18版高考数学一轮复习第四章三角函数、解三角形4.6正弦定理、余弦定理课件理

合集下载

高考数学第四章三角函数第12讲正弦定理余弦定理及解三角形课件

高考数学第四章三角函数第12讲正弦定理余弦定理及解三角形课件
2
2
2
b =a +c
2
-2accosB=9+1-2×3×1×3=6,b=
6,故选 D.
(2)在△ABC 中,由余弦定理得 a2=b2+c2-2bccosA=2b2-2b2cosA.
又 a2=2b2(1-sinA),所以 sinA=cosA,即 tanA=1,
π
又 A 是三角形内角,则 A= ,故选 C.
典 例 变 式
基 础 训 练
变式训练三
在△ABC 中,若(a2+b2)sin(A-B)=(a2-b2)sin(A+B),则△ABC 的形状是
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
【解析】 因为(a2+b2)sin(A-B)=(a2-b2)sin(A+B),
所以 b2[sin(A+B)+sin(A-B)]=a2[sin(A+B)-sin(A-B)],
b=
(
)
A.14
B.6
C. 14
D. 6
(2)(2019·青岛模拟)在△ABC 中,角 A,B,C 的对边分别是 a,b,c,已知
b=c,a2=2b2(1-sinA),则 A 等于
(
)

A. 4
π
B.3
π
C.4
π
D.6
真 题 演 练
知 识 梳 理
典 例 变 式
基 础 训 练
【解析】 (1)bsinA=3csinB⇒ab=3bc⇒a=3c⇒c=1,所以
(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用

高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理 第2课时 正、余弦定理的综

高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理 第2课时 正、余弦定理的综

第2课时 正、余弦定理的综合问题与三角形面积有关的问题(多维探究) 角度一 计算三角形的面积(1)(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b=6,a =2c ,B =π3,则△ABC 的面积为.(2)(2020·某某五校第二次联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则△ABC 的面积为.【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sinB =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.(2)因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S △ABC =12ab sin C =12×23sin π6=32. 【答案】 (1)6 3 (2)32求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二 已知三角形的面积解三角形(2020·某某五市十校共同体联考改编)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且△ABC 的面积为32,则ab=,a +b =.【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cosC +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cosC =13,则C为锐角,所以sin C =223.由△ABC 的面积为32,可得12ab sin C =32,所以abc 是a ,b的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【答案】 933已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.(2020·某某市模拟考试)在△ABC 中,AC =5,BC =10,cos A =255,则△ABC的面积为( )A.52 B .5C .10D .102解析:选A.由AC =5,BC =10,BC 2=AB 2+AC 2-2AC ·AB cos A ,得AB 2-4AB -5=0,解得AB =5,而sin A =1-cos 2A =55,故S △ABC =12×5×5×55=52.选A. 2.(2020·某某市统一模拟考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若△ABC 的面积为3,周长为8,求a . 解:(1)由题设得a sin C =c cos A2,由正弦定理得sin A sin C =sin C cos A2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12. 又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.三角形面积或周长的最值(X 围)问题(师生共研)(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值X 围. 【解】 (1)由题设及正弦定理得sin A sin A +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值X 围是⎝⎛⎭⎪⎫38,32.求有关三角形面积或周长的最值(X 围)问题在解决求有关三角形面积或周长的最值(X 围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.(一题多解)(2020·某某市质量检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求△ABC 外接圆的直径; (2)求a +c 的取值X 围.解:(1)因为角A ,B ,C 成等差数列,所以2B =A +C , 又因为A +B +C =π,所以B =π3.根据正弦定理得,△ABC 的外接圆直径2R =bsin B =32sinπ3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知△ABC 的外接圆直径为1,根据正弦定理得, asin A =bsin B =csin C =1,所以a +c =sin A +sin C =sin A +sin ⎝⎛⎭⎪⎫2π3-A=3⎝⎛⎭⎪⎫32sin A +12cos A=3sin ⎝⎛⎭⎪⎫A +π6. 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎝ ⎛⎭⎪⎫A +π6≤1, 从而32<3sin ⎝⎛⎭⎪⎫A +π6≤3,所以a +c 的取值X 围是⎝⎛⎦⎥⎤32,3. 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac≥(a +c )2-3⎝ ⎛⎭⎪⎫a +c 22=14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值X 围是⎝⎛⎦⎥⎤32,3.解三角形与三角函数的综合应用(师生共研)(2020·某某省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ∈R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,△ABC 的面积为12,求a 的值.【解】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎝⎛⎭⎪⎫2x +π6+1.令2x +π6∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,解得x ∈⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z . (2)因为f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=2,所以sin ⎝⎛⎭⎪⎫2A +π6=1.因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由△ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ), 解得a =3-1.标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B .(1)求角C 的大小;(2)求3cos A +sin ⎝⎛⎭⎪⎫B +π3的最大值,并求出取得最大值时角A ,B 的值.解:(1)法一:在△ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B , 又A +B +C =π,则sin A =sin (π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0, 则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,于是3cos A +sin ⎝ ⎛⎭⎪⎫B +π3=3cos A +sin (π-A )=3cos A +sin A =2sin ⎝⎛⎭⎪⎫A +π3,因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎝⎛⎭⎪⎫A +π3的最大值为2,此时B =π2.[基础题组练]1.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos A =74,则△ABC 的面积等于( )A .37B.372C .9D .92解析:选B.因为cos A =74,则sin A =34,所以S △ABC =12×bc sin A =372,故选B. 2.在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27 B.7 C .2 2D .2 3解析:选D.由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C =12,故c =2 3.3.(2020·某某三市联考)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,sin A ∶sin B =1∶3,c =2cos C =3,则△ABC 的周长为( )A .3+3 3B .2 3C .3+2 3D .3+ 3解析:选C.因为sin A ∶sin B =1∶3,所以b =3a ,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以△ABC 的周长为3+23,故选C.4.(2020·某某师大附中4月模拟)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,△ABC 的面积S =52cos A ,则a =( ) A .1 B. 5 C.13D .17解析:选A.因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a A.5.(2020·某某市定位考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( )A .10B .12C .8+ 3D .8+2 3解析:选B.因为△ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cos A +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以△ABC 为正三角形,所以△ABC B.6.在△ABC 中,A =π4,b 2sin C =42sin B ,则△ABC 的面积为.解析:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S △ABC =12bc sin A =12×42×22=2. 答案:27.(2020·某某某某五校协作体期中改编)在△ABC 中,A =π3,b =4,a =23,则B =,△ABC 的面积等于.解析:△ABC 中,由正弦定理得sin B =b sin Aa =4×sinπ323B 为三角形的内角,所以B=π2,所以c =b 2-a 2=42-(23)2=2, 所以S △ABC =12×2×23=2 3.答案:π22 38.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c2b,sinB =74,S △ABC =574,则b 的值为. 解析:由sin A sin B =5c 2b ⇒a b =5c 2b ⇒a =52c ,①由S △ABC =12ac sin B =574且sin B =74得12ac =5,②联立①,②得a =5,且c =2. 由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.答案:149.在△ABC 中,∠A =60°,c =37a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积.解:(1)在△ABC 中,因为∠A =60°,c =37a ,所以由正弦定理得sin C =c sin A a =37×32=3314. (2)因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2bc cos A 得72=b 2+32-2b ×3×12,解得b =8或b =-5(舍).所以△ABC 的面积S =12bc sin A =12×8×3×32=6 3.10.(2020·某某五校第二次联考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A .(1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.解:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A , 即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32, 又A 为三角形的内角,所以A =π6.(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S △ABC =12bc sin A ≤2+3,故△ABC 面积的最大值为2+ 3.[综合题组练]1.(2020·某某市诊断测试)在平面四边形ABCD 中,∠D =90°,∠BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B. 6C.7D .2 2解析:选C.如图,在△ACD 中,∠D =90°,AD =1,AC =2,所以∠CAD =60°.又∠BAD =120°,所以∠BAC =∠BAD -∠CAD =60°.在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =7,所以BC =7.故选C.2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a sin A +b sin B -c sin C sin B sin C =233a ,a =2 3.若b ∈[1,3],则c 的最小值为.解析:由a sin A +b sin B -c sin C sin B sin C =233a ,得a 2+b 2-c 22ab =33sin C .由余弦定理可知cos C =a 2+b 2-c 22ab ,即3cos C =3sin C ,所以tan C =3,故cos C =12,所以c 2=b 2-23b +12=(b -3)2+9,因为b ∈[1,3],所以当b =3时,c 取最小值3.答案:33.(2020·某某市学业质量调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为32ac cos B ,且sin A =3sin C . (1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长. 解:(1)因为S △ABC =12ac sin B =32ac cos B , 所以tan B = 3.又0<B <π,所以B =π3. (2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6. 由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714. 因为D 是AC 的中点,所以AD =7. 所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎝ ⎛⎭⎪⎫-714=13. 所以BD =13.4.(2020·原创题)在△ABC 中,sin A ∶cos B ∶tan A =12∶16∶15.(1)求sin C ;(2)若AB =8,点D 为△ABC 外接圆上的动点,求DA →·DC →的最大值.解:(1)由sin A ∶tan A =12∶15,得cos A =45,故sin A =35,所以由sin A ∶cos B =12∶16,得cos B =45,故sin B =35,于是sin C =sin(A +B )=sin A cos B +cos A sin B =2425. (2)在△ABC 中,由AC sin B =ABsin C,解得AC =5,由A ,B ,C ,D 四点共圆及题干条件,可知∠ADC =∠ABC 时DA →·DC →取得最大值, 设DA =m ,DC =n ,在△DAC 中,由余弦定理的推论得cos ∠ADC =m 2+n 2-522mn =45, 故85mn =m 2+n 2-25≥2mn -25, 解得mn ≤1252, 故DA →·DC →=45mn ≤45×1252=50, 当且仅当m =n =5102时,等号成立, 故DA →·DC →的最大值为50.。

高考数学一轮复习正弦定理余弦定理及解三角形课件理

高考数学一轮复习正弦定理余弦定理及解三角形课件理

基础诊断 考点突破
课堂总结
解 (1)由题意可知 c=8-(a+b)=72.
由余弦定理得 cos C=a2+2ba2b-c2=22+2×5222×-52722
=-15.
(2)由 sin Acos2B2+sin Bcos2A2=2sin C 可得:
sin
1+cos A· 2
B+sin
1+cos B· 2
a2+b2-c2 2ab
基础诊断 考点突破
课堂总结
2.S△ABC=12absin C=12bcsin A=12acsin B=a4bRc=12(a+b+c)·r(r 是 三角形内切圆的半径),并可由此计算 R,r.
基础诊断 考点突破
课堂总结
• 3.实际问题中的常用角
• (1)仰角和俯角
• 在同一铅垂平面内的水平视线和目标视线
1-2419=2
7 7.
而∠AEB=23π-α,所以
cos∠AEB=cos23π-α=cos23πcos α+sin23πsin α
=-12cos
α+
3 2 sin
α
=-12·2 7 7+
3 21 2 ·7

7 14 .
基础诊断 考点突破
课堂总结

Rt△EAB
中,cos∠AEB=EBAE=B2E,故
课堂总结
5.(人教 A 必修 5P10B2 改编)在△ABC 中,acos A=bcos B, 则这个三角形的形状为________. 解析 由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2π, 所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形

18版高考数学一轮复习第四章三角函数与解三角形4.7正弦定理和余

18版高考数学一轮复习第四章三角函数与解三角形4.7正弦定理和余

18版高考数学一轮复习第四章三角函数与解三角形4.7正弦定理和余内部文件,版权追溯内部文件,版权追溯内部文件,版权追溯 2021版高考数学一轮复习第四章三角函数与解三角形 4.7 正弦定理和余弦定理真题演练集训理新人教A版11.[2021・新课标全国卷Ⅱ]钝角三角形ABC的面积是,AB=1 ,BC=2,则AC=( )2A.5 C.2 答案:B11解析:由题意可得AB・BC・sin B=,22又AB=1 ,BC=2,所以sin B=所以B=45°或B=135°. 当B=45°时,由余弦定理可得2, 2B.5 D.1AC=AB2+BC2-2AB・BC・cos B=1,此时AC=AB=1,BC=2,易得A=90°,与“钝角三角形”条件矛盾,舍去.所以B =135°.由余弦定理可得AC=AB2+BC2-2AB・BC・cos B=5.2.[2021・新课标全国卷Ⅰ]已知a,b,c分别为△ABC三个内角A,B,C的对边,a =2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为________.答案:3解析:∵===2R,a=2,又(2+b)(sin A-sin B)=(c-b)sin C可sin Asin Bsin C化为(a+b)(a-b)=(c-b)c,∴a-b=c-bc,∴b+c-a=bc.222222abcb2+c2-a2bc1∴===cos A,∴A=60°.2bc2bc2∵△ABC中,4=a=b+c-2bc・cos 60°=b+c-bc≥2bc-bc=bc(当且仅当b=c 时等号成立),113∴S△ABC=・bc・sin A≤×4×=3.22243.[2021・新课标全国卷Ⅱ]△ABC的内角A,B,C的对边分别为a,b,c,若cos A =,51222225cos C=,a=1,则b=________.1321答案: 1345解析:解法一:因为cos A=5,cos C=13,所以sin A=3125,sin C=13,从而sin B=sin(A+C)=sin Acos C+cos Asin C =35×513+45×1263 13=65. 由正弦定理asin A=bsin B,得b=asin Bsin A=2113.解法二:因为cos A=455,cos C=13,所以sin A=35,sin C=1213,从而cos B=-cos(A+C)=-cos Acos C+sin Asin C=-45312165×13+5×13=65.由正弦定理acasin C20sin A=sin C,得c=sin A=13.由余弦定理b2=a2+c2-2accos B,得b=2113.解法三:因为cos A=453125,cos C=13,所以sin A=5,sin C=13,由正弦定理asin A=csin C,得c=asin Csin A=2013.从而b=acos C+ccos A=2113.解法四:如图,作BD⊥AC于点D,25512由cos C=,a=BC=1,知CD=,BD=. 1313134316又cos A=,所以tan A=,从而AD=. 541321故b=AD+DC=. 134.[2021・新课标全国卷Ⅰ]△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acosB+bcos A)=c.(1)求C;33(2)若c=7,△ABC的面积为,求△ABC的周长.2解:(1)由已知及正弦定理,得2cos C(sin Acos B+sin Bcos A)=sin C, 2cos Csin(A+B)=sin C,故2sin Ccos C=sin C,C∈(0,π).1π可得cos C=,所以C=. 23133(2)由已知,absin C=. 22π又C=,所以ab=6.3由已知及余弦定理,得a+b-2abcos C =7,故a+b=13,从而(a+b)=25. 所以△ABC的周长为5+7.课外拓展阅读转化与化归思想在解三角形中的应用[典例] [2021・新课标全国卷Ⅰ]△ABC的内角A,B,C的对边分别为a,b,c,已知2cos22222C(acos B+bcos A)=c.(1)求C;33(2)若c=7,△ABC的面积为,求△ABC的周长.2[审题视角] (1)利用正弦定理进行边角互化求解;(2)利用三角形的面积公式得出ab,再结合余弦定理联立方程求出a+b,进而求得△ABC的面积.[解] (1)由已知及正弦定理得, 2cos CAcos B+sin Bcos A=sin C,①32cos Csin(A+B)=sin C.故2sin Ccos C=sin C. 1π可得cos C=,所以C=. 23133(2)由已知,得absin C=.22π又C=,所以ab=6.3由已知及余弦定理得,a+b-2abcos C=7. 故a+b=13,从而2222a+b2=25.②所以△ABC的周长为5+7. 满分心得1.(1)题中①处不能利用正弦定理将边化为角,使已知条件中的式子转化为同类. (2)题中②处不能结合余弦定理将(a+b)视为整体进行求解而走入误区.2.转化与化归思想在解三角形中的应用主要体现在边角之间利用正、余弦定理统一的转化化简上,使关系式中的量达到统一性.4感谢您的阅读,祝您生活愉快。

高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件

高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件

[对点练]
1.在△ ABC中,c-2ca
=sin
2B 2
(a,b,c分别为角A,B,C的对边),则
△ ABC的形状为( )
A.直角三角形
B.等边三角形
C.等腰三角形或直角三角形 D.等腰直角三角形
解析:由cos
B=1-2sin
2B 2
得sin
2B 2
=1-co2s
B ,所以c-2ca =1-co2s
AE sin sin
45° 30°

2AB cos 15°
,因此CD=AD
sin
60°= cos
2×10 (45°-30°)
×sin 60°=10(3- 3 ).
答案:10(3- 3 )
备考第 2 步——突破核心考点,提升关键能力
考点1 利用正弦定理、余弦定理解三角形[自主演练]
1.△ ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin
答案:BC
4.在△ ABC中,内角A,B,C的对边分别为a,b,c,若a=4,b=5,b>c, △ ABC的面积为5 3 ,则c=________.
解析:由三角形面积公式,得12 ×4×5sin C=5 3 ,
即sin
C=
3 2
.又b>a,b>c,所以C为锐角,于是C=60°.
由余弦定理,得c2=42+52-2×4×5cos 60°,解得c= 21 .
3.(多选)在△ ABC中,角A,B,C所对的各边分别为a,b,c,若a=1,b= 2 ,
A=30°,则B等于( )
A.30°
B.45°
C.135°
D.150°
解析:根据正弦定理sina A =sinb B 得,

2018版高考数学大一轮复习第四章三角函数解三角形4.6正弦定理余弦定理课件理

2018版高考数学大一轮复习第四章三角函数解三角形4.6正弦定理余弦定理课件理

2.例3(2)中,若将条件变为a2+b2-c2=ab,且2cos Asin B=sin C,判断 △ABC的形状.
解答
2 2 2 a + b - c 1 2 2 2 ∵a +b -c =ab,∴cos C= 2ab =2,
π 又 0<C<π,∴C=3,ห้องสมุดไป่ตู้
又由2cos Asin B=sin C得sin(B-A)=0,∴A=B, 故△ABC为等边三角形.
解析
由A+B+C=180°,知C=45°,
10 c a c 由正弦定理得sin A=sin C,即 = , 3 2 2 2 10 6 ∴c= 3 .
3.(2016· 江西吉安一中质检)在△ABC中,角A,B,C所对的边分别为a, c b,c,若 <cos A,则△ABC为 答案 解析 b A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形
2 2 2
2.在△ABC中,已知a、b和A时,解的情况如下:
A为锐角 A为钝角或直角
图形
关系式
a=bsin A
bsin A<a<b
a≥b
a>b
解的个数
一解
两解
一解
一解
3.三角形常用面积公式
(1)S=1 a· ha(ha表示边a上的高); 2 1 1 acsin B bcsin A 1 (2)S= absin C= 2 =2 ; 2
余弦定理 a2= b2+c2-2bccos A; b2= c2+a2-2cacos B; c2=_______________ a2+b2-2abcos C
内容
b +c -a (1)a=2Rsin A,b= 2Rsin B,c= 2Rsin C ; b c cos A= ; 2bc (2)sin A= a ,sin B= 2R ,sin C= 2R ; 2 2 2 2R c +a -b 变 (3)a∶b∶c= sin A∶sin B∶sin C ; cos B= ; 2ac 形 (4)asin B=bsin A, a2+b2-c2 bsin C=csin B, cos C=____________ 2ab asin C=csin A

18版高考数学大一轮复习第四章三角函数、解三角形第6讲正弦定理和余弦定理课件理新人教版

18版高考数学大一轮复习第四章三角函数、解三角形第6讲正弦定理和余弦定理课件理新人教版
第 6讲
正弦定理和余弦定理
最新考纲
掌握正弦定理、余弦定理,并能解决一些简单
的三角形度量问题.
知识梳理
1.正、余弦定理
在△ABC中,若角A,B,C所对的边分别是 a,b,c,R为
△ABC外接圆半径,则
定理 正弦定理 余弦定理
公式
sin A
b c a sin B =____ sin C=2R =_____
所以 BC= 3.
答案 B
5.(必修5P10B2改编)在△ABC中,acos A=bcos B,则这个三角
形的形状为________.
解析 由正弦定理,得 sin Acos A=sin Bcos B,
即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, π 即 A=B 或 A+B=2, 所以这个三角形为等腰三角形或直角三角形.
b +c -2bccos A ; a2=________________
c +a -2cacos B ; b2=________________
2+b2-2abcos C a c =_________________
2
2
2
2
2
2Rsin B ,c= (1)a=2Rsin A,b=___________
【迁移探究 2 】 将本例条件变为“若△ABC 的三个内角满足
ห้องสมุดไป่ตู้
sin A∶sin B∶sin C=5∶11∶13”,则△ABC(
A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形
解析 在△ABC 中,
)
sin A∶sin B∶sin C=5∶11∶13, ∴a∶b∶c=5∶11∶13, 故设 a=5k,b=11k,c=13k(k>0),由余弦定理可得

高考数学一轮复习 第四章 三角函数、解三角形4.6正、余弦定理及其应用举例教学案 理 新人教A

高考数学一轮复习 第四章 三角函数、解三角形4.6正、余弦定理及其应用举例教学案 理 新人教A

4.6 正、余弦定理及其应用举例考纲要求1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题..2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.1.正弦定理和余弦定理定理正弦定理余弦定理内容__________=2R.(R为△ABC外接圆半径)a2=__________;b2=__________;c2=__________变形形式①a=____,b=______,c=____;②sin A=____,sin B=__________,sin C=__________;③a∶b∶c=__________;④a+b+csin A+sin B+sin C=asin A.cos A=__________;cos B=__________;cos C=__________.解决的问题①已知两角和任一边,求另一角和其他两条边.②已知两边和其中一边的对角,求另一边和其他两个角.①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.2.仰角和俯角在视线和水平线所成的角中,视线在水平线__________的角叫仰角,在水平线______的角叫俯角(如图①).3.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).4.方向角相对于某一方向的水平角(如图③).图③(1)北偏东α°:指北方向向东旋转α°到达目标方向.(2)东北方向:指北偏东45°或东偏北45°.(3)其他方向角类似.5.坡角和坡比坡角:坡面与水平面的夹角(如图④,角θ为坡角).图④坡比:坡面的铅直高度与水平长度之比(如图④,i为坡比).1.(广东高考)在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=( ).A.4 3 B.2 3 C. 3 D.322.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ).A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形3.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是( ).A.5海里/时B.5 3 海里/时C.10海里/时D.10 3 海里/时4.如图,为了测量隧道AB的长度,给定下列四组数据,无法求出AB长度的是( ).A.α,a,b B.α,β,aC.a,b,γD.α,β,γ5.△ABC中,若a=32,cos C=13,S△ABC=43,则b=__________.一、利用正弦、余弦定理解三角形【例1-1】 (辽宁高考)在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列.(1)求cos B的值;(2)边a,b,c成等比数列,求sin A sin C的值.【例1-2】△ABC中,A,B,C所对的边分别为a,b,c,tan C=sin A+sin Bcos A+cos B,sin(B-A)=cos C.(1)求A,C;(2)若S△ABC=3+3,求a,c.方法提炼应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.A为锐角A为钝角或直角图形关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的个数 无解 一解 两解 一解 一解 无解请做演练巩固提升1 二、三角形形状的判定【例2-1】 △ABC 满足sin B =cos A sin C ,则△ABC 的形状是( ). A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形【例2-2】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 方法提炼判断三角形的形状的基本思想是:利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形.如等边三角形、等腰三角形、直角三角形、等腰直角三角形等.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.提醒:1.在△ABC 中有如下结论sin A >sin B a >b .2.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形;当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形;3.当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形. 请做演练巩固提升2三、与三角形面积有关的问题【例3】 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积. 方法提炼1.正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理选用,有时还需要交替使用;在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理联系起来.2.解三角形过程中,要注意三角恒等变换公式的应用. 请做演练巩固提升5四、应用举例、生活中的解三角形问题【例4-1】 某人在塔的正东沿着南偏西60° 的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.【例4-2】 如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.方法提炼1.测量距离问题,需注意以下几点:(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型; (2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解; (3)应用题要注意作答.2.测量高度时,需注意:(1) 要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理; (3)注意铅垂线垂直于地面构成的直角三角形.3.测量角度时,要准确理解方位角、方向角的概念,准确画出示意图是关键. 请做演练巩固提升6忽视三角形中的边角条件而致误【典例】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错解:由1+2cos(B +C )=0,知cos A =12,∴A =π3.根据正弦定理a sin A =b sin B 得:sin B =b sin A a =22,∴B =π4或3π4.以下解答过程略.错因:忽视三角形中“大边对大角”的定理,产生了增根. 正解:∵在△ABC 中,cos(B +C )=-cos A ,又∵1+2cos(B +C )=0,∴1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B,得sin B =b sin A a =22. ∴B =π4或3π4.∵a >b ,∴B =π4.∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 答题指导:1.考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.2.解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件. 1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( ).A .-12B .12C .-1D .12.在△ABC 中,(a +b +c )(a +b -c )=3ab ,且a cos B =b cos A ,则△ABC 的形状为__________. 3.(福建高考)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =__________.4.(陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =______.5.(山东高考)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sin B(tan A+tan C)=tan A tanC.(1)求证:a,b,c成等比数列;(2)若a=1,c=2,求△ABC的面积S.6.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.参考答案基础梳理自测知识梳理1.asin A=bsin B=csin Cb2+c2-2bc·cos A c2+a2-2ca·cos B a2+b2-2ab·cos C①2R sin A2R sin B2R sin C②a2R b2Rc2R③sin A∶sin B∶sin Cb2+c2-a22bcc2+a2-b22caa2+b2-c22ab2.上方下方基础自测1.B 解析:由正弦定理得BCsin A=ACsin B,即32sin 60°=ACsin 45°,解得AC=2 3.2.B 解析:∵cos2B2=a+c2c,∴2cos2B2-1=a+cc-1,∴cos B=ac,∴a2+c2-b22ac=ac,∴c2=a2+b2.3.C 解析:如图,A,B为灯塔,船从O航行到O′,OO′BO=tan 30°,OO′AO=tan 15°,∴BO=3OO′,AO=(2+3)OO′.∵AO-BO=AB=10,∴OO′·[(2+3)-3]=10,∴OO′=5,∴船的速度为512=10海里/时.4.D 解析:利用余弦定理,可由a,b,γ或α,a,b求出AB;利用正弦定理,可由a,α,β求出AB,当只知α,β,γ时,无法计算AB.5.2 3 解析:由cos C=13,得sin C=223,∴S△ABC=12ab sin C=12×32×b×223=43.∴b=2 3.考点探究突破【例1-1】解:(1)由已知2B=A+C,A+B+C=180°,解得B=60°,所以cos B=12.(2)方法一:由已知b2=ac,及cos B=12,根据正弦定理得sin2B=sin A sin C,所以sin A sin C=1-cos2B=34.方法二:由已知b2=ac,及cos B=12,根据余弦定理得cos B=a2+c2-ac2ac,解得a=c,所以B=A=C=60°,故sin A sin C=34.【例1-2】解:(1)因为tan C=sin A+sin Bcos A+cos B,即sin Ccos C=sin A+sin Bcos A+cos B,所以sin C cos A+sin C cos B=cos C sin A+cos C sin B,即sin C cos A-cos C sin A=cos C sin B-sin C cos B,得sin(C-A)=sin(B-C).所以C-A=B-C,或C-A=π-(B-C)(不成立),即2C=A+B,得C=π3,所以B+A=2π3.又因为sin(B-A)=cos C=12,则B-A=π6或B-A=5π6(舍去),得A=π4,B=5π12.(2)S△ABC=12ac sin B=6+28ac=3+3,又asin A=csin C,即a22=c32,得a=22,c=2 3.【例2-1】 A 解析:∵sin B=cos A·sin C,∴b=b2+c2-a22bc·c.∴b2+a2=c2.∴△ABC为直角三角形,选A.【例2-2】解:(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.①由余弦定理得a2=b2+c2-2bc cos A,故cos A=-12,A=120°.(2)由①得,sin2A=sin2B+sin2C+sin B sin C.又sin B+sin C=1,故sin B=sin C=12.因为0°<B<90°,0°<C<90°,故B=C.所以△ABC是等腰钝角三角形.【例3】解:(1)由余弦定理及已知条件,得a2+b2-ab=4,又因为△ABC的面积等于3,所以12ab sin C=3,得ab=4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意得sin(B +A )+sin(B -A)=4sin A co s A ,即sin B cos A =2sin A cos A .当cos A =0时,A =π2,B =π6,a =433,b =233.所以△ABC 的面积 S =12ab sin C =12×433×233×32=233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a .解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =12×233×433×32=233.综上知,△ABC 的面积为233.【例4-1】 解:依题意画出图,某人在C 处,AB 为塔高,他沿CD 前进,CD =40米,此时∠DBF =45°,从C 到D 沿途测塔的仰角,只有B 到测试点的距离最短,即BE ⊥CD 时,仰角才最大,这是因为tan∠AEB =ABBE,AB 为定值,BE 最小时,仰角最大.在△BCD 中,CD =40,∠BCD =30°,∠DBC =135°. 由正弦定理,得CDsin∠DBC =BDsin∠BCD,∴BD =40sin 30°sin 135°=20 2.在Rt△BED 中,∠BDE =180°-135°-30°=15°,BE =BD sin 15°=202×6-24=10(3-1).在Rt△ABE 中,∠AEB =30°,∴AB =BE tan 30°=103(3-3)(米).∴所求的塔高为103(3-3)米.【例4-2】 解:作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130,EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理,cos∠DEF =DE 2+EF 2-DF 22DE ×EF=1302+1502-102×2982×130×150=1665.演练巩固提升1.D 解析:根据正弦定理a sin A =bsin B=2R 得,a =2R sin A ,b =2R sin B ,∴a cos A =b sin B 可化为sin A cos A =sin 2B .∴sin A cos A +cos 2B =sin 2B +cos 2B =1.2.等边三角形 解析:∵(a +b +c )(a +b -c )=3ab ,∴(a +b )2-c 2=3ab . ∴a 2+b 2-c 2=ab .∴cos C =a 2+b 2-c 22ab =12.∴C =π3.∵a cos B =b cos A ,∴sin A cos B =sin B cos A . ∴sin(A -B )=0. ∴A =B .故△ABC 为等边三角形. 3. 2 解析:如图:由正弦定理得ACsin B =BCsin A ,即ACsin 45°=3sin 60°,即AC 22=332,故AC = 2.4.2 解析:∵b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4, ∴b =2.5.(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sinB ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C,因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C , 又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sinC .由正弦定理得b 2=ac , 即a ,b ,c 成等比数列. (2)解:因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-(2)22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74,故△ABC 的面积S =12ac sin B =12×1×2×74=74.6.解:(1)解法一:设相遇时小艇的航行距离为s 海里,则s =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300.故当t =13时,s min =103,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.解法二:若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向,如图,设小艇与轮船在C 处相遇.在Rt△OAC 中,OC =20cos 30°=103,AC =20sin 30°=10. 又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇,由题意,可得(vt )2=202+(30t )2-2·20·30t ·cos(90°-30°).化简,得v 2=400t 2-600t +900=400⎝ ⎛⎭⎪⎫1t -342+675. 由于0<t ≤12,即1t ≥2,所以当1t=2时,v 取得最小值1013,即小艇航行速度的最小值为1013海里/时.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b2-c2=ab,且2cos Asin B=sin C,判断 △ABC的形状.
解答
2 2 2 a + b - c 1 2 2 2 ∵a +b -c =ab,∴cos C= 2ab =2,
π 又 0<C<π,∴C=3,
又由2cos Asin B=sin C得sin(B-A)=0,∴A=B, 故△ABC为等边三角形.
4 4 3 所以5sin B=5cos B+5sin B. sin B 故 tan B=cos B=4.
思维升华
应用正弦、余弦定理的解题技巧
bsin A asin B asin C (1)求边:利用公式 a= sin B ,b= sin A ,c= sin A 或其他相应变形公式 求解. asin B bsin A (2)求角: 先求出正弦值, 再求角, 即利用公式 sin A= b , sin B= a , csin A sin C= a 或其他相应变形公式求解.
①证明:sin Asin B=sin C; 证明
6 ②若 b +c -a =5bc,求 tan B. 解答 6 2 2 2 由已知,b +c -a =5bc, b2+c2-a2 3 根据余弦定理,有 cos A= 2bc =5.
2 2 2
4 所以 sin A= 1-cos A=5.
2
由(1)知,sin Asin B=sin Acos B+cos Asin B,
(3)已知两边和夹角或已知三边可利用余弦定理求解. (4)灵活利用式子的特点转化:如出现a2+b2-c2=λab形式用余弦定理, 等式两边是关于边或角的正弦的齐次式用正弦定理.
跟踪训练 1
(1)△ABC 的三个内角 A,B,C 所对边的长分别为 a,b,c,
2
b asin Asin B+bcos A= 2a,则a等于
解析
由A+B+C=180°,知C=45°,
a c 10 c 由正弦定理得 = ,即 = , sin A sin C 3 2 2 2
10 6 ∴c= . 3
3.在△ABC中,若sin B· sin 是
答案 解析
A 2 C=cos ,且sin2B+sin2C=sin2A,则△ABC 2
A.等边三角形 C.等腰三角形
2.在△ABC中,已知a、b和A时,解的情况如下:
A为锐角 A为钝角或直角
图形
关系式 解的个数
a=bsin A 一解
bsin A<a<b 两解
a≥b 一解
a>b 一解
3.三角形常用面积公式
(1)S=1 a· ha(ha表示边a上的高); 2 1 1 acsin B bcsin A 1 (2)S= absin C= 2 =2 ; 2
解析
B.直角三角形
C.钝角三角形
D.不确定
由正弦定理得sin Bcos C+sin Ccos B=sin2A,
∴sin(B+C)=sin2A,
即sin(π-A)=sin2A,sin A=sin2A.
∵A∈(0,π),∴sin A>0,∴sin A=1,
即A= π,∴△ABC为直角三角形. 2
引申探究
1.例3(2)中,若将条件变为2sin Acos B=sin C,判断△ABC的形状. 解答 ∵2sin Acos B=sin C=sin(A+B), ∴2sin Acos B=sin Acos B+cos Bsin A, ∴sin(A-B)=0, 又A,B为△ABC的内角. ∴A=B,∴△ABC为等腰三角形.
余弦定理 a2= b2+c2-2bccos A; b2= c2+a2-2cacos B; c2=_______________ a2+b2-2abcos C
内容
2 2 2 b + c - a (1)a=2Rsin A,b= 2Rsin B,c= 2Rsin C ; b c cos A= ; 2bc (2)sin A= a ,sin B= 2R ,sin C= 2R ; 2 2 2 2R c +a -b 变 (3)a∶b∶c= sin A∶sin B∶sin C ; cos B= ; 2ac 形 (4)asin B=bsin A, a2+b2-c2 bsin C=csin B, cos C=____________ 2ab asin C=csin A
a+b-c a (5)在△ABC中, .( √ ) = sin A sin A+sin B-sin C (6)在三角形中,已知两边和一角就能求三角形的面积.( √ )
考点自测
1.(2016· 天津)在△ABC中,若AB= 13,BC=3,C=120°,则AC等于 A.1 B.2 C.3 D.4
答案 解析
则由余弦定理c2=a2+b2-2abcos C,
得49=25+9-2×3×5cos C,
1 2π 解得 cos C=- ,所以 C= . 2 3
1 5.(2016· 济南模拟)在△ABC 中,a=3 2,b=2 3,cos C = ,则△ABC 3 的面积为 4 3 .
答案 解析
1 2 2 ∵cos C= ,0<C<π,∴sin C= , 3 3
A.2 3 B.2 2 C. 3
答案
解析
D. 2
(边化角)
由 asin Asin B+bcos2A= 2a 及正弦定理,得 sin Asin Asin B+sin Bcos2A= 2sin A, b sin B 即 sin B= 2sin A,所以a=sin A= 2.故选 D.
(2)在△ABC中,内角A,B,C的对边长分别为a,b,c,已知a2-c2=b, 且sin(A-C)=2cos Asin C,则b等于 答案
解析
A.6
B.4
C.2
D.1
题型二 和三角形面积有关的问题 例2 (2016· 浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.
已知b+c=2acos B.
(1)证明:A=2B; 证明 由正弦定理得sin B+sin C=2sin Acos B, 故2sin Acos B=sin B+sin(A+B)=sin B+sin Acos B+cos Asin B, 于是sin B=sin(A-B). 又A,B∈(0,π),故0<A-B<π, 所以B=π-(A-B)或B=A-B, 因此A=π(舍去)或A=2B,所以A=2B.
思维升华
1 1 1 (1)对于面积公式 S=2absin C=2acsin B=2bcsin A,一般是已知哪一个角 就使用哪一个公式.
(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的 转化.
跟踪训练2
在△ABC 中,内角 A , B , C 所对的边分别是 a , b , c. 若 c2 =(a-b)2+6,C=π,则△ABC的面积是 答案 解析 3
1 π 5π 因为 sin B=2且 B∈(0,π),所以 B=6或 B= 6 .
π π 2π 又 C=6,B+C<π,所以 B=6,A=π-B-C= 3 .
a b 又 a= 3,由正弦定理得sin A=sin B,即 3 b 2π=1,解得 b=1. sin 3 2
cos A (2)(2016· 四川)在△ABC 中,角 A,B,C 所对的边分别是 a,b,c,且 a cos B sin C + b = c .
1 (3)S= r(a+b+c)(r为三角形内切圆半径). 2
知识拓展 1.三角形内角和定理 在△ABC中,A+B+C=π;
A+B π C 变形: = - . 2 2 2
2.三角形中的三角函数关系
(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;
A+B A+B C C (3)sin =cos ;(4)cos =sin . 2 2 2 2 3.三角形中的射影定理
1+cos A sin B· sin C= , 2
B.直角三角形 D.等腰直角三角形
∴2sin B· sin C=1+cos A=1-cos(B+C),∴cos(B-C)=1,
∵B、C为三角形的内角,∴B=C,
又sin2B+sin2C=sin2A,∴b2+c2=a2,
综上,△ABC为等腰直角三角形.
由余弦定理得AB2=AC2+BC2-2AC· BC· cos C, 即13=AC2+9-2AC×3×cos 120°, 化简得AC2+3AC-4=0,解得AC=1或AC=-4(舍去).故选A.
2.(教材改编)在△ABC中,A=60°,B=75°,a=10,则c等于 答案
A.5 2 B.10 2 10 6 C. 3 D.5 6
所以AB=2AC.
sin B AC 1 由正弦定理可得sin C=AB =2.
(2)若AD=1,DC= 2,求BD和AC的长. 2
解答
因为 S△ABD∶S△ADC=BD∶DC,所以 BD= 2.
在△ABD和△ADC中,由余弦定理,知 AB2=AD2+BD2-2AD· BDcos∠ADB, AC2=AD2+DC2-2AD· DCcos∠ADC. 故AB2+2AC2=3AD2+BD2+2DC2=6, 又由(1)知AB=2AC,所以解得AC=1.
4.(2016· 辽宁五校联考)设△ABC的内角A,B,C所对边的长分别为a,b, 2π c,若b+c=2a,3sin A=5sin B,则角C= 3 . 答案 解析 因为3sin A=5sin B,所以由正弦定理可得3a=5b.
3 7 因为 b+c=2a,所以 c=2a- a= a. 5 5
令a=5,b=3,c=7,
A.3
9 3 B. 2
3 3 C. 2
D.3 3
题型三 正弦定理、余弦定理的简单应用
命题点1 判断三角形的形状
c 例3 (1)在△ABC中,角A,B,C所对的边分别为a,b,c,若 <cos A, b 则△ABC为 答案 解析
相关文档
最新文档