相似三角形判定定理与证明
相似三角形判定定理的证明乐乐课堂

相似三角形判定定理的证明乐乐课堂【实用版】目录1.相似三角形判定定理的概念2.相似三角形判定定理的证明方法3.相似三角形判定定理的应用正文一、相似三角形判定定理的概念相似三角形判定定理是指在两个三角形中,如果满足一定的条件,那么这两个三角形就是相似的。
相似三角形的判定定理有以下三种:1.两角对应相等的两个三角形相似;2.两边对应成比例并且夹角相等的两个三角形相似;3.三边对应成比例的两个三角形相似。
二、相似三角形判定定理的证明方法1.两角对应相等的两个三角形相似的证明:在三角形 ABC 与三角形 A"B"C"中,如果角 A 与角 A"、角 B 与角B"分别相等,那么三角形 ABC 与三角形 A"B"C"相似。
证明方法主要是利用平行线分线段成比例定理的逆定理,即将两个三角形相等的角重合,然后通过平行线分线段成比例定理证明其余部分也成比例。
2.两边对应成比例并且夹角相等的两个三角形相似的证明:在三角形 ABC 与三角形 A"B"C"中,如果边 AB 与边 A"B"、边 AC 与边 A"C"分别成比例,并且角 B 与角 B"、角 C 与角 C"分别相等,那么三角形 ABC 与三角形 A"B"C"相似。
证明方法同样是利用平行线分线段成比例定理的逆定理,将两个三角形相等的角重合,然后通过平行线分线段成比例定理证明其余部分也成比例。
3.三边对应成比例的两个三角形相似的证明:在三角形 ABC 与三角形 A"B"C"中,如果边 AB 与边 A"B"、边 BC 与边 B"C"、边 AC 与边 A"C"分别成比例,那么三角形 ABC 与三角形A"B"C"相似。
相似三角形判定定理证明

如何證明相似三角形判定定理預備知識:圖1中,平行線等分線段定理 已知l 1//l 2//l 3,AB =BC ,則DE =EF由已知條件構造三角形全等,可證得平行線間距離相等,然後以此結論做條件可構造線段DE ,EF 所在三角形全等,結論獲證. 圖2中,平行線分線段成比例定理 已知l 1//l 2//l 3,則DEEFBC AB =,命題可通過添加平行線轉化成平行線等分線段定理.由比例性質還可得DF EF AC AB =,EF ED AB CB =,DF EDAC CB =相似三角形判定定理證明圖3,已知DE//BC ,求證:△AD E ∽△ABC析:欲證兩三角形相似,則需證三對角對應相等,三對邊の比 相等,本題目三對角相等,則證三邊比相等即可. 由DE//BC 得AC EA AB AD =,作EF//AB 得AC EACB BF =,依題意知四邊形DEFB 是平行四邊形,DE=BF . 則CBDEAC AE AB AD ==,命題獲證. 圖4,已知DE//BC ,求證:△AD E ∽△ABC作AG=AD ,GH//BC ,HM//AB ,可證△AD E ≌△AGH 此問題同圖3圖5,在△ABC 與△A`B`C`中,``````C A ACC B BC B A AB == 求證:△ABC ∽△A`B`C`在線段A`B`上截取A`D=AB ,過點D 作DE//B`C`,交A`C`於點E ,根據上面定理得△A`D E ∽△A`B`C` ∴````````C A EA CB DE B A D A == ∵``````C A ACC B BC B A AB ==,AB=A`D ∴DE=BC ,A`E=AC3l3图3B图4B图5图6B∴△A`D E ≌△A`B`C` ∴△ABC ∽△A`B`C` 圖6,````C A ACB A AB =,∠A =∠A`,求證:△ABC ∽△A`B`C` 在線段A`B`上截取A`D=AB ,過點D 作DE//B`C`,交A`C`於點E ,根據上面定理得△A`D E ∽△A`B`C` ∴``````C A EA B A D A =∵````C A ACB A AB =,A`D=AB ∴A`E=AC ∵∠A =∠A`∴△A`D E ≌△A`B`C` ∴△ABC ∽△A`B`C`圖7,∠A=∠A`,∠B=∠B`求證:△ABC ∽△A`B`C`在線段A`B`上截取A`D=AB ,過點D 作DE//B`C`,交A`C`於點E ,根據上面定理得△A`D E ∽△A`B`C` ∴∠A`DE=∠B`∵∠A=∠A`,∠B=∠B`,A`D=AB ∴∠A`DE=∠B∴△A`D E ≌△A`B`C` ∴△ABC ∽△A`B`C`圖8,Rt △ACB 與Rt △A`C`B`中,∠C=∠C`=90°,````C A ACB A AB = 求證:△ABC ∽△A`B`C`設````C A ACB A AB ==k ,則AB=kA`B`,AC=kA`C`則 k ````k ````k ``k ````222222==-=-=C B C B C B C A B A C B AC AB C B BC則三邊成比例,∴△ABC ∽△A`B`C`图7B图8B。
人教版相似三角形的判定(9)

作业布置 习题 知识技能
探究1 知识要点
两角对应相等,两三角形相似.
√ 角 A
角A
如果∠A =∠A ′,∠B =∠B ′,
那么,△ABC ∽△ A′B′C′.
A
A′
你能证明吗?BFra bibliotekC B′
C′
可要仔细哟!
应用
已知:如图,∠ABD=∠C,AD=2, AC=8,求AB.
解: ∵ ∠ A= ∠ A,∠ABD=∠C, ∴ △ABD ∽ △ACB , ∴ AB : AC=AD : AB, ∴ AB2 = AD ·AC. ∵ AD=2, AC=8, ∴ AB =4.
那么,△ABC∽△A′B′C′.
B′
边S
√ 边 S
边S A′
C′
A
B
C
画一画
任意画一个三角形,再画一个三 角形,使它的各边长都是原来三角 形各边长的k倍,度量这两个三角形 的对应角,它们相等吗?这两个三 角形相似吗?与同桌交流一下,看 看是否有同样的结论.
已知 A: B 和 A C 在 'B 'C '中 AB, BC AC.
求证: △ ABC∽△ A'B'C'.
证明:在线段A'B( ' 或它的延长线
A'B'
A
B'C' A'C'
A'
上)截取A'DAB,过点D再作
DE∥B'C'交 A'C'交于 E, 点可 B 得 C D
E
A'DE ∽A'B'C'.
A'∴D DE A'E. A'B' B'C' A'C'
相似三角形的判定定理

相似三角形的判定定理:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.);(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.).直角三角形相似的判定定理:[1](1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似;(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.性质定理编辑(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;(4)相似三角形的周长比等于相似比;(5)相似三角形的面积比等于相似比的平方.[2]判定方法编辑预备定理平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(这是相似三角形判定的定理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线与线段成比例的证明)定义对应角相等,对应边成比例的两个三角形叫做相似三角形。
判定定理常用的判定定理有以下6条:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
)(AA)判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
相似三角形的判定与性质

汇报人:XX
感谢观看
地理学中的应用:测量距离、确定位置等
航海学中的应用:确定船只的位置、航向等
04
相似三角形的判定定理与性质定理的证明
判定定理的证明
定义法:利用相似三角形的定义,通过比较对应边和对应角来证明两个三角形相似。
平行线法:利用平行线的性质,通过比较对应边和对应角来证明两个三角形相似。
角平分线法:利用角平分线的性质,通过比较对应边和对应角来证明两个三角形相似。
适用情况:适用于已知三角形角度和边长的情况
注意事项:在应用定义法时,需要仔细检查对应角和对应边的比例关系,以避免出现误差
平行线法
添加标题
添加标题
添加标题
添加标题
适用范围:适用于直角三角形和非直角三角形
定义:利用平行线性质,通过比较对应边和角的比例关系来判定两个三角形是否相似
证明方法:利用平行线的性质和相似三角形的定义进行证明
应用举例:在几何问题中,常常利用平行线法来判定两个三角形是否相似
角角角法
性质:相似三角形的对应角相等,对应边成比例
应用:在几何、代数、三角函数等领域有广泛的应用
定义:如果两个三角形的两个对应角相等,则这两个三角形相似
判定方法:如果两个三角形的两个对应角相等,则这两个三角形相似
边边边法
证明方法:利用相似三角形的性质和判定定理进行证明
证明:根据相似三角形的定义,可以通过相似比推导出对应角相等
对应边成比例
性质定义:相似三角形的对应边长比例相等
性质推论:相似三角形的对应高、中线、角平分线等比例
性质应用:在几何证明和计算中,利用对应边成比例的性质可以简化问题
相似三角形的五种判定方法SSA

相似三角形的五种判定方法SSASSA是根据两条边加上它们之间的夹角来判断三角形是否相似的方法。
如果两个三角形的两条边加上它们之间的夹角相等,则这两个三角形是相似的,即满足SSA。
例如,两个三角形A的两边长分别为4 cm、6 cm,它们之间的夹角为60°;而三角形B的两边长也分别为4 cm、6 cm,它们之间的夹角也为60°,则A和B是相似的三角形。
第二种判定方法:SAS(Side-Angle-Side)SAS是根据一条边的长度及它两旁角的大小来判断三角形是否相似的方法。
如果两个三角形有一条边的长度及它两旁夹角的大小相等,则这两个三角形是相似的,即满足SAS。
例如,两个三角形A的边长分别为2 cm、4 cm,它们的夹角分别为60°和30°;而三角形B的边长也分别为2 cm、4 cm,它们的夹角也分别为60°和30°,则A和B是相似的三角形。
第三种判定方法:AAA(Angle-Angle-Angle)AAA是根据三角形的三个内角的大小来判断三角形是否相似的方法。
如果两个三角形的三内角大小相等,则这两个三角形是相似的,即满足AAA。
例如,三角形A的角的大小分别为30°、60°、90°;而三角形B的角的大小也分别为30°、60°、90°,则A和B是相似的三角形。
第四种判定方法:AAS(Angle-Angle-Side)AAS是根据两个内角的大小加上它们之间一条边的长度来判断三角形是否相似的方法。
如果两个三角形有两个内角的大小及它们之间一条边长度相等,则这两个三角形是相似的,即满足AAS。
例如,两个三角形A的角分别为30°、60°,它们之间一条边长度为3 cm;而三角形B的角分别为30°、60°,它们之间一条边长度也为3 cm,则A和B是相似的三角形。
《相似三角形判定定理的证明》图形的相似

02
利用相似三角形的性质证明,通过相似比推导出对应边成比例
。
射影定理的应用
03
在几何学中,射影定理常用于证明线段间的比例关系,以及求
解线段长度的问题。
圆幂定理
1 2
圆幂定理定义
给定圆上任意一点P,过点P作圆的任意两条切线 ,分别与圆相切于点A和B,则PA的平方乘以PB 的平方等于AB的平方。
圆幂定理的证明方法
计算角度
通过相似三角形的比例关系,可以计算出无法直接测量 的角度。例如,在测量一个无法直接测量的角度时,可 以先构造一个与原三角形相似的三角形,然后通过测量 相似三角形的角度来计算原三角形的角度。
在工程中的应用
建筑设计
在建筑设计中,工程师可以利用相似三角形判定定理来设计建筑的形状和结构,以满足特定的功能和审美需求。 例如,可以构造一个与实际建筑比例相同的模型,然后通过测量模型来预测实际建筑物的日照、风载和结构性能 等。
相似三角形的性质
相似三角形的对应边成比例,对应角 相等。
相似三角形判定定理的重要性
理论意义
相似三角形判定定理是几何学中重要的基本定理之一,它为 研究图形的形状和大小提供了基础。
实际应用
相似三角形判定定理在工程、建筑、测量等领域都有广泛的 应用。
相似三角形判定定理的历史背景
起源
古希腊数学家欧几里得在其著作《几何原本》中 首次提出相似三角形的概念和判定定理。
VS
详细描述
角平分线将对应的两边分为相等的两部分 ,因此如果两个三角形对应的角平分线相 等,则这两个三角形相似。这种方法也是 常用的证明两个三角形相似的方法之一。
斜边中线法
总结词
利用斜边中线的性质进行判断
详细描述
相似三角形判定定理的证明

2.如图,在平行四边形ABCD中,点E在AD边上,连接CE
并延长,与BA的延长线交于点F,若AE=2ED,CD=3
B
cm,则AF的长为(
A.5 cm
)
B.6 cm
C.7 cm
D.8 cm
3.已知:如图,∠ABD=∠C,AD=2,AC=8,求AB.
解:∵ ∠ A= ∠ A,∠ABD=∠C,
∴ △ABC ∽△A'B'C' .
C′
A
D
B
E
C
总结
A
D
A
B
E
B
C
“A”型
C
B
C
“x”型
“A”型
A
A
D
E
B
C
“共角”型
A
E
D
E
B
D
B
D
E
D
A
C
C
“共角共边”型
“蝴蝶”型
随堂训练
1.下列命题中是真命题的是( C)
A.有一个角相等的直角三角形都相似
B.有一个角相等的等腰三角形都相似
C.有一个角是120°的等腰三角形都相似
AB AC
.
AD AE
AB
AC
∵ ' ' ' ' ,AD = A'B',
A B AC
AB AC
AC AC
∴
' ' ,∴
' ' , ∴ AE =A'C'.
AD A C
AE A C
∵ ∠ A=∠ A',