在教学楼的北偏东约30°的方向,与教学楼实际距离约为200米,试借助刻度尺和量角器,测量图中四点位置,能比较准确地表示该宿舍楼位置的是()A. 点AB. 点BC. 点CD. 点D【答案】D【解析】解:通过测量,宿舍楼位置是D.故选D 8. 如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则 a b的值为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】先根据点A、B及其对应点的坐标得出平移方向和距离,据此求出a、b的值,继而可得答案.【详解】解:由点A(2,0)的对应点A1(4,b)知向右平移2个单位,由点B(0,1)的对应点B1(a,2)知向上平移1个单位,∴a=0+2=2,b=0+1=1,∴a+b=2+1=3,故答案为:B.【点睛】本题主要考查坐标与图形的变化-平移,解题的关键是掌握横坐标的平移规律为:右移加,左移减;纵坐标的平移规律为:上移加,下移减.9. 如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A. (﹣2,﹣4)B. (﹣2,4)C. (2,﹣3)D. (﹣1,﹣3)【答案】A【解析】试题分析:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.考点:坐标与图形变化-平移.10. 如图,线段AB 经过平移得到线段A B '',其中点A ,B 的对应点分别为点A ',B ′,这四个点都在格点上.若线段AB 上有一个点(P a ,)b ,则点P 在A B ''上的对应点P '的坐标为( )A. (2,3)a b -+B. (2,3)a b --C. (2,3)a b ++D. (2,3)a b +-【答案】A【解析】【分析】 根据点A 、B 平移后横纵坐标的变化可得线段AB 向左平移2个单位,向上平移了3个单位,然后再确定a 、b 的值,进而可得答案.【详解】由题意可得线段AB 向左平移2个单位,向上平移了3个单位,则P (a−2,b +3)故选A . 【点睛】此题主要考查了坐标与图形的变化−−平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减. 二、填空题11. 已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ . 【答案】 4【解析】【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y 轴上的点的坐标特征.12. 五子棋的比赛规则是:一人执黑子,一人执白子,两人轮流放棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A 所在位置用坐标表示是(-2,2),黑棋B 所在位置用坐标表示是(0,4),现在轮到黑棋走,黑棋放到点C 的位置就获得胜利,则点C 的坐标是__________.【答案】(3,3)【解析】【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C 的坐标.【详解】由题意可得如图所示的平面直角坐标系,故点C 的坐标为(3,3),故答案为(3,3).【点睛】本题考查坐标确定位置,解题的关键是明确题意,建立合适的平面直角坐标系.13. 如图,把图1中的圆A 经过平移得到圆O (如图2),如果图1⊙A 上一点P 的坐标为(m ,n ),那么平移后在图2中的对应点P ′的坐标为____【答案】(m+2,n-1)【解析】【分析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P 的对应点P ’的坐标.【详解】解:∵⊙A 的圆心坐标为(-2,1),平移后到达O (0,0),∴图形向右平移了2个单位,有向下平移1个单位,又∵P 的坐标为(m ,n ),∴对应点P ’的坐标为(m+2,n-1),故答案为(m+2,n-1).【点睛】本题主要考查了坐标与图形的变化——平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.三、计算14. 据某报社报道,某省4艘渔船(如图)在回港途中,遭遇9级强风,岛上边防战士接到命令后立即搜救.你能告诉边防战士这些渔船的位置吗?【答案】见解析【解析】【分析】根据所在方位的角度和距离两个因素确定渔船的位置即可.【详解】解:航标灯在小岛的南偏西60°方向15km 处;渔船A 在小岛的北偏东40°方向25km 处;渔船B 在小岛的正南方向20km 处;渔船C 在小岛的北偏西30°方向30km 处;渔船D 在小岛的南偏东65°方向35km 处.【点睛】此题考查坐标确定位置,确定一个物体的位置,需要两个因素:方向与距离.15. 先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点间的距离P 1P 2222121()()x x y y -+-同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知点A(2,4),B(-3,-8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y 轴,点A 的纵坐标为5,点B 的纵坐标为-1,试求A ,B 两点间的距离;(3)已知一个三角形各顶点的坐标分别为A(0,6),B(-3,2),C(3,2),你能判断三角形ABC 的形状吗?说明理由.【答案】(1) A ,B 两点间的距离是13;(2) A ,B 两点间的距离是6;(3)三角形ABC 是等腰三角形.理由见解析.【解析】【分析】(1)根据两点间的距离公式P 1P 2来求A 、B 两点间的距离; (2)根据两点间的距离公式|y 2-y 1|来求A 、B 两点间的距离;(3)先将A 、B 、C 三点置于平面直角坐标系中,然后根据两点间的距离公式分别求得AB 、BC 、AC 的长度;最后根据三角形的三条边长来判断该三角形的形状.【详解】(1)∵A(2,4),B(-3,-8),∴AB ,∵132=169,13,即A ,B 两点间的距离是13;(2)∵点A ,B 所在的直线平行于y 轴,点A 的纵坐标为5,点B 的纵坐标为-1,∴AB =|-1-5|=6,即A ,B 两点间的距离是6;(3)三角形ABC 是等腰三角形,理由:∵一个三角形各顶点的坐标分别为A(0,6),B(-3,2),C(3,2),∴AB ,BC =6,AC =5, ∴AB =AC ,∴三角形ABC 等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.16. 在直角坐标平面内,已点()A 30,、()B 53-,,将点A 向左平移6个单位到达C 点,将点B 向下平移6个单位到达D点.()1写出C点、D点的坐标:C ______ ,D ______ ;()2把这些点按A B C D A----顺次连接起来,这个图形的面积是______ .【答案】(1)(-3,0)&(-5,-3);(2)18【解析】【分析】(1)根据平移的性质,结合A、B坐标,点A向左平移6个单位到达C点,横坐标减6,坐标不变;将点B向下平移6个单位到达D点,横坐标不变,纵坐标减6,即可得出;(2)根据各点坐标画出图形,然后,计算可得.【详解】(1)∵点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点,∴得C(−3,0),D(−5,−3);(2)如图,1 2×3×6+12×3×6=18.S四边形ABCD=S△ABC+S△ACD=。

人教版初中数学7.2.1 用坐标表示地理位置 课件

人教版初中数学7.2.1 用坐标表示地理位置 课件

早晨6:00-7:00 上午9:00-11:00 下午4:30-5:30
与奶奶一起到和平广场锻炼 与奶奶一起上老年大学 到和平路小学讲校史
请依据图示中给定的单位长度,在图中标出和平广场A、老年大 学B与和平路小学C的位置.
课堂检测
7.2 坐标方法的简单应用/
解:以爷爷家为坐标原点,东西方向为x轴,南北方向为y轴建 立坐标系(如图所示).可得:和平广场A坐标为(400,0); 老年大学B (-600,0);和平路小学C (-400,-300).
解:有敌方舰艇B和小岛;还需要敌方舰艇B与我方潜艇O的
距离.
(2) 距离我方潜艇 20 n mile的敌舰有 哪几艘? 解:有敌舰A和敌舰C.
40˚
O 1cm
1cm
˚
小岛
敌方舰 艇B
敌方 舰艇 C 敌方 舰艇 A
探究新知
7.2 坐标方法的简单应用/
(3) 要确定每艘敌舰的位置,各需要几个数据? 解:(3)要确定每艘敌舰的位置,各需要两个
探究新知
7.2 坐标方法的简单应用/
素养考点 1 用方位角和距离表示物体位置
例 如图,是某次海战中敌我双方舰艇对峙示意图(图中1cm表 示20 n mile),对我方潜艇O来说:
O
探究新知
7.2 坐标方法的简单应用/
(1) 北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还
需要什么数据 ?
图1
图2
巩固练习
7.2 坐标方法的简单应用/
解:1、以长方形左下角的顶点为原点,长所在的直线为x轴 (向右为正方向),宽所在的直线为y轴(向上为正方向) 建立直角坐标系,则孔心的坐标是(15,25).
2、灯塔在货轮的南偏东500 ,40n mile处,货轮在灯塔的 北偏西500 ,40n mile处.

专题7.2坐标方法的简单应用(测试)-简单数学七年级下册同步讲练(解析版)(人教版)

专题7.2坐标方法的简单应用(测试)-简单数学七年级下册同步讲练(解析版)(人教版)

专题7.2坐标方法的简单应用一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2021·安徽六安市·八年级期末)在平面直角坐标系中,若点P (-3,-1)向右平移4个单位得到点Q ,则点Q 在( )A .第四象限B .第三象限C .第二象限D .第一象限【答案】A【详解】解:∵点P (-3,-1)向右平移4个单位得到点Q ,∴点Q 为(1,-1),∴点Q 在第四象限,故选:A .2.(2019·广东深圳市·八年级期末)根据下列表述,能确定具体位置的是( )A .罗湖区凤凰影院二号厅6排8号B .深圳麦当劳店C .市民中心北偏东60°方向D .地王大厦25楼【答案】A【详解】 A 选项:罗湖区凤凰影院二号厅6排8号,可以确定一个位置,故符合题意;B 选项:深圳麦当劳店,不能确定深圳哪家麦当劳店,故不符合题意;C 选项:市民中心北偏东60°方向,没有确定具体的位置,只确定了一个方向,故不符合题意;D 选项:地王大厦25楼,不能确定位置,故不符合题意;故选:A .3.(2021·浙江湖州市·八年级期末)在平面直角坐标系中,已知点()7,3A ,则将点A 向右平移4个单位后,它的坐标变为( )A .()7,7B .()11,3C .()3,3D .()7,1-【答案】B【详解】解:将点()7,3A 向右平移4个单位,则点A 的横坐标增加4, 7411+=,∴点A 的坐标变为()11,3,故选:B.4.(2020·山东济南市·八年级期中)如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )C .E7,D6D .E6,D7 【答案】C 【详解】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故选:C .5.(2020·河北邯郸市·八年级期末)若把钟面上的每个刻度均看作一个点,那么表示2时的刻度在表示12时的刻度的方向为( )A .北偏东60︒B .北偏东30C .南偏东60︒D .南偏东30【答案】C【详解】 解:如图,点A 表示12时,点B 表示2时,∵钟盘内每个大刻度表示30,∴60ACB ∠=︒,∴ABC 是等边三角形,∴60CAB ∠=︒,则点B 在点A 南偏东60︒的方向.故选:C .6.(2021·福建漳州市·龙海二中九年级月考)如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1-【答案】C 【详解】解:根据图示可知A 点坐标为(-3,1)根据绕原点O 旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,-1)根据平移“上加下减”原则∴向下平移2个单位得到的坐标为(3,1)故选C .7.(2019·义乌市绣湖中学教育集团八年级月考)在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位【答案】A【详解】将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比向上平移3个单位; 故选:A .8.(2020·郓城县教学研究室八年级期中)如图,如果“炮”所在位置的坐标为()3,1-,“相”所在位置的坐标为()2,2-,那么“仕”所在位置的坐标为( )A .()1,2--B .()1,1-C .()2,1-D .()3,3-【答案】A【详解】如图所示:“士”所在位置的坐标为(-1,-2).故选:A .9.(2020·河北八年级期中)在平面直角坐标系中,将三角形三个顶点的横坐标都增加3,纵坐标保持不变,所得的新图形与原图形相比( )A .向上平移了3个单位长度B .向下平移了3个单位长度C .向左平移了3个单位长度D .向右平移了3个单位长度【答案】D【详解】因为三角形三个顶点的横坐标都增加3,纵坐标保持不变,所以所得的新图形与原图形相比向右平移了3个单位长度,故选:D10.(2019·河北邢台市·七年级期末)在如图所示的直角坐标系中,ABC ∆经过平移后得到111A B C ∆(两个三角形的顶点都在格点上),已知在AC 上一点(2.4,2)P 平移后的对应点为1P ,则1P 点的坐标为( )A .(0.4,1)--B .( 1.5,1)--C .( 2.4,2)--D .( 1.6,1)--【答案】D 【详解】解:由平面直角坐标系可知:点A 的坐标为(2,4),A 1的坐标为(-2,1)∴由点A 到点A 1的平移方式为:先向左平移4个单位,再向下平移3个单位∴ABC 到111A B C △的平移方式为:先向左平移4个单位,再向下平移3个单位∴AC 上一点(2.4,2)P 平移后的对应点1P 的坐标为( 1.6,1)-- 故选D .11.(2020·河北八年级期中)森林火灾发生时,指挥部可根据各观测台发来的观测数据及时准确地确定火灾发生的具体位置,能为救援学取到时间,从而很大程度地减少损失,如图点O 处起火,经过观测数据得到点O 在311观测台所在地点A 的正北方,相距40km ,∠AOB=60°,OA=OB ,则起火点O 处相对于312观测台的位置是( )A .北偏东60°的方向上,相距40kmB .南偏东60°的方向上,相距40kmC .北偏东30°的方向上,相距40kmD .南偏东30*的方向上,想距40km【答案】A【详解】解:如图,∵∠OBM=∠AOB=60°,OB=OA=40km ,∴起火点O 处相对于312观测台的位置是:北偏东60°的方向上,相距40km ,故选A .12.(2021·安徽淮南市·八年级期末)如图,A 、B 的坐标分别为(1,0)、(0,2),若将线段AB 平移到至11A B ,1A 的坐标为(2,1),则1B 的坐标为( )A .(1,2)B .(1,3)C .(0,3)D .(2,3)【答案】B 【详解】解:∵A 、B 的坐标分别为(1,0)、(0,2),平移后1A (2,1),∴ 线段AB 向右平移1个单位,向上平移1个单位,∴B (0,2)向右平移1个单位,向上平移1个单位后1B 的坐标的横坐标为:0+1=1,1B 的坐标的纵坐标为:2+1=3,∴ 点1B (1,3).故选:B .13.(2020·浙江杭州市·杭州英特外国语学校八年级期中)为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为(1,0),表示点B 的坐标为(3,3),则表示其他位置的点的坐标正确的是( )A .()1,0-CB .()3,1D -C .()1,5E --D .()5,1F -【答案】D 【详解】解:如图所示:A 、C (0,1),故本选项错误,不符合题意;B 、D (﹣3,2),故本选项错误,不符合题意;C 、E (﹣5,﹣1),故本选项错误,不符合题意;D 、F (5,﹣1),故本选项正确,符合题意;故选:D .14.(2019·河南洛阳市·七年级期中)在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭【答案】D 【详解】∵点()1,2P 平移后的坐标是,3()3P '﹣, ∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,A.()3,24(,2)→-,横坐标加1,纵坐标减4,故该选项不符合题意,B.()(104),5,--→-,横坐标减4,纵坐标减4,故该选项不符合题意,C.(1.2,5)→(-3.2,6),横坐标减4.8,纵坐标减1,故该选项不符合题意,D.122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭,横坐标减4,纵坐标加1,故该选项符合题意,故选:D .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2021·江西吉安市·八年级期末)在平面直角坐标系中,将点()1,2P -向下平移2个单位长度,再向左平移1个单位长度得到点Q ,则点Q 的坐标为________.【答案】()2,0-【详解】解:平移后点Q 的坐标为(-1-1,2-2),即(-2,0),故答案为:(-2,0).16.(2021·广东揭阳市·八年级期末)如图,围棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,1),黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是___________.【答案】()3,1-【详解】已知黑棋(甲)的坐标为(-2,1),黑棋(乙)的坐标为(-1,-2),建立坐标系如图:则白棋(甲)的坐标是()3,1-,故填:()3,1-.17.(2021·辽宁锦州市·八年级期末)如图是一台雷达探测相关目标得到的部分结果,若图中目标A 的位置为(2,90°),目标B 的位置为(4,210°),则目标C 的位置为____________.【答案】(3,150°)【详解】由图可知,目标C 在第三个环上,度数为150°,故答案为:(3,150°).18.(2020·南通市海门区东洲国际学校八年级月考)如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.【答案】3【详解】∵A(4,3),点C(5,3),∴AC=5-4=1,//AC x ,∵OAB ∆沿AC 方向平移AC 长度的到ECF ∆,∴AC=BF ,∴四边形ABFC 为平行四边形,∴四边形ABFC 的高为C 点到x 轴的距离,∴133ABFC S =⨯=四边形,故答案为:3.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·射阳县第二初级中学八年级期中)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),写出顶点A 1,B 1的坐标,并画出△A 1B 1C 1.【答案】A 1(2,2),B 1(3,﹣2),图见解析【详解】解:如图所示:△A 1B 1C 1,即为所求,A 1(2,2),B 1(3,﹣2).20.(2020·新乡市第七中学七年级期中)平面直角坐标系中有点A (m +6n ,-1),B (-2,2n -m ),连接AB ,将线段AB 先向上平移,再向右平移,得到其对应线段A 'B '(点A '和点A 对应,点B '和点B 对应),两个端点分别为A '(2m +5n ,5),B '(2,m +2n ).分别求出点A '、B '的坐标.【答案】(1,5)A ',(2,1)B '【详解】解:由题意得2626425n m m n m n m n -+=+⎧⎨++=+⎩解得31m n =⎧⎨=-⎩, 即:(1,5)A '、(2,1)B '.21.(2019·河南洛阳市·七年级期中)如图,是小明所在学校的平面示意图,已知宿舍楼的位置是点()3,A a .将艺术楼向下平移1个单位长度后,艺术楼的坐标为(),0b(1)a =________;b =________.(2)根据题意,画出相应的平面直角坐标系;(3)在图中分别写出教学楼、体育馆的坐标(教学楼用点B 表示,体育馆用点C 表示).【答案】(1)4,-3;(2)见详解;(3)()()1,0,4,3B C -【详解】解:(1)由图可知:当将艺术楼向下平移1个单位长度后,艺术楼的坐标为(),0b ,所以教学楼所在位置的横向为x 轴,再由宿舍楼的位置是点()3,A a ,可知点A 到y 轴的距离为3个单位长度,∴4,3a b ==-;故答案为4,-3;(2)由(1)可作如图所示:(3)由(2)可得:教学楼B 的坐标为()1,0,体育馆C 的坐标为()4,3-.22.(2020·永安市第三中学八年级期中)这是一个动物园游览示意图,彤彤同学为了描述这个动物园图中每个景点位置建了一个平面直角坐标系,南门所在的点为坐标原点,回答下列问题:(1)用坐标表示狮子所在的点_____________;(2)动物园又新来了一位朋友大象,若它所在点的坐标为(3,﹣3),请直接在图中标出大象所在的位置;(描出点,并写出大象二字)(3)若丽丽同学建了一个和彤彤不一样的平面直角坐标系,在丽丽建立的平面直角坐标系下,南门所在的点的坐标是(﹣4,-1)则此时坐标原点是_______所在的点,此时飞禽所在的点的坐标是______.【答案】(1)(-4,5);(2)见解析;(3)两栖动物,(-1,3)【详解】解:(1)狮子所在的点为(-4,5);(2)如图所示:(3)∵南门所在的点的坐标是(﹣4,-1)∴两栖动物所在位置为原点∴飞禽所在的位置坐标是(-1,3)故答案为:(1)(-4,5);(3)两栖动物,(-1,3)23.(2020·江苏扬州市·七年级月考)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其他甲虫.规定:向上、向右走为正,向下、向左走为负.如从A 到B 记为:A B → (+1,+4),从B 到A 记为:A B →(-1,-4),括号内第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A C →(______ ,______ ),B C →(______ ,______ ),C → ______ ()12+-,, (2)若这只甲虫的行走路线为A B C D →→→ ,请计算该甲虫走过的)路程;(3)若这只甲虫从A 处去甲虫P 处的行走路线一次为()22++,,()21+-,,()23-+,,()12--,,请在图中标出P 的位置.【答案】(1)3 , 4, 2, 0, D ;(2)10;(3)见解析【详解】解:(1)根据题意得:A→C (+3,+4),B→C (+2,0),C→D (+1,-2),故答案为:+3,+4;+2,0;D ;(2)甲虫走过的路线为(+1,+4)→(+2,0)→(+1,-2 ),∵1+4+2+0+1+|-2|=10,∴该甲虫走过的路程为10格.(3)∵2+2-2-1=1,2-1+3-2=2,∴A→P(+1,+2).P点的位置如图所示.24.(2020·湖南长沙市·长郡中学八年级期中)已知:△A1B1C1三个顶点的坐标分别为A1(﹣3,4),B1(﹣1,3),C1(1,6),把△A1B1C1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC,且点A1的对应点为A,点B1的对应点为B,点C1的对应点为C.(1)在坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求点P的坐标.【答案】(1)见解析;(2)4;(3)P(0,5)或(0,﹣3).【详解】解:(1)如图,△ABC即为所求.(2)S△ABC=3×4﹣12×2×4﹣12×1×2﹣12×2×3=4.(3)设P(0,m),由题意,12•|m﹣1|•2=4,解得,m=5或﹣3,∴P(0,5)或(0,﹣3).25.(2018·广东广州市·七年级期末)某部队在大西北戈壁滩上进行军事演习,部队司令部把部队分为“蓝军”、“黄军”两方.蓝军的指挥所在A地,黄军的指挥所地B地,A地在B地的正西边(如图).部队司令部在C 地.C在A的北偏东60︒方向上、在B的北偏东30方向上.(1)BAC∠=______°;(2)请在图中确定(画出)C的位置,标出字母C;(3)演习前,司令部要蓝军、黄军派人到C地汇报各自的准备情况.黄军一辆吉普车从B地出发、蓝军一部越野车在吉普车出发3分钟后从A地出发,它们同时到达C地.已知吉普车行驶了18分钟.A到C的距离是B到C的距离的1.7倍.越野车速度比吉普车速度的2倍多4千米.求越野车、吉普车的速度及B地到C地的距离(速度单位用:千米/时).【答案】(1)30;(2)画图见解析;(3)越野车为204千米/时、吉普车的速度为100千米/时,B地到C 地的距离为30千米.【详解】(1)由题意可知:906030BAC ∠=︒-︒=︒,故答案为:30;(2)如图所示,点C 即为所求.(3)设吉普车的速度为x 千米/时,则越野车的速度为(2x+4)千米/时,B 到C 距离为1860x 千米,A 到C 的距离为181.760x ⨯千米, 由题意,得181.760x ⨯=(2x+4)18360-⨯, 解得x=100,2x+4=204,1860x =30, 答:越野车为204千米/时、吉普车的速度为100千米/时,B 地到C 地的距离为30千米.26.(2020·甘肃兰州市·八年级期中)如图,在直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a 、b 、c 满足关系式22(3)0a b -+-,(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,12),请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积为△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)a =2,b =3,c =4;(2)S 四边形ABOP =3﹣m ;(3)存在,点P (﹣3,12). 【详解】解:(1)由已知22(3)0a b -+-+=,可得:a =2,b =3,c =4;故答案为:a =2,b =3,c =4.(2)∵S△ABO=12×2×3=3,S△APO=12×2×(﹣m)=﹣m,∴S四边形ABOP=S△ABO+S△APO=3+(﹣m)=3﹣m,即S四边形ABOP=3﹣m;故答案为:S四边形ABOP=3﹣m.(3)因为S△ABC=12×4×3=6,∵S四边形ABOP=S△ABC ∴3﹣m=6,则m=﹣3,所以存在点P(﹣3,12)使S四边形ABOP=S△ABC.故答案为:存在,P(﹣3,12).。

人教版数学七年级下册7.2《坐标方法的简单应用》教学设计

人教版数学七年级下册7.2《坐标方法的简单应用》教学设计

人教版数学七年级下册7.2《坐标方法的简单应用》教学设计一. 教材分析人教版数学七年级下册7.2《坐标方法的简单应用》这一节主要介绍了坐标方法在实际问题中的应用。

通过本节课的学习,学生能够理解坐标方法在解决几何问题、物理问题等方面的应用,提高解决问题的能力。

教材通过丰富的例题和练习题,引导学生掌握坐标方法的基本步骤,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在七年级上册已经学习了坐标系的相关知识,对坐标系有一定的了解。

但部分学生对坐标方法的运用还不够熟练,对实际问题与坐标方法之间的联系还缺乏认识。

因此,在教学过程中,教师需要关注学生的学习差异,针对不同层次的学生进行教学,引导学生将所学知识运用到实际问题中。

三. 教学目标1.理解坐标方法在实际问题中的应用。

2.掌握坐标方法的基本步骤。

3.提高学生解决问题的能力。

四. 教学重难点1.坐标方法在实际问题中的运用。

2.坐标方法的基本步骤。

五. 教学方法1.情境教学法:通过设置实际问题,引导学生运用坐标方法解决问题。

2.案例分析法:分析典型例题,让学生掌握坐标方法的应用。

3.讨论法:引导学生分组讨论,培养学生的团队协作能力。

4.练习法:布置适量练习题,巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示例题和练习题。

2.练习题:准备相关练习题,巩固所学知识。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如物体在平面直角坐标系中的运动问题,引出坐标方法在实际问题中的应用。

激发学生兴趣,引导学生思考。

2.呈现(10分钟)展示教材中的例题,引导学生分析问题,探讨坐标方法的基本步骤。

通过讲解和示范,让学生掌握坐标方法在实际问题中的运用。

3.操练(10分钟)布置练习题,让学生独立完成。

教师巡回指导,解答学生疑问。

4.巩固(5分钟)针对练习题进行讲评,分析学生的解题思路,巩固所学知识。

5.拓展(5分钟)引导学生思考坐标方法在其他学科中的应用,如物理学、化学等。

7.2.2 用坐标表示平移 人教版数学七年级下册同步练习(含解析)

7.2.2 用坐标表示平移 人教版数学七年级下册同步练习(含解析)

第七章平面直角坐标系7.2坐标方法的简单应用7.2.2用坐标表示平移基础过关全练知识点1坐标系中点的平移1.(2022广东中考)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1)B.(-1,1)C.(1,3)D.(1,-1)2.在平面直角坐标系中,将点P(-3,4)平移至原点,则平移方式可以是( )A.先向左平移3个单位,再向上平移4个单位B.先向右平移4个单位,再向上平移3个单位C.先向左平移3个单位,再向下平移4个单位D.先向右平移3个单位,再向下平移4个单位3.如图,在平面直角坐标系xO1y中,点A的坐标为(2,2).如果将x轴向上平移6个单位长度,将y轴向左平移4个单位长度,交于点O2,点A 的位置不变,那么在平面直角坐标系xO2y中,点A的坐标是( )A.(-6,4)B.(6,-4)C.(-4,-6)D.(6,8)知识点2坐标系中图形的平移4.如图,点A,B的坐标分别为(-3,1),(-1,-2),若将线段AB平移至A1B1的位置,点A1,B1的坐标分别为(a,4),(3,b),则a+b的值为( )A.2B.3C.4D.55.如图,△ABC经过一定的平移得到△A'B'C',如果△ABC上的点P的坐标为(a,b),那么这个点在△A'B'C'上的对应点P'的坐标为( )A.(a-2,b-3)B.(a-3,b-2)C.(a+3,b+2)D.(a+2,b+3)6.三角形ABC中一点P(x,y)经过平移后对应点为P1(x+4,y-2),将三角形ABC进行同样的平移得到三角形A1B1C1,若点A的坐标为(-4,5),则点A1的坐标为.7.【教材变式·P86T9变式】如图所示,四边形ABCO中,AB∥OC,BC ∥AO,A、C两点的坐标分别为(-√3,√5)、(-2√3,0),A、B两点间的距离等于O、C两点间的距离.(1)点B的坐标为;(2)将这个四边形向下平移2√5个单位长度后得到四边形A'B'C'O',请你写出平移后四边形四个顶点的坐标.8.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).(1)描出A、B、C、D四点的位置,并顺次连接A、B、C、D各点,组成一个封闭图形;(2)四边形ABCD的面积是;(3)四边形ABCD向左平移5个单位长度,再向上平移1个单位长度得到四边形A'B'C'D',在图中画出四边形A'B'C'D',并写出A'、B'、C'、D'的坐标.能力提升全练9.(2021重庆丰都期末,10,★★☆)将点P(m+2,2-m)向右平移2个单位长度得到点Q,且Q在y轴上,那么点P的坐标为( )A.(6,-2)B.(-2,6)C.(2,2)D.(0,4)10.【新素材·密码确定】(2022山东济宁兖州期末,5,★★☆)一组密码的一部分如图,为了保密,不同的情况下可以采用不同的密码.若输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,按此方法,若输入数字密码(2,7),(3,4),则最后输出的口令为( )A.垂直B.平行C.素养D.相交11.【代数推理】(2022福建厦门思明湖滨中学期末,9,★★☆)在平面直角坐标系中,将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点.有四个点M(-2n2,1)、N(3n2,1)、P(n2,n2+4)、Q(n2+1,1),一定在线段AB上的是( )A.点MB.点QC.点PD.点N12.【易错题】(2021湖北武汉江岸期末,14,★★☆)如图,第一象限内有两点P(m-4,n),Q(m,n-3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是.素养探究全练13.【抽象能力】如图,已知点A1(1,1),点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4,……,按这个规律平移得到点A n,则点A n的横坐标为.14.【抽象能力】(2022北京师大附中期末)对于平面直角坐标系xOy 中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y-t)称为将点P进行“t型平移”,点P'称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如:将点P(x,y)平移到P'(x+1,y-1)称为将点P进行“1型平移”,将点P(x,y)平移到P'(x-1,y+1)称为将点P进行“-1型平移”.已知点A(1,1)和点B(3,1).(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为;(2)①将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,在线段A'B'上的点是;②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.答案全解全析基础过关全练1.A将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选A.2.D将点P(-3,4)的横坐标加3,纵坐标减4即可得原点的坐标(0,0),故可以先向右平移3个单位,再向下平移4个单位.3.B新坐标系如图所示,点A在新坐标系中的坐标为(6,-4),故选B.4.A∵点A,B的坐标分别是为(-3,1),(-1,-2),线段AB平移至A1B1的位置后,A1(a,4),B1(3,b),∴线段AB向右平移了4个单位,向上平移了3个单位,∴a=1,b=1,∴a+b=2,故选A.5.C点B的坐标为(-2,0),点B'的坐标为(1,2),横坐标增加了1-(-2)=3,纵坐标增加了2-0=2,∵△ABC上点P的坐标为(a,b),∴点P'的横坐标为a+3,纵坐标为b+2,∴点P'的坐标为(a+3,b+2),故选C.6.答案(0,3)解析∵三角形ABC中任意一点P(x,y)经过平移后对应点为P1(x+4,y-2),∴该点先向右平移了4个单位长度,又向下平移了2个单位长度,又-4+4=0,5-2=3,∴点A的对应点A1的坐标为(0,3).7.解析(1)∵C点的坐标为(-2√3,0),∴OC=2√3.∵AB∥OC,AB=OC,∴将A点向左平移2√3个单位长度得到B点,又∵A点的坐标为(-√3,√5),∴B点的坐标为(-√3−2√3,√5),即(-3√3,√5).(2)∵将四边形ABCO向下平移2√5个单位长度后得到四边形A'B'C'O',∴A'点的坐标为(-√3,-√5),B'点的坐标为(-3√3,-√5),C'点的坐标为(-2√3,-2√5),O'点的坐标为(0,-2√5).8.解析(1)如图..(2)四边形ABCD的面积是172(3)四边形A'B'C'D'如图.其中A'(-4,1)、B'(-1,1)、C'(-2,4)、D'(-4,5).能力提升全练9.B将点P(m+2,2-m)向右平移2个单位长度后得到的点Q的坐标为(m+4,2-m),∵点Q(m+4,2-m)在y轴上,∴m+4=0,即m=-4,则点P 的坐标为(-2,6),故选B.10.D输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,可得平移规律为向左平移1格,向下平移2格,所以输入数字密码(2,7),(3,4),得最后输出的口令为“相交”,故选D.11.B∵将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点,∴B(2n2+3,1),∴点B在点A右侧,且AB与x轴平行,AB上的点都距离x轴1个单位,因为点M(-2n2,1)距离x轴1个单位,当n≠0时,M 点在点A左侧,当n=0时,M点跟A点重合,所以点M不一定在线段AB上.点N(3n2,1)距离x轴1个单位,可看作将点A沿着x轴的正方向平移2n2个单位后得到的,不一定在线段AB上.点P(n2,n2+4)在点A 右侧,且距离x轴n2+4个单位,不在线段AB上.点Q(n2+1,1)距离x 轴1个单位,可看作将A(n2,1)沿着x轴的正方向平移1个单位后得到的,一定在线段AB上.所以一定在线段AB上的是点Q.故选B.12.答案(0,3)或(-4,0)解析设平移后点P、Q的对应点分别是P'、Q'.分两种情况:①P'在y轴上,Q'在x轴上,则P'的横坐标为0,Q'的纵坐标为0,∴点P'的纵坐标为n+0-(n-3)=3,∴点P平移后的对应点的坐标是(0,3);②P'在x轴上,Q'在y轴上,则P'的纵坐标为0,Q'的横坐标为0,∴点P'的横坐标为m-4+0-m=-4,∴点P平移后的对应点的坐标是(-4,0).综上可知,点P平移后的对应点的坐标是(0,3)或(-4,0).素养探究全练13.答案2n-1解析由题意知,点A1的横坐标为1=21-1,点A2的横坐标为3=22-1,点A3的横坐标为7=23-1,点A4的横坐标为15=24-1,……,则点A n的横坐标为2n-1.14.解析(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为(2,0),故答案为(2,0).(2)①如图,将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,线段A'B'上的点是P2.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是-3≤t≤-1或t=1.。

七年级数学下册 7.2 坐标方法的简单应用练习 (新版)新

七年级数学下册 7.2 坐标方法的简单应用练习 (新版)新

坐标方法的简单应用1.如果点A既在x轴的上方,又在y轴的左边,且距离x轴、y轴分别为5、4个单位,那么A 点的坐标为( )A.(5,-4)B.(4,-5)C.(-5,4)D.(-4,5)解析:点A在x轴的上方,则纵坐标大于零;在y轴的左边横坐标小于零.答案:C2.小华若将直角坐标系中的一只猫的图案向左平移了3个单位长度,而猫的形状、大小都不变,则图案上各点的坐标的变化情况为( )A.横坐标加3,纵坐标不变B.纵坐标加3,横坐标不变C.横坐标减小3,纵坐标不变D.纵坐标减小3,横坐标不变解析:若将直角坐标系中的一个图案左、右平移,而图案的形状、大小都不变,只需将原图案的横坐标加或减去一个值,纵坐标不变.答案:C3.若将直角坐标系中的一只鱼的图案向下平移了3个单位长度,而鱼的形状、大小都不变,则图案上各点的坐标的变化情况为( )A.横坐标加3,纵坐标不变B.纵坐标加3,横坐标不变C.横坐标减小3,纵坐标不变D.纵坐标减小3,横坐标不变解析:若将直角坐标系中的一个图案上、下平移,而图案的形状、大小都不变,只需将原图案的纵坐标加或减去一个值,横坐标不变.答案:D4.在平面内,将一个图形沿_____________移动_____________,这样的图形移动称为平移.平移前后两个图形的_____________和_____________不变.答案:某个方向一定的距离形状大小10分钟训练(强化类训练,可用于课中)1.(2010浙江温州模拟,5)点A(1,2)向右平移2个单位得到对应点A′,则点A′的坐标是( )A.(1,4)B.(1,0)C.(-1,2)D.(3,2)解析:向左右平移各点的纵坐标不变,横坐标增加.答案:D2.图6-2-1是画在方格纸上的某行政区简图,(1)地点B,E,H,R的坐标是________________.(2)点(2,4),(5,3),(7,7)所代表的地点分别为点_______________.图6-2-1 图6-2-2解析:根据坐标的定义及画法解题.各点分别向x轴(y轴)作垂线,垂足对应的数字即为横(纵)坐标.答案:(1)B(4,8),E(11,4),H(10,4),R(6,1)(2)M,I,C3.小华、小明、小强、小彬、小亮是很要好的伙伴,正北、正东分别在y轴、x轴的正方向,他们家的位置如图6-2-2所示.比例尺为1∶10 000(1个单位长度,代表10 000 cm). (1)从小华家向____________走____________米到小彬家,再向____________走____________米可到小明家;(2)从小刚家向北走____________米再向____________走____________米到小华家.解析:本题的解题关键是首先要理解坐标的意义及比例尺的计算,如小华与小彬家的距离为5×10 000=50 000(cm)=500(m).答案:(1)东 500 北 300(2) 200 西 4004.(2010湖北十堰模拟,15(1))如图6-2-3,在平面直角坐标系中,请按下列要求分别作出△ABC变换后的图形(图中每个小正方形的边长为1个单位):向右平移8个单位.图6-2-3解:向右平移8个单位,横坐标加8,各点的纵坐标不变.其图象如下图所示,5.在上一个题目中若△ABC内有一个点M(a,b),平移后其坐标变成什么?解:△ABC向右平移8个单位,点M(a,b)也跟着平移,平移后其坐标变成(a+8,b).6.在直角坐标系中描出下列各点(-1,-2),(0,0),(2,4),并顺次连结各点观察其形状特点,点(1,2)是否在它们的连线上?解:如图所示,是一条直线;点(1,2)在这条直线上.30分钟训练(巩固类训练,可用于课后)1.如果长方形的三个顶点的坐标分别为(-3,2),(3,2),(3,-2),则这个长方形的面积为( )A.32B.24C.6D.8解析:如图所示,长方形的长为6,宽为4,所以面积为24.答案:B2.(1)小明在直角坐标系中画出了一个长方形,他想把这个长方形向右平移3个单位长度,再向上平移2个单位长度,所得图形与原图形相比_______________;(2)若他将此长方形的横坐标都不变,纵坐标变为原来的21,则所得的长方形与原长方形相比_____________.解析:(1)在变化过程中,横坐标分别加3,纵坐标加2即可;(2)若将此长方形的横坐标都不变,纵坐标变为原来的21,则所得的长方形与原长方形相比,图案横向未发生改变,纵向被压缩为原来的一半;答案:(1)横坐标分别加3,纵坐标加2(2)横向未发生改变,纵向压缩为原来的一半3.将一梯形的各顶点的横坐标变为原来的2倍,纵坐标变为原来的21,则所得图形的面积与原来图形的面积_____________.解析:将一梯形的各顶点的横坐标变为原来的2倍,所得的梯形与原梯形相比,图案纵向未发生改变,纵坐标没变,整个图形横向拉长为原来2倍,则面积是原梯形面积的2倍;再将该梯形的各顶点的纵坐标变为原来的21,图案纵向未发生改变,纵向被压缩为原来的一半,即面积又缩小为新梯形的21.综上所述,所得图形的面积与原来图形的面积相等. 答案:相等4.在平面直角坐标系中,(1)将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连结起来形成一个图案.(2)若横坐标保持不变,纵坐标分别加3呢?解:(1)下图虚线即为所求;(2)横坐标保持不变,纵坐标分别加3,相当于把原图案向上平移了3个单位,所以其形状、大小都不发生改变.5.(2010海南模拟,21(2))△ABC 在平面直角坐标系中的位置如图6-2-4所示.将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标.图6-2-4分析:△ABC 向右平移6个单位,各点的纵坐标不变,横坐标加6.解:(1)如图所示,(2)△ABC 中点的坐标分别是A (0,4)、B (-2,2)、C (-1,1);所以A 2(6,4),B 2(4,2),C 2(5,1).6.小明头顶上方A 处5 000米的高空有一架飞机飞过,飞机的速度为300米/秒,若飞行方向不变,飞行10秒后来到B 处,用1∶100 000的比例尺,你能否用直角坐标系来表示飞机前后A 、B 的坐标,通过测量试求出小明与B 点的大概距离.解:以小明为原点竖直方向为纵轴,飞行方向为横轴建立如图所示的直角坐标系,则A (0,5),B (3,5).经过测量图中OB 约为5.8 cm ,所以根据公式:比例尺=实际距离图上距离,可求得小明与B 点的大概距离为5.8×100 000=5 800(米).7.(1)在直角坐标系中描出下列各点A (2,1),B (-2,1),C (3,2),D (-3,2);(2)连结AB 、CD 观察它们与y 轴的关系,(3)猜想(a,1)(-a,1)两点的连线是否遵循上述规律.解:(1)描点如图所示;(2)y 轴是AB 、CD 的垂直平分线;(3)已知点的坐标规律是A 与B ,C 与D 的横坐标互为相反数纵坐标相同;点(a,1),(-a,1)具备上述规律,所以y 轴是(a,1)、(-a,1)两点的连线的垂直平分线.8.图6-2-5是游乐城的平面示意图,借助刻度尺、量角器,解决如下问题:图6-2-5(1)建立适当的平面直角坐标系,写出各景点的坐标.(2)用量角器量出海底世界位于入口处的什么方向,在同一方向上还有什么景点?(3)用刻度尺量出球幕电影到入口处的图上距离,并求出它们的实际距离.解:(1)答案不唯一.若以“海底世界”为原点,则入口处(4,-1);童趣花园(4,2);梦幻艺馆(1,3);球幕电影(2,-4);(2)海底世界位于入口处北偏西约76°,在同一方向上还有太空秋千;(3)球幕电影到入口处图上距离约为1. 8 cm,实际距离为1.8÷100001=270(米). 9.如图6-2-6所示,在直角坐标系下,图(1)中的图案“A”经过变换分别变成图(2)至图(6)中的相应图案(虚线对应于原图案),试写出图(2)至图(6)中各顶点的坐标,探索每次变换前后图案发生了什么变化,对应点的坐标之间有什么关系.(1) (2) (3)(4) (5) (6)图6-2-6解:由题图可知.由图(1)到图(2)是横坐标变为原来的2倍,纵坐标没变,整个图形横向拉长为原来2倍.由图(1)到图(3)是横坐标都加3,纵坐标不变,整个图形整体向右移动3个单位. 由图(1)到图(4)是横坐标不变,纵坐标都乘以-1,两个图形的大小和形状相同.由图(1)到图(5)是横坐标不变,纵坐标变为原来的2倍,图形被纵向拉长为原来的2倍. 由图(1)到图(6)是横坐标、纵坐标都变为原来的2倍,形状不变,大小放大为原来的4倍.。

2坐标方法的简单应用(提高)知识讲解

2坐标方法的简单应用(提高)知识讲解

坐标方法的简单应用(提高)知识讲解责编:康红梅【学习目标】1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】【高清课堂:第二讲平面直角坐标系2 369935用坐标系绘制地点分布图】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示地理位置1.小明写信给他的朋友介绍学校的有关情况:校门正北方100米处是教学楼,从校门向东50米,再向北50米是科教楼,从校门向西100米,再向北150米是宿舍楼……请画出适当的平面直角坐标系表示校门、教学楼、科技楼、宿舍楼的位置,并写出这四个点的坐标.【思路点拨】选取校门所在的位置为原点,并以正东,正北方向为x轴、y轴的正方向,可以容易地写出三个建筑物的坐标.否则就较复杂.【答案与解析】解:(1)平面直角坐标系及学校的建筑物位置如图所示,比例尺为1:10000.(2)校门的坐标为(0,0);教学楼的坐标为(0,100);科技楼的坐标是(50,50);宿舍楼的坐标为(-100,150).【总结升华】选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.举一反三:【变式】一个探险家在日记上记录了宝藏的位置,从海岛的一块大圆石O出发,向东1000m,向北1000m,向西500m,再向南750m,到达点P,即为宝藏的位置.(1)画出坐标系确定宝藏的位置;(2)确定点P的坐标.【答案】解:根据数据的特点,选择250作为单位长度,以大圆石O为原点,建立平面直角坐标系.(1)如图,中心带有箭头的线是行动路线,点P的位置如图所示.(2)点P的坐标是(500,250)2.如图是一所学校的平面示意图,已知国旗杆的坐标为(-1,1),写出其他几个建筑物位置的坐标.若国旗杆的坐标为(3,1),则其他几个建筑物位置的坐标是否发生改变?若改变,请写出坐标,若不改变,请说明理由.【答案与解析】解:当国旗杆的坐标是(-1,1)时,校门的坐标是(-4,1),实验楼的坐标是(2,-2),教学楼的坐标是(2,1),图书馆的坐标是(1,4);若国旗杆的坐标是(3,1),则校门的坐标是(0,1),实验楼的坐标是(6,-2),教学楼的坐标是(6,1),图书馆的坐标是(5,4).【总结升华】根据已知点确定平面直角坐标系,进一步求得要求点的坐标.举一反三:【变式】(2016春•石家庄期末)如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点上.【答案】(﹣2,1).解:∵位于点(1,﹣2)上,位于点(3,﹣2)上,∴位于点(﹣2,1)上.类型二、用坐标表示平移3.(2015春•文安县期末)如如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.【思路点拨】(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.【答案与解析】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.【总结升华】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去若干直角三角形的面积表示.举一反三:【变式】已知三角形ABC三个顶点的坐标为A(-2,3),B(-4,-1),C(2,0).三角形ABC 中任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0+3).将三角形ABC作同样的平移得到三角形A1B1C1:(1)求A1B1C1的坐标.(2)求三角形ABC和△A1B1C1的面积大小.【答案】解:(1)A1(3,6),B1(1,2),C1(7,3).(2)ABC A B C S S '''=△△11124246143222=-⨯⨯-⨯⨯-⨯⨯=24-4-3-6=11. 类型三、综合应用【高清课堂:第一讲 平面直角坐标系2 369935 练习3】4.在A 市北300km 处有B 市,以A 市为原点,东西方向的直线为x 轴,南北方向的直线为y 轴,并以50km 为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C (10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km ,问经几小时后,B 市将受到台风影响?并画出示意图.【思路点拨】当台风中心移动到据B 点200千米时,B 市将受到台风影响,从而求出台风中心的移动距离,除以速度,即可求出所需时间.【答案与解析】解:∵台风影响范围半径为200km ,∴当台风中心移动到点(4,6)时,B 市将受到台风的影响.所用的时间为:50×(10-4)÷40=7.5(小时).所以经过7.5小时后,B 市将受到台风的影响.(注:图中的单位1表示50km)【总结升华】考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.举一反三:【变式】一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.【答案】在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点E,F,G,H的坐标分别是:(6,3),(6,-4),(7,-4),(7,3).若直接平移正方形ABCD,使点A移到 点E,它就和我们前面得到的正方形位置相 同.
巩固应用 拓展延伸
练习 如图5,将平行四边形ABCD向左平 移2个单位长度,向上平移3个单位长度, 可以得到平行四边形A'B'C'D',画出平移 后的图形,并指出其各个顶点的坐标. 各个顶点的坐标是 A'(-3,1); B'(1,1); C'(2,4); D'(-2,4).
问题5 如图4,正方形ABCD四个顶点的坐标分别是 A(-2,4),B(-2,3),C(-1,3),D(-1, 4),将正方形ABCD向下平移7个单位长度,再向右 平移8个单位长度,两次平移后四个顶点相应变为点 E,F,G,H. (2)如果直接平移正方形ABCD,使点A移到点E, 它和我们前面得到的正方形位置相同吗?
探究发现 合作交流
问题3 (2)把点A向左或向下 平移4个单位长度,观 察坐标的变化,你能从 中发现什么规律吗? (3)再找几个点,对 它们进行平移,观察它 们的坐标是否按你发现 的规律变化?
探究发现 合作交流
点A(-2,-3)向右平移5个单位长度, 得到点A1,它的坐标是(3,-3).观察点A, 点A1的坐标可以发现:点A1的横坐标等于点 A的横坐标加5, 点A1的纵坐标等于点A的纵 坐标.类似地,将点A向上或向左或向下平 移某个单位长度,找出平移后得到的点的坐 标与点A的坐标的关系.然后再找几个点, 对它们进行平移流
说说点或图形的平移引起点的坐标的变化规 律? 在平面直角坐标系中,将点(x,y)向 右(或左)平移a个单位长度,可以得到对 应点的坐标是(x+a ,y) 或(x-a ,y) ; 将点(x,y)向上(或下)平移b个单位长 度,可以得到对应点的坐标是(x,y+b)或 (x,y-b).
7.2 坐标方法的简单应用 (第2课时)
回顾旧知 引入新课
问题1 什么叫做平移?平移后得到的新图形 与原图形有什么关系? 把一个图形整体沿某一方向移动一定的 距离,图形的这种移动,叫做平移;平移 后图形的位置改变,形状、大小不变.
回顾旧知 引入新课
问题2 如图,能画出把鱼往左平移6个单位 长度后所得的图形吗? 提示:鱼往左平 移6个单位长度,就 是把相应的关键点向 左平移6个单位长 度.
巩固应用 拓展延伸
问题4 如图,如何沿坐标轴方向平移A(2,1)得到A1?
点A先向右平移5 个单位长度,再向 下平移3个单位长 度;或将点A先向 下平移3个单位长 度,再向右平移5 个单位长度.
问题5 如图4,正方形ABCD四个顶点的坐标分别是 A(-2,4),B(-2,3),C(-1,3),D(-1, 4),将正方形ABCD向下平移7个单位长度,再向右 平移8个单位长度,两次平移后四个顶点相应变为点 E,F,G,H. (1)点E,F,G,H的坐标分别是什么?
回顾小结 归纳提升
回顾本节课所学的主要内容,回答以下问题: (1)点沿坐标轴方向平移后坐标的变化规律是 什么? (2)将一个图形依次沿两个坐标轴方向平移所 得到的图形,可以通过将原来的图形做一次平移得 到吗?请举例说明.
回顾旧知 引入新课
想一想 图形平移,图形的大小不变,但位 置发生了变化,那图形上点的坐标也随 着发生了怎样的变化呢?
探究发现 合作交流
问题3 (1)如图2,将点A (-2,-3)向右平移 5个单位长度,得到点 A1,在图上标出它的坐 标,观察坐标的变化, 你能从中发现什么规律 吗?把点A向上平移4个 单位长度呢?
相关文档
最新文档