线性代数第一次作业
线性代数习题及解答完整版

线性代数习题及解答完整版线性代数习题及解答HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=() A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =() A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是()A .??A B 可逆,且其逆为-1-1A B B .??A B 不可逆 C .??A B 可逆,且其逆为-1-1?? ???B AD .??A B 可逆,且其逆为-1-1??A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是()A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=() A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是()A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是()A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为() A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是()A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是() A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
线性代数第一章习题参考答案

解:4234231142342311)1342(4432231144322311)1324()1()1(a a a a a a a a a a a a a a a a =--=-ττ4.计算abcdef abcdef abcdef abcdef efcf bfde cd bdae ac ab r r r r c c c r f r d r a c ec c c b 420020111111111111111111111)1(12133213213211,1,11,1,1-=--=--=---=-----++5.求解下列方程10132301311113230121111112121)1(12322+-++-++=+-++-+=+-+-+++x x x x x x x x x x x x c c r r 1132104201)3(113210111)3(21+-+--++=+-+-++=-x x x x x x x x x r r 3,3,30)3)(3(11421)3(3212-==-==-+=+---++=x x x x x x x x x 得二列展开cx b x a x b c a c a b x c x b x a c b a x c b a x c b a x ====------=32133332222,,0))()()()()((1111)2(得四阶范得蒙行列式6.证明322)(11122)1(b a b b a a b ab a -=+右左证明三行展开先后=-=-=-----=----=+=+--323322222)(11)()()()1(100211122)1(:2132b a b a b a ba ba b a b b a a b b a b a b b ab ab a b b a ab ab ac c c c1432222222222222222222222222(1)(2)(3)(1)2369(1)(2)(3)(1)2369(3))(1)(2)(3)(1)2369(1)(2)(3)(1)2369c c c ca a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d --++++++++++++==++++++++++++二三列成比例))()()()()()((1111)4(44442222d c b a d c d b c b d a c a b a d c b a dcbad c b a D +++------==44444333332222211111)(x d c b a xdcbax d c b a x d c b a x f 五阶范得蒙行列式解考虑函数=(5)))()()()()()(())()()()()()(()()())()()()()()()()()((454545453453d c d b c b d a c a b a d c b a A M D d c d b c b d a c a b a d c b a A ,A x x f ,Mx x f D a b b c a b c d b d a d d x c x b x a x ------+++-==------+++-=----------=于是的系数是中而对应的余子式中是(5)n n a a a a a xx x x 12101000000000100001----解:nn n n n n n n n n nn x a x a a x a x a a a a a a a xx x x D +++=-++--+--=---=+++-++++-10)1()1(1211110121)1()1()1()1()1(1000000000100001按最后一行展开7、设n 阶行列式)det(ij a D =把D 的上下翻转、或逆时针旋转090、或依副对角线翻转、依次得111131111211111,,a a a a D a a a a D a a a a D n n nn n nn n nnnn=== 证明D D D D D n n =-==-32)1(21,)1(证明:将D 上下翻转,相当于将对D 的行进行)1(21-n n 相邻对换得1D ,故D D n nn 2)1(1)1(--=将D 逆时针旋转090相当于将T D 上下翻转,故D n n D n n D T 2)1(2)1(2-=-=D 依副对角线翻转相当于将D 逆时针旋转090变为2D , 然后再2D 左右翻转变为3D ,故D D D D n n n n n n =--=-=---2)1(2)1(22)1(3)1()1()1(8、计算下列行列式(k D 为k 阶行列式)(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0;解:)1()1(0100)1(1122211111-=-+=-+==--++-+a a a a a aa a a D n n n n n n n n n n 列展开按行展开按(2)x a a a x a a a x D n=解:xaa x a a a n x x a aa x a a a x D nc c c n111])1([21-+==+++12)]()1([0001])1([1--≥--+=---+=n r r k a x a n x ax a x a a a n x k(3)111111)()1()1()()1()1(11111n a n a a a n a n a a a n a n a a a D n n n n n nnm n -+---+---+--=----+解:11111(1)(1)22111111(1)(1)()(1)(1)()111111111111()()()((1)(1)()(1)(1)()n nnn n n n n n n n n n n j i n n n n mnnna a a n a n a a a n a n D a a a n a n a a a n a n j i a a a n a n a a a n a n ----++++≥>≥------+---+-=--+---+-=-=--=--+---+-∏上下翻11)n j i i j +≥>≥-∏(4)n n nnn d c d c b a b a D11112=(未写出的均为0)解:)1(2)1(211112)(02232--↔↔-===n n n n n n n nnn r r c c nnnnn D c b d a D d c b a d c d c b a b a D mn得递推公式)1(22)(--=n n n n n n D c b d a D ,而11112c b d a D -=递归得∏=-=ni i i i i n c b d a D 12)((5)det(),||n ij ij D a a i j ==-解111,2,,1120121111110121111210311111230123010001200(1)(1)211201231i i j r r n i n c c n n n n D n n n n n n n n n n n n +-=-+-------==-------------==---------解:11211*222,3,,1111111(6)1111111111101111000111100:01111i n nr r n i n nna a D a a a a a D D a a -=+++=++-+-===+-解111211121,2,,12111(1)1110001(1)0000i inc c na n i ni ina a a a a a a a a a ++==++++==+∑9.设3351110232152113-----=D ,D 的),(j i 元的代数余子式为ij A ,求44333231223A A A A +-+解:24335122313215211322344333231=-----=+-+A A A A。
线性代数习题集第一章

线性代数习题集第⼀章第⼀章:⾏列式I.单项选择题 1.排列1,3,,(2n 1),2,4,,(2n)-的逆序数为()(1) n 1- (2) (n 1)n - (3) (n 1)n + (4) (n 1)/2n - 2.排列1,3,,(21),(2),(22),,2n n n --的逆序数为()(1) n (2) (n 1)n - (3) (n 1)n + (4) (n 1)/2n - 3.四阶⾏列式中含有因⼦1123a a 的项是()(1) 11233442a a a a (2) 11233344a a a a (3)11233342a a a a (4) 11233442a a a a -4.⾏列式abac aebdcd de bfcfef---的值是() (1) 2abcdef (2) 4abcdef (3) 6abcdef (4) 8abcdef 5. 设A 为n 阶⽅阵,λ为数,则A λ等于() (1) A λ (2) A λ (3) n A λ (4) 2A λ6.设ab cD de f g hi=,则元素h 的代数余⼦式为() (1)a c gi(2) a cdf -(3) a c g i - (4)a c df7.设⾏列式000000a bcD d e f g h i j=,则D 的值等于() (1) abdg - (2) abdg (3) abdg ceh fi j -+- (4) abdg ceh fi j ++- 8.设A 为n 阶矩阵,则()(1) A A -= (2) A A -=- (3) (1)n A A -=- (4) 1A A --=9.设A 为n 阶矩阵,且A 的⾏列式0A a =≠,⽽A *是A 的伴随矩阵,则A *等于()(1) a (2) 1/a (3) n a (4) 1n a -10.若12312,,,,αααββ都是四维列向量,且1231m αααβ=,1223n ααβα=四阶⾏列式,则32112()αααββ+四阶⾏列式等于() (1) n m - (2) m n - (3) m n + (4) ()m n -+11.设44? 矩阵[]234,,,A αγγγ= ,[]234,,,B βγγγ=,其中234,,,,αβγγγ均为4维列向量,且已知⾏列式1,1A B ==,则⾏列式A B +等于() (1)5 (2)10 (3)30 (4)4012.设设A 为m 阶⽅阵,设B 为n 阶⽅阵,且,A a B b ==,00AC B =,则C 等于()(1) ab (2) ab - (3) (1)nm - (4) (1)nm ab -13.设⾏列式D aba b b a b a a b ab+=++,则D 的值为()(1) 332()a b -+ (2) 332()a b + (3) 332()a b - (4) 33()a b -+ 14.元素是0和1的三阶⾏列式D 之值只能是() (1) 3 (2) 3- (3) 4 (4) 0,1,2±± II.填空题1.n 阶⾏列式的完全展开式,应由________项组成,每项位于⾏列式中________的n 个元素的乘机,⽽且项1212n j j nj a a a 的符号为_____.2. n 阶⾏列式1111nn nna a A a a =,则按第i ⾏的展开式为__________;按第j ⾏展开式为__________.3.当A 可逆是1A -=____________.4.设A 是⼀个n 阶⽅阵,k 是⼀个有理数,则kA =________,5.在⾏列式2121113211x x x x j j x-的展开式中,3x 的系数为________,4x 的系数为_________.6.三⾓⾏列式110nn nna a a =_________ 7.⾏列式2111131111411115A ==__________ 8.⾏列式11101210011000000111002A --==--__________ III.判断题1.交换⾏列式中任意两⾏的位置,⾏列式的值不变。
线性代数练习册第一章部分答案(本)

1 .AAT E; 3 . A2 E 2. AT A
AAT E A1 AT ; A2 E A1 A AT A1 A
或 或
AAT E AAAT AE AT A
AAT E, A2 E A( AT A) 0, A可逆 A1 A( AT A) A1 0 AT A
2 −3 1 r2 − 2 r1 0 0 1 3 0 2r2 0 −1 −3 r − 2r 0 4 1
2 0 0
−3 1 10
2 −3 1 r1 + 3r2 0 1 0 1 3 0 r1 0 0 0 0 2 −4 −4 −2 −2 3 5 3 4 3 1 0 −1 −4 3 −4 1 −2 0 −2 −1
而 B11 所以,
(1)11 0 1 0 1 0 , 11 211 0 2 0 2 0
11
1 4 1 0 1 1 4 A11 PB11 P 1 11 1 1 0 2 3 1 1 4 213 1 1 213 1 4 1 1 213 3 1 211 1 1 3 1 211 4 211 2731 2732 683 684
1 0 0
0 5 1 3 0 0
1 (2)B = 3 2 3 解:
−1 −3 −2 −3
3 5 3 4 −1 −3 −2 −3
1 B= 3 2 3 r2 − 3r1 r3 − 2r1 r4 − 3r1
1 0 0 0
3 −1 3 − 4 −8 0 −4 8 0 −3 6 −6 0 −5 10 −10 3 1 0 0 0 1 0 0 −4 −2 0 0 2 −2 0 0 3 2 0 0 −3 2 0 0
线性代数作业及参考答案

第一章 矩阵作业答案班级: 姓名: 学号 : 得分:一、选择题 (每小题5分,共20分)1. 设A 为任意n 阶矩阵,下列4项中( B )是反对称矩阵。
(A )T A A + (B )T A A - (C )T AA (D )A A T2.设n 阶矩阵A ,B 是可交换的,即BA AB =,则不正确的结论是( D )。
(A )当A ,B 是对称矩阵时,AB 是对称矩阵 (B )2222)(B AB A B A ++=+ (C )22))((B A B A B A -=-+(D )当A ,B 是反对称矩阵时,AB 是反对称矩阵3.设n 阶矩阵A ,B 和C 满足E ABAC =,则( A)。
(A )E C A B A T T T T = (B )E C A B A =2222 (C )E C BA =2 (D )E B CA =24. 设÷øöçèæ=21,0,0,21a ,a a T E A -=,a a T E B 2+=,则AB =( B )(A) a a TE + (B) E (C) E - (D) 0二、计算与证明题 (每小题20分,共80分)1.已知úûùêëé--=1121A ,试求与A 可交换的所有二阶矩阵X得分得分2. 已知úúúûùêêêëé=010101001A , (1)证明:E A A A n nn -+=³-223时,(2)求100A.3. 已知矩阵,,试作初等变换把A 化成B ,并用初等矩阵表示从A 到B 的变换.BQ AQ Q Q B a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a A c c c c =úúúûùêêêëé=úúúûùêêêëé==úúúûùêêêëé+++¾¾®¾úúúûùêêêëé+++¾¾®¾úúúûùêêêëé=«+21213133323321232223111312133333323123232221131312113332312322211312110010101001100100013123所以,设解:4.已知矩阵,试作初等行变换,把分块矩阵化成,其中E 是单位矩阵,B 是当左块A 化成E 时,右块E 所变成的矩阵;并计算矩阵的乘积AB 与BA .úúúûùêêêëé----¾¾¾®¾úúúûùêêêëé+-+-101110012430001321100431010212001321312112r r r r )()(解:úúúûùêêêëé----¾¾¾®¾úúúûùêêêëé---¾¾®¾úúúûùêêêëé----¾¾®¾+-+-+--+«3151004160101120013151001011100013210124301011100013211213233321223113r r r r rr r r r r r )()()()(úúúûùêêêëé==úúúûùêêêëé----=100010001315416112BA AB B 则第二章 行列式与矩阵求逆作业答案班级: 姓名: 学号 : 得分:一.计算下列行列式:(每题10分,共30分)1. 已知4阶行列式44332211400000a b a b b a b a D =, 求4D 的值. 解:得分2. 计算n 阶行列式111111111111nn n n D n ----=3. 计算5阶行列式242322214321500032100111011110x x x x x x x x D =二.计算题:(每题15分,共60分)1. 已知3阶行列式2101123z y x D =,且,1,0322213331311-=++=+-M M M M M M2132131=+-M M M其中的值的余之式,求中元素是33D a D M ij ij .得分2. 求4阶行列式22350070222204034--=D 中第4行各元素余之式之和.3. 设úúúúûùêêêêëé=5400320000430021A , 则求1-A .4. 若úúúúûùêêêêëé=121106223211043a A 可逆,则求a 的值.三.(10分)问m l 、取何值时,齐次方程组ïîïíì=+m +=+m +=++l 0200321321321x x x x x x x x x有非零解?零解。
线性代数(主观题)

10
25.
参考答案:
11
8
1 7.
_________________。
参考答案:( 1 2 3 4 ) T +k ( 2 0 −2 −4 ) T 。因为 R( A )=3 ,原方程组的 导出组的基础解系中只含有一个解向量,取为η 2 + η 3 −2 η 1 ,由原方程 组的通解可表为导出组的通解与其一个特解之和即得。
1 8.
极大线性无关组是_________________。
参考答案:
相关(因为向量个数大于向量维数)。α 因为α 3 =2 α 1 + α 2 ,A=| α 1 α 2
1,α 2,α 4。
α 4 | ≠0 。
19.
参考答案:r=n 时,此方程组只有零解。
时,此方程组只有零解。
20.
参考答案:(2n+1)!!
2
参考答案:
25. 已知 3 阶方阵 A 可逆且
参考答案:
求 A 的伴随矩阵的逆矩阵.
2
6.
参考答案:
3
2 7.
参考答案:
4
线性代数 第二次作业
三、主观题(共 12 道小题)
15. 设 α 1 =( 6 −2 0 4 ) , α 2 =( −3 1 5 7 ) ,则 3 α 1 −2 α 2 =
时方程组有唯一解。 参考答案:当 a=−2 时方程组无解,当 a=1 时方程组有无穷多个解,当 a≠1,−2 时 方程组有唯一解。
19.
参考答案:24
20.
参考答案:t=6
21.
参考答案:
9
22.
参考答案:
23.
参考答案:
24.
华东理工大学线性代数第一册答案

we 华东理工大学线性代数 作业簿(第一册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________1.1 矩阵的概念1. 矩阵[]232ij A a i j ⨯⎡⎤==-=⎣⎦_____________________.解:101321A -⎡⎤=⎢⎥⎣⎦. 2.设1000100300520100230030040010041003A B C D ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,,,,其中对角阵为_________,三角阵有____________.解:对角阵为D ;三角阵有A ,C ,D .1.2矩阵的运算1. 已知31121123202311X O ---⎡⎤⎡⎤-+=⎢⎥⎢⎥-⎣⎦⎣⎦,求矩阵X . 解:依题意,由622211*************X ----⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 即得4113115333X ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦.2. 如果矩阵m n A ⨯与t s B ⨯满足AB BA =,试求,,,m n t s 之间的关系. 解:m n t s ===.3. 填空:(1) 431712325701⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦__________; (2) []112323,,__________⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦; (3) []12123,__________⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦; (4) 13121400121134131402__________⎡⎤⎢⎥-⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦⎢⎥-⎣⎦. 解: (1) 35649⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(2) 14;(3)122436-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦;(4) 6782056-⎡⎤⎢⎥--⎣⎦.4. 已知矩阵010001000A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试求与A 可交换的所有矩阵. 解:由可交换矩阵的定义,知道所求矩阵必为3阶方阵,不妨设其为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i hgf e dc baB ,于是有 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i hg f ed c b aAB 000100010=000def g h i ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=h g e d b a i h gf e dc b a BA 000000100010, 由BA AB =,即得=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00i h gf ed⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡h g e d b a 000, 由相应元素相等,则得,,,0f b i e a h g d ======故c b a a b a c b a B ,,(000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=均为任意常数)为与A 可交换的所有矩阵.5. 计算下列各题:(1) []111213112321222323132333,,a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; 解:原式等于:222111222333122112133113233223()()()a x a x a x a a x x a a x x a a x x ++++++++(2) 13223122A ⎡⎤-⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,求2008A ; 解:记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21232321A ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=212323212A , 31001A I -⎡⎤==-⎢⎥-⎣⎦,200836691=⨯+ 20082007131313222222313131222222⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦66913223122I A ⎡⎤-⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎣⎦(). (3) 21121,,233A ⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,求9A . 解:89822132211112212122562123233333312,,,,A A ⎡⎤⎢⎥⎧⎫⎡⎤⎡⎤⎢⎥⎪⎪⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--==---⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎢⎥⎢⎥⎣⎦.6. 利用等式176232073,3512570352732310,525701--⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦计算51763512-⎡⎤⎢⎥-⎣⎦. 解:51763512-⎡⎤⎢⎥-⎣⎦5232073570352-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦3197126673852922-⎡⎤=⎢⎥-⎣⎦.7. 某公司为了技术革新,计划对职工实行分批脱产轮训,已知该公司现有2000人正在脱产轮训,而不脱产职工有8000人,若每年从不脱产职工中抽调30%的人脱产轮训,同时又有60%脱产轮训职工结业回到生产岗位,设职工总数不变,令0.70.68,0.30.42000A X ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦试用A 与X 通过矩阵运算表示一年后和两年后的职工状况,并据此计算届时不脱产职工与脱产职工各有多少人.解:一年后职工状况为:68003200AX ⎡⎤=⎢⎥⎣⎦不脱产职工6800人,轮训职工3200人.两年后职工状况为:26800668032003320A A X ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦不脱产职工6680人,轮训职工3320人.8. 设矩阵2142A ⎡⎤=⎢⎥--⎣⎦,3162B -⎡⎤=⎢⎥-⎣⎦, 求:(1);T T T T A B B A - 22(2).A B -解:24363624(1)12121212T T T T A B B A ----⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦10200010251000510--⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦; 2221213131(2)42426262A B --⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦⎣⎦01551550030103010--⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦.9. 设A 是对称矩阵,B 是反对称矩阵,则( )是反对称矩阵. (A )AB BA -; (B )AB BA +; (C )2()AB ; (D )BAB . 解:B .10.试将矩阵121301223A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦表示成对称矩阵与反对称矩阵之和. 解:5311102222115311()()002222223311302222T T A A A A A ⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++-=+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦. 11. 设A 是反对称矩阵,B 是对称矩阵,试证:AB 是反对称矩阵的充分必要条件为AB BA =. 证:必要性:由AB AB Τ-=)(及BA A B A B AB ΤΤΤ-=-==)()(即得BA AB =. 充分性: 若BA AB =,则AB BA A B A B AB ΤΤΤ-=-=-==)()(,知AB 是反对称阵.12. 设1110()m m m m f x a x a x a x a --=++++ ,记()f A 为方阵A 的多项式,即1110()m m m m f A a A a A a A a I --=++++(1) 设1200λΛλ⎡⎤=⎢⎥⎣⎦,证明12()0()0()f f f λΛλ⎡⎤=⎢⎥⎣⎦; (2) 设1A P P Λ-=,证明1()()f A Pf P Λ-=.解:(1)1200kk k λΛλ⎡⎤=⎢⎥⎣⎦1111110122201000()00100mm m m m m f a a a a λλλΛλλλ---⎡⎤⎡⎤⎡⎤⎡⎤∴=++++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦111111012121201200()00()m m m m m m m m a a a a a a a a f f λλλλλλλλ----⎡⎤++++=⎢⎥++++⎣⎦⎡⎤=⎢⎥⎣⎦ (2)11k k A P P A P P ΛΛ--=⇒=111111110()()m m m m f A f P P a P P a P P a P P a PP ΛΛΛΛ-------∴==++++ 1()Pf P Λ-=13.设矩阵2TT A I αααα=-,其中I 为n 阶单位阵,α为n 维列向量,试证A 为对称矩阵,且2A I =.证:2(2)2()()2T T T TT T T T TT T T T A I I I I Aαααααααααααααααα=-=-=-=-=故A 是对称矩阵,且22()(2)(2)44()T T T T TT T T T A I I I I αααααααααααααααααα=--=-+=.1.3逆矩阵1. 设A 为n 阶矩阵,且满足2A A =,则下列命题中正确的是( ). (A )A O =; (B )A I =;(C )若A 不可逆,则A O =; (D )若A 可逆,则A I =. 解:D.2. 设n 阶矩阵C B A 、、满足ABAC I =,则必有( ).(A )2CA B I =; (B )T T T TA B A C I =; (C )2BA C I =; (D )2222A B A C I =.解:B.3.已知矩阵1111111111111111A ---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦,求n A 及1A -(n 是正整数). 证:由I A 42=,即可得⎪⎩⎪⎨⎧=====---为奇数为偶数n A A I A A n I I A A n n n n nn n,2)4(,2)4()(1211222 及I A A =⋅)(41,亦即A A 411=-.4. 已知n 阶矩阵A 满足223A A I O +-=, 求: 11,(2),A A I --+ 1(4)A I -+.解:依题意,有I I A A 32=+)(,即23A I A I +=(),故 A I A I A A 31223111=++=--));((,再由已知凑出I I A I A 5)2)(4(-=-+,即得)2(51)4(1I A I A --=+-.5. 设A B AB I -、、为同阶可逆阵,试证:(1) 1A B --可逆; (2) ()111A BA -----也可逆,且有()1111A B A ABA A ----⎡⎤--=-⎢⎥⎣⎦. 证:(1) 11111()A B ABB B AB I B A B ------=-=-⇒-可逆.(2) 证法一:()()()()()()()1111111111111111()A B A A BA B A B AA BI I B A AB A B ABA A ------------------=----⎡⎤=--+=-⎣⎦=- ()111A B A ---⇒--可逆,且()1111A B A ABA A ----⎡⎤--=-⎢⎥⎣⎦. 证法二:由(1)得()111()A BB AB I ----=-,因此()1111111()()()()()()A B A ABA A B AB I A ABA A B AB I AB I A A A BA I BA BA I I-------⎡⎤⎡⎤---=---⎣⎦⎢⎥⎣⎦=----=-+= ()111A B A ---⇒--可逆,且()1111A B A ABA A ----⎡⎤--=-⎢⎥⎣⎦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行列式部分的填空题
1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取
+ 号。
2.排列45312的逆序数为 5 。
3.行列式25
11221
4---x 中元素x 的代数余子式是
8 . 4.行列式102
3254
03
--中元素-2的代数余子式是 -11 。
5.行列式2
5112214
--x 中,x 的代数余子式是 -5 。
6.计算00000d
c b a = 0
行列式部分计算题
1.计算三阶行列式
3
811411
02---
解:原式=2×(-4)×3+0×(-1)×(-1)+8×1×1-1×(-4) ×(-1)- 0×1×3-8×(-1)×2
=-4
2.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列.
解:i=8,j=5。
3.(7分)已知0010413≠x
x x
,求x 的值.
解:原式=3x 2+0+0-x 2
-4x-0 =2x 2-4x
=2x(x-2)
又原式≠0
∴x 1≠0,x 2≠2
即x={x|x 1≠0,x 2≠2 x ∈R }
4.(8分)齐次线性方程组
⎪⎩
⎪⎨⎧=++=++=++000z y x z y x z y x λλ
有非零解,求λ。
λ 1 1 λ-1 0 0 解:D= 1 λ 1 = 0 λ-1 0 =(λ-1)2
1 1 1 1 1 1
由D=0,得λ=1。
5.用克莱姆法则求下列方程组:
⎪⎩
⎪⎨⎧=+-=++=++10329253142z y x z y x z y x
解:由题意得
31 2 4
D 1=29 1 2 =-81
10 -1 1
1 31 4
D 2= 5 29 2 =-108
3 10 1
1 2 31
D3= 5 1 29 =135
3 -1 10
因此,根据克拉默法则,方程组的唯一解是
X=27,y=36,z=-45
注:请提交作业时将题目做完整,计算题要有计算步骤。