中考数学复习知识点专题训练8---一次不等式(组)(培优版)
2024徐州中考数学二轮重点专题研究 第8课时 一次不等式与一次不等式组(课件)

2x 1 3,
解:令
x
2
3
x
8.
解不等式①得x≤2,(2分)
解不等式②得x<-3.(4分)
∴原不等式组的解集为x<-3.(5分)
2x 0,
4.解不等式组:
x
2
1
2x 3
1
.
2x 0,
解:令
x
2
1
2
x 3
1
.
解不等式①得x>0,(2分)
解不等式②得x<5,(4分)
∴原不等式组的解集为0<x<5.(5分)
1 徐州近年真题及拓展 2 考点精讲
徐州近年真题及拓展
命题点 解一元一次不等式组(10年10考)
例[2020徐州20(2)题5分]解不等式组:32xx
3
4 1
5, x
2
2
.
【答题模板】
解不等式3x-4<5,得____x_<__3______,
解不等式 2x 1 x 2 ,得___x_>__-__4_____ ,
口诀
解集
次不 等式 解集
x a
x
b
同大取大
___x_≥_a_____.
组及 解集 表示
的类 型及 表示
x a
x
b
x a
x
b
同小取小
___x_<__b____.
大小小大 取中间 ___b_≤_x_<_a___.
x a
x
b
大大小小 取不了
无解
一元一次不等式的实际应用:对于列不等式解实际应用题,所求问题中含有“至 少”(≥)、“最多”(≤)、“不 低于”(≥)、“不高于”(≤)、“不大于”(≤)、“不小于”(≥)等词, 要正确理解这些词的含义
中考数学第一轮考点系统复习第二章方程(组)与不等式(组)第8讲一元一次不等式(组)及其应用(练本)课

4、享受阅读快乐,提高生活质量。下午12时36分6秒下午12时36分12:36:0622.3.11
谢谢观独具赏方为先
匠心可成锋 Y o u m a d e m y d a y !
我们,还在路上……
场最多能购买50个甲种奖品.
(2)学校计划购买甲、乙两种奖品共100个,且此次购买奖品的费用不超过2 000元.正逢商场促销,所有商品一律八折销售,求学校在商场最多能购买 多少个甲种奖品.
解:设学校在商场购买m个甲种奖品,则购买(100-m)个乙种奖品. 根据题意,得30×0.8m+20×0.8(100-m)≤2 000, 解得m≤50. 答:学校在商场最多能购买50个甲种奖品.
解:设购进电视机x台,则购进洗衣机(100-x)台.
根据题意,得
x
1 (100 x), 2
1800x 1500(100 x) 161800,
解得 33 1 x 39 1 .
3
3
∵x为整数,
∴x可以取34,35,36,37,38,39,
∴商店共有6种进货方案.
11.学校准备为“趣味数学”比赛购买奖品.已知在商场购买3个甲种奖品和2 个乙种奖品共需130元,购买6个甲种奖品和5个乙种奖品共需280元.
3倍,购进A,B两种风扇的总金额不超过1 170元.根据以上信息,小丹共
有哪些进货方案? 解:设购进A型风扇m台,则购进B型风扇(100-m)台.
根据题意,得
m 3(100 m),
10m
16(100
m)
解得71 2
1170,
3
m 75.
∵m为正整数,∴m可以取72,73,74,75,∴小丹共有4种进货方案:
12.(2020·德州)若关于x的不等式组
中考数学一轮复习《不等式与不等式组》知识要点及专题练习

中考数学一轮复习知识点课标要求专题训练:不等式与不等式组(含答案)一、知识要点:1、定义定义1:用符号“<”或“>”表示大小关系的式子,叫做不等式。
用符号“≠”表示不等关系的式子也是不等式。
定义2:使不等式成立的未知数的值叫做不等式的解。
定义3:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。
定义4:求不等式的解集的过程叫做解不等式。
定义5:含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式。
定义6:几个不等式的解集的公共部分,叫做由他们所组成的不等式组的解集。
2、不等式的性质性质1:若a>b,则a±c>b±c。
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
性质2:若a>b,c>0,则ac>bc,ac>bc。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
性质3:若a>b,c<0,则ac<bc,ac<bc。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
对于不等式组,应先求出各不等式的解集,然后在数轴上表示,找出解集的公共部分。
3、不等式(组)与实际问题解有关不等式(组)实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
根据题意及各个量的关系设未知数。
第3步:列不等式(组)。
根据题中各个量的关系列不等式(组)。
第4步:解不等式(组),找出满足题意的解(集)。
第5步:答。
二、课标要求:1、结合具体问题,了解不等式的意义,探索不等式的基本性质。
2、能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
3、能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
三、常见考点:1、一元一次不等式及不等式组的基本概念,能根据具体问题列出不等式(组)。
2、特定式子中字母的取值范围,不等式与函数图象的结合(在后面函数复习中体现)。
3、解一元一次不等式及不等式组,并能在数轴上表示出解集。
不等式与不等式组培优专题

知识点:一、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有,叫做这个不等式的解集。
不等式组中各个不等式的叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)。
二、不等式(组)的类型及解法1、一元一次不等式:(1)概念:含有未知数并且含未知数的项的次数是的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(1)概念:含有的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的。
注:求不等式组的解集一般借助数轴求解较方便。
三、不等式与不等式的性质1、不等式:用不等号表示的式子。
(表不等关系的常用符号:手,v,〉)。
2、不等式的性质:(1) ______________________________________________。
用字母表示为:(2)。
用字母表示为:(3)。
用字母表示为:2.等腰三角形腰和底边长分别为xcm和ycm,周长小于20,则x和y必须满足的不等式组为。
3.某种商品的价格第一年上升了10%,第二年下降了(m-5)%(m〉5)后,仍不低于原价,则m的值应为。
a、b、4.已知ABC的三边,且a2-9+,碎=0,则第三边c的取值范围是।。
10.若不等式组j x)2m+1解集为x>—1,则m的值为I x>m+211.若不等式组j x—0-0有5个整数解,则a的取值范围13-2x>-1是。
j2x-1112、若不等式组J^->x-1的解集为x<2,则k的取值范围是x-k<013.若不等式j x<m+1无解,则m的取值范围[x>2m-1是。
17、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.18、中百超市和广联超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度:在中百超市累计购买500元商品后,发给中百会员卡,再购买的商品按原价的85%收费;在广联超市购买300元的商品后,发给广联会员卡,再购买的商品按原价的90%收费.讨论顾客怎样选择超市购物能获得最大优惠19、解方程I x-11+1x+21=5.由绝对值的几何意义知,该方程表示求在数轴上与1和一2的距离之和为5的点对应的x的值.在数轴上,1和一2的距离为3,满足方程的x对应点在1的右边或一2的左边,若乂对应点在1的右边,由图(17)可以看出卜牛=2;同理,若乂对应点在一2的左边,可得乂=—3,故原方程的解是船2或x=—3参考阅读材料,解答下列问题:(1)方程I x+3I=4的解为(2)解不等式I x-31+1x+4129;(3)若|x-3I-1x+4l Wa对任意的乂都成立,求a的取值范围注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
中考数学考点复习集训第8讲一元一次不等式(组)含解析

第8讲一元一次不等式(组)年份考查频次考查方向一元一次不等式的解法选择4个近三年考查得不多,只有部分地市对此进行了考查,基本上都是以单独考查的形式出现,考查得较为基础.解答2个选择2个填空1个一元一次不等式组的解法选择2个解答4个常考点考查得较多,大部分地市都有考查,考查的类型比较单一,主要是求一元一次不等式的解集或整数解.预计仍会对此知识进行考查.选择4个解答1个选择2个填空2个解答3个一元一次不等式的应用解答5个考查得不多,基本上都是与一次方程(组)、函数结合考查,题型以解答题为主,预计对此考查的可能性不大.解答4个解答2个不等式的概念及性质不等式的有关概念用不等号连接起来的式子叫做不等式,使不等式成立的未知数的取值范围叫做不等式的解集.不等式的基本性质性质1 若a<b,则a±c<b±c.性质2 若a<b且c>0,则ac①__bc(或ac②__bc).性质3 若a<b且c<0,则ac③__bc(或ac④____bc).【易错提示】不等式的两边乘(或除以)同一负数时,不等号的方向一定要改变.一元一次不等式(组)的解法一元一次不等式的解法(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.不等式组的解法一般先分别求出不等式组中各个不等式的解集,并表示在数轴上,再求出他们的公共部分,就得到不等式组的解集.不等式组的解集情况(假设b<a)错误!x>a 同大取大错误!x≤b 同小取小错误!b≤x<a 大小小大中间找错误!无解大大小小无处找不等式的应用列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:(1)审清题意;(2)设未知数;(3)列不等式;(4)解不等式;(5)⑤____作答.1.已知不等式(组)的解集确定不等式(组)中字母的取值范围有以下四种方法:(1)利用不等式(组)解集确定;(2)分类讨论确定;(3)从反面求解确定;(4)借助数轴确定.2.列不等式(组)解应用题应紧紧抓住“至多”、“至少”、“不大于”、“不小于”、“不超过”、“大于”、“小于”等关键词列出不等量关系式,进而求解.(·贵港模拟)解不等式:2x-13-9x+26≤1,并求出其负整数解.【思路点拨】通过观察发现,先去分母、去括号,再移项、合并同类项,系数化为1即可.【解答】一元一次不等式的解法步骤一般是:去分母、去括号、移项、合并同类项、系数化为1.值得注意的是:系数化为1时,如果两边同时乘以或除以的数为负数时,不等号的方向一定要改变.1.(·桂林)下列数值中不是不等式5x≥2x+9的解的是( )A.5 B.4C.3 D.22.(·梧州)不等式x-2>1的解集是( )A.x>1 B.x>2C.x>3 D.x>43.(·南宁)不等式2x-3<1的解集在数轴上表示为( )4.(·桂林)解不等式4x -3>x +6,并把解集在数轴上表示出来.(·玉林)解不等式组:⎩⎪⎨⎪⎧x -1≥0,①x -1<3x4,②并把解集在数轴上表示出来.【思路点拨】 先分别求出每个不等式的解集,再求出公共解集,并在数轴上表示出来. 【解答】求不等式组的解集时,先分别求出各个不等式的解集,然后再按口诀“大大取较大,小小取较小,大小小大中间找,大大小小解不了(无解)”或者通过数轴来求公共解,但是用口诀速度快些;用数轴表示不等式的解集时要注意包含界点需用实心的小圆圈,不包含界点需用空心的小圆圈.在数轴上表示不等式组的解集时,该用实心圆圈时易忽略.1.(·河池)不等式组⎩⎪⎨⎪⎧2x +1≤5,x +2>1的解集是( )A .-1<x<2B .1<x≤2C .-1<x≤2D .-1<x≤32.(·钦州)不等式组⎩⎪⎨⎪⎧3x≥9,x <5的整数解共有( )A .1个B .2个C .3个D .4个3.(·贵港)解不等式组⎩⎪⎨⎪⎧5x<1+4x ,①1-x 2≤x +43,②并在数轴上表示不等式组的解集.(·玉林)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?【思路点拨】(1)根据题意求出今年将报废电动车的数量,进而根据明年电动车数量列出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.【解答】此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数量是解题关键.1.(·来宾)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干把椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少把时,到乙厂家购买更划算?2.(·贺州)某商场销售一批同型号的彩电,第一个月售出50台.为了减少库存,第二个月每台降价500元将这批彩电全部售出,已知第一个月9台的销售额与第二个月10台的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?1.(·南宁模拟)已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A .a +c <b +cB .a -c >b -cC .ac <bcD .ac >bc2.(·崇左)不等式5x≤-10的解集在数轴上表示为( )3.(·来宾)不等式组⎩⎪⎨⎪⎧x +4>3,2x ≤4的解集是( )A .1<x ≤2B .-1<x≤2C .x>-1D .-1<x≤4 4.(·贺州)不等式⎩⎪⎨⎪⎧x +1>0,1-13x >0的解集在数轴上表示正确的是( )5.(·南通)关于x 的方程mx -1=2x 的解为正实数,则m 的取值范围是( )A .m ≥2B .m ≤2C .m >2D .m <26.(·柳州)如图:身高为x cm 的1号同学和身高为y cm 的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x________y .(用“>”或“<”填空) 7.(·绍兴)解不等式:3x -5≤2(x+2).8.(·东营)解不等式组:⎩⎪⎨⎪⎧x +23<1,①2(1-x )≤5,②把解集在数轴上表示出来,并将解集中的整数解写出来.9.(·柳州模拟)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?10.(·来宾)已知购买一个足球和一个篮球共需130元,购买2个足球和一个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4 000元,问最多可买多少个篮球?11.(·南宁改编)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元;(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和80万人次.若该公司要确保这10辆公交车在该线路的年均载客量总和不少于680万人次,且每种车型不少于3辆,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?参考答案考点解读①<②<③>④>⑤检验各个击破例1去分母,得2(2x-1)-(9x+2)≤6.去括号,得 4x-2-9x-2≤6.移项,得 4x-9x≤6+2+2.合并同类项,得-5x≤10.把x的系数化为1,得x≥-2.所以不等式的负整数解为-1,-2.题组训练1.D2.C3.D4.4x-x>6+3,3x>9,x>3.解集在数轴上表示出来为:例2解不等式①,得x≥1.解不等式②,得 x<4.∴原不等式组的解集是1≤x<4.在数轴上表示如图所示.题组训练1.C2.B3.由①得x<1.由②得x≥-1.∴不等式组的解集为-1≤x<1.把解集表示在数轴上为:例3 (1)设从今年年初起每年新增电动车数量是x 万辆,由题意可得: 今年将报废电动车:10×10%=1(万辆), ∴[(10-1)+x](1-10%)+x≤11.9. 解得 x≤2.答:从今年年初起每年新增电动车数量最多是2万辆.(2)∵今年年底电动车拥有量为(10-1)+x =11(万辆),明年年底电动车拥有量为11.9万辆,∴设今年年底到明年年底电动车拥有量的年增长率是y ,则 11(1+y)=11.9.解得 y≈0.082=8.2%.答:今年年底到明年年底电动车拥有量的年增长率是8.2%. 题组训练1.(1)甲厂家所需金额为3×800+80(x -9)=1 680+80x ; 乙厂家所需金额为(3×800+80x)×0.8=1 920+64x. (2)由题意,得1 680+80x >1 920+64x ,解得 x >15.答:购买的椅子至少16把时,到乙厂家购买更划算.2.(1)设第一个月每台彩电的售价为x 元,则第二个月每台彩电的售价为(x -500)元.由题意得: 9x =10(x -500). 解得 x =5 000.答:第一个月每台彩电的销售价格为5 000元. (2)设这批彩电有y 台,由题意得:5 000×50+(5 000-500)(y -50)>400 000. 解得 y>8313.∵y 为整数, ∴y ≥84.答:这批彩电最少有84台. 整合集训1.B 2.C 3.B 4.A 5.C 6.< 7.去括号,得3x -5≤2x+4. 移项、合并同类项,得x≤9. 8.解不等式①,得x<1. 解不等式②, 得x≥-32.∴不等式组的解集为-32≤x<1.不等式组的解集在数轴上表示如下:不等式组的解集中的整数解为-1,0. 9.设小明答对x 道题,由题意得10x -5(20-x)>90.解得 x >1223.∵x 取整数, ∴x 最小值为13.答:他至少要答对13道题.10.(1)设每个足球的售价为x 元,每个篮球的售价为y 元,根据题意,得⎩⎪⎨⎪⎧x +y =130,2x +y =180,解得⎩⎪⎨⎪⎧x =50,y =80.答:每个足球和每个篮球的售价分别为50元、80元.(2)设可购买z 个篮球,根据题意,得 50(54-z)+80z≤4 000.解得 z≤4313.∵z 取整数, ∴z 最大值为43.答:最多可买43个篮球.11.(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,依题意列方程,得⎩⎪⎨⎪⎧x +2y =400,2x +y =350.解得⎩⎪⎨⎪⎧x =100,y =150. 答:购买A 型和B 型公交车每辆各需100万元、150万元.(2)设购买y 辆A 型公交车,则购买(10-y)辆B 型公交车,依题意,得 60y +80(10-y)≥680. 解得 y≤6, 因为每种车型不少于3辆,所以3≤y≤6.有四种方案:①购买A 型公交车6辆,B 型公交车4辆;②购买A 型公交车5辆,B 型公交车5辆;③购买A 型公交车4辆,B 型公交车6辆;④购买A 型公交车3辆,B 型公交车7辆.因A 型公交车较便宜,故购买A 型车数量最多时,总费用最少,即第一种购车方案总费用最少,最少费用为6×100+150×4=1 200(万元).答:该公司有四种购车方案,第一种购车方案的总费用最少,最少总费用是1 200万元.。
中考数学《一次不等式(组)的应用》知识点及练习题

一次不等式(组)的应用一.精讲点拨例1. 在一次“人与自然”知识竞赛中,竞赛试题共有25道选择题,每道题都给出四个答案,其中只有一个答案是对的。
选对一道得4分,选错或不选倒扣2分,竞赛规定成绩不低于82分可参加复赛,小颖要参加复赛,她至少要答对几道例2. 工人赵新5月份计划生产零件198个,前16天每天平均生产6个,后来改进技术,提前3天并超额完成任务,问赵新16天后平均每天至少生产多少个零件?例3. 为了加强学生的交通安全意识,某中学和交警大队联合举行了一次“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交警维持交通秩序。
若每个路口安排4人,则还剩下78人,若每个路口安排8人,则最后一个路口不足8人但不少于4人,求这个中学选派了多少学生值勤,交通路口有多少个?例4. 某工厂现有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B 两种产品共50件,已知生产一件A种产品需甲种原料9kg,乙种原料3kg,生产一件B 种产品需甲种原料4kg,乙种原料10kg,(1)设生产x件A种产品,写出x应满足的不等式;(2)如果x是整数,有哪几种符合题意的生产方案,请你帮助设计出来二.课后作业1.有一个两位数,它的十位数字比个位数字大1,并且这个两位数大于30而小于42,求这个两位数。
2.在一次“人与自然”知识竞赛中,竞赛试题共有25道选择题,每道题都给出四个答案,其中只有一个答案是对的。
选对一道得4分,选错或不选倒扣2分,竞赛规定成绩不低于82分可参加复赛,小颖要参加复赛,她至少要答对几道3.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则还剩20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空,问有多少辆汽车?4.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,(1)设生产L型号的童装x套, 写出x应满足的不等式;(2) 如果x是整数,有哪几种符合题意的生产方案,请你帮助设计出来。
中考数学复习专题8:一次不等式(组)1(共32张PPT)

中等
考点
课标要求
不等式(组) 1.能根据具体问题中的数量关系,列出 的实际应用 一元一次不等式,解决简单的问题.
难度
稍难
题型预测
不等式(组)的解法及其应用是中考考查的重点, 除了不等式组(的)应用可能出现在解答题位置外,其余 知识点都常以填空、选择的形式出现.
1.不等式:用___不__等__号__表__示__不__等__关__系____的式子. 2.不等式的解集:一个含有未知数的不等式的
由;
(3)设生产这批40件产品共可获利润y元,将y表kg) 乙(kg) 件数(件)
A
5x
x
B 4(40-x)
40-x
D
【解题思路】先解不等组中的两个不等式,并把解集在数轴上表示出来,
结合数轴求出不等组的解集.
【思维模式】 1.利用不等式的性质,我们可以把一个较复杂的一元一次不等式逐步转化 为x>a(x≥a)或x<a(x≤a),这个过程叫做解一元一次不等式. (1)去分母(根据不等式基本性质2或3); (2)去括号(整式运算法则); (3)移项(根据不等式基本性质1); (4)合并同类项(根据合并同类项法则); (5)系数化为1(根据不等式性质2或3) 2.求不等式组的解集,可将组成这个不等式组的每个不等式的解集分别表 示在数轴上,然后寻找出这几个不等式解集的公共部分,这个公共部分就是不 等式组的解集
考点
课标要求
难度
不等式基 1.了解不等式的意义;
本性质及 2.探索不等式的基本性质; 其解的概 3.理解一元一次不等式(组)及其解的
易
念 有关概念.
1.熟练解一元一次不等式及一元一次不 一元一次 等式组; 不等式 2.会求某些一元一次不等式及一元一次 (组)的 不等式组的特殊解(如正整数解);
一元一次不等式(组)(初中数学中考题汇总8)

● 选择题(每小题x 分,共y 分)5.(2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35 (2011•黑龙江省龙东地区)19、把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
则共有学生 ( )A 、4人B 、5人C 、6人D 、5人或6人 (2011•湖北省宜昌市)5.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( ).(A)a <b (B)a =b (C)a >b (D)ab >0(2011•深圳市)9、已知a 、b 、c 均为实数,且a>b ,c ≠0,下列结论不一定正确的是D(2011•威海市)11.如果不等式组()2131x x x m--⎧⎪⎨⎪⎩><的解集是2x <,那么m 的取值范围是 D A .m =2B .m >2C .m <2D .m ≥2(2011•苏州市)6.不等式组30,32x x -≥⎧⎪⎨<⎪⎩的所有整数解之和是BA .9B .12C .13D .15〔2011•日照市〕6.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是A(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =7 ● 二、填空题(每小题x 分,共y 分)(2011•襄阳市)15.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对—题记10分.答错(或不答)一题记 一5分.小明参加本次竞赛得分要超过100分.他至少要答对______14_________道题.(2011•眉山市)18.关于x 的不等式30x a -≤,只有两个正整数解.则a 的取值范围是__6≤a<9_____(2011•黄冈市)7.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为__ a <4____.(2011•鸡西市)18.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 2 种购买方案.(第5题)ba三、解答题:(共x 分)1.(2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米.⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x 14 B 14 总计 15 13 28 ⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案? (3)在(2)条件下,哪种方案获利最大?并求最大利润.3(2011•莆田) 某高科技公司根据市场需求,计划生产A 、B 两种型号的医疗器械,其部分信息如下:信息一:A 、B 两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.信息三:A 、B 两种医疗器械的生产成本和售价如下表:根据上述信息.解答下列问题:调入地 水量/万吨调出地(1)(6分)该公司对此两种医疗器械有哪-几种生产方案?哪种生产方案能获得最大利润? (2)(4分)根据市场调查,-每台A 型医疗器械的售价将会提高a 万元(0a >). 每台A 型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润? (注:利润=售价-成本)26、(2011•毕节地区)小明到一家批发兼零售的文具店给九年级学生购买考试用2B 铅笔,请根据下列情景解决问题.(1)这个学校九年级学生总数在什么范围内?(2)若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?(2011•黄石市)23.(本小题满分8分)今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数学教师编制了一道应用题: 为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1(2)记该用户六月份用水量为x 吨,缴纳水费为y 元,试列出y 与x 的函数式; (3)若该用户六月份用水量为40吨,缴纳水费y 元的取值范围为7090y ≤≤,试求m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习知识点专题训练 第四节 一次不等式(组)
姓名:________ 班级:________ 用时:______分钟
1.(2019·广安)若m >n ,下列不等式不一定成立的是( ) A .m +3>n +3 B .-3m<-3n C.m 3>n 3
D .m 2>n 2
2.(2019·临沂)不等式1-2x≥0的解集是( ) A .x≥2
B .x≥1
2
C .x≤2
D .x≤12
3.(2019·宿迁)不等式x -1≤2的非负整数解有( ) A .1个
B .2个
C .3个
D .4个
4.(2019·石家庄长安区一模)关于x 的不等式组⎩⎨⎧-2x<4
3x -5<1的所有整数解是( )
A .0,1
B .-1,0,1
C .0,1,2
D .-2,-1,0,1,2
5.(2019·天门)不等式组⎩
⎨⎧x -1>0
5-2x≥1的解集在数轴上表示正确的是( )
6.(2019·常德)不等式3x +1>2(x +4)的解集为________.
7.(2019·廊坊广阳区一模改编)关于x
的不等式组⎩⎨⎧2x<3(x -3)+1
3x +24
>x +a
只有三个整数
解,则a 的取值范围是________ . 8.(2019·攀枝花)解不等式
x -25-x +4
2
>-3,并把它的解集在数轴上表示出来.
9.(2019·扬州)解不等式组:⎩⎨⎧4(x +1)≤7x+13
x -4<x -8
3
,并写出它的所有负整数解.
10.(2019·桂林)为响应国家“足球进校园”的号召,某校购买了50个A 类足球和25个B 类足球共花费7 500元,已知购买一个B 类足球比购买一个A 类足球多花30元. (1)求购买一个A 类足球和一个B 类足球各需多少元?
(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4 800元的经费再次购买A 类足球和B 类足球共50个,若单价不变,则本次至少可
以购买多少个A 类足球?
11.(2019·玉林)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产量分别是2.5万千克和3.6万千克,现假定该养殖场蛋鸡产蛋量的月增长率相同. (1)求该养殖场蛋鸡产蛋量的月平均增长率;
(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万千克,如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点.
1.(2019·聊城)若不等式组⎩⎨⎧x +13<x 2-1x<4m
无解,则m 的取值范围是( )
A.m≤2 B.m<2 C.m≥2 D.m>2
2.(2019·唐山路北区二模)如图所示是测量一物体体积的过程:
步骤一:将180 mL的水装进一个容量为300 mL的杯子;
步骤二:将三个相同的玻璃球放入水中,结果水没有满;
步骤三:同样的玻璃球再加入一个放入水中,结果水满溢出.
根据以上过程,推测一颗玻璃球的体积在下列哪一范围内.(1 mL=1cm3) ( )
A.10 cm3以上,20 cm3以下
B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下
D.40 cm3以上,50 cm3以下
3.(2018·娄底) “绿水青山就是金山银山”,某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台(A、B都购买),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.
(1)请你为该景区设计购买A、B两种设备的方案;
(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?
4.(2018·保定一模)下面是售货员与小明的对话:
根据对话内容解答下列问题:
(1)A、B两种文具的单价各是多少元?
(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案?
参考答案
基础训练
1.D 2.D 3.D 4.B 5.C 6.x>7 7.-52≤a<-94
8.解:去分母,得2(x -2)-5(x +4)>-30, 去括号得2x -4-5x -20>-30, 移项、合并同类项,得-3x>-6, 系数化为1,得x <2,
将不等式的解集表示在数轴上如解图:
9.解:解不等式4(x +1)≤7x +13,得:x ≥-3, 解不等式x -4<
x -8
3
,得:x <2, 则不等式组的解集为-3≤x <2,
所以不等式组的所有负整数解为-3、-2、-1.
10.解:(1)设购买一个A 类足球需要x 元,购买一个B 类足球需要y 元, 依题意,得⎩⎨⎧50x +25y =7 500y -x =30,解得⎩
⎨⎧x =90,
y =120.
答:购买一个A 类足球需要90元,购买一个B 类足球需要120元. (2)设购买m 个A 类足球,则购买(50-m)个B 类足球, 依题意,得90m +120(50-m)≤4 800, 解得:m ≥40.
答:本次至少可以购买40个A 类足球.
11.解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x,
根据题意得2.5(1+x)2=3.6,解得x
1=0.2,x
2
=-2.2,
∵增长率为正数,∴x=0.2,
答:该养殖场蛋鸡产蛋量的月平均增长率为20%.
(2)设需要再增加y个销售点,
根据题意得(
3.6
0.32
+y)×0.32≥3.6×(1+0.2),
解得y≥9 4,
∵y为整数,∴y的最小值为3,
∴该养殖场在五月份已有的销售点的基础上至少需要再增加3个销售点.拔高训练
1.A 2.C
3.解:(1)设购买A种设备x台,则购买B种设备(10-x)台,
根据题意,得12x+15(10-x)≥140,解得x≤31 2,
∵x为正整数,∴x=1,2,3.
∴该景区有三种购买方案:
方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;
(2)各方案购买费用分别为:
方案一:3×1+4.4×9=42.6>40,
实际付款:42.6×0.9=38.34(万元);
方案二:3×2+4.4×8=41.2>40,
实际付款:41.2×0.9=37.08(万元);
方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,
∴采用(1)设计的第二种方案,使购买费用最少.
4.解:(1)设A种文具的单价为x元,则B种文具的单价为(25-x)元,根据题意得80 x
=
120
25-x
,解得x=10,
经检验,x=10是原分式方程的解,且符合实际,
25-x=15,
∴A、B两种文具的单价分别为10元和15元.
(2)设购买A种文具m件,则购买B种文具(20-m)件,
∵A种文具的数量少于B种文具的数量,
∴m<20-m,即m<10,
∵购买的总费用不超过260元,∴10m+15(20-m)≤260,解得m≥8,∴8≤m<10.
∵m为整数,∴m为8,9,∴共有两种购买方案.。