2019年浙江省杭州市建兰中学中考数学模拟试卷(6)及答案
浙江省省杭州市上城区建兰中学2021-2022学年中考数学全真模拟试题含解析

浙江省省杭州市上城区建兰中学2021-2022学年中考数学全真模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.a²+a²=a4B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE3.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1 B.2 C.1 D.–24.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为( )A.6 B.7 C.8 D.95.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是()A.B.C.D.6.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×1067.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,2,BP=3,AP的最大值是()A .2+3B .4C .5D .328.如果2a b -=,那么22b a a b a a-+÷的值为( ) A .1 B .2 C .1- D .2-9.如图,AB 为⊙O 的直径,C 为⊙O 上的一动点(不与A 、B 重合),CD ⊥AB 于D ,∠OCD 的平分线交⊙O 于P ,则当C 在⊙O 上运动时,点P 的位置( )A .随点C 的运动而变化B .不变C .在使PA=OA 的劣弧上D .无法确定10.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A 、B 、C 在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为330cm ,则这块圆形纸片的直径为( )A .12cmB .20cmC .24cmD .28cm11.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m ,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m ,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x (x-60)=1600B .x (x+60)=1600C .60(x+60)=1600D .60(x-60)=160012.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A .∠NOQ =42°B .∠NOP =132°C .∠PON 比∠MOQ 大D .∠MOQ 与∠MOP 互补二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,∠C =90°,AC =8,BC =6,点D 是AB 的中点,点E 在边AC 上,将△ADE 沿DE 翻折,使点A 落在点A′处,当A′E ⊥AC 时,A′B =____.14.2-的相反数是______,2-的倒数是______.15.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.16.如图,矩形ABCD 的对角线BD 经过的坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=241k k x ++的图象上,若点A 的坐标为(﹣2,﹣3),则k 的值为_____.17.小红沿坡比为1:3的斜坡上走了100米,则她实际上升了_____米.18.已知扇形的弧长为2,圆心角为60°,则它的半径为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,某工程队准备在山坡(山坡视为直线l )上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P 处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C 的仰角为37°,塔底B 的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)20.(6分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.21.(6分)计算:(1-n)0-|3-23|+(-13)-1+4cos30°.22.(8分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.求证:四边形DECF是菱形.23.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n 的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.24.(10分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1;(2)若点B 的坐标为(-3,5),试在图中画出直角坐标系,并标出A 、C 两点的坐标;(3)根据(2)中的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2、C 2两点的坐标.25.(10分)在平面直角坐标系中,二次函数y=x 2+ax+2a+1的图象经过点M (2,-3)。
2019年浙江省杭州市中考数学模拟考试试卷附解析

2019年浙江省杭州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正三角形的内切圆半径与外接圆半径及高线长的比为( )A .1:2:3B .2:3:4C .1:2:3D .1:3:2 2.如图,点A ,B ,C 在⊙O 上,AO ∥BC ,∠OAC=20°,则∠AOB•的度 数是( ) A .20度 B .30度 C .40度 D .80度3.一种花边是由如图的弓形组成的,弧 ACB 的半径为 5,弦AB=8,则弓高 CD 为( ) AA .8B .152C .7D .1434.下列属于反比例函数的是( )A .y =-x 3B .yx =- 2C .y=-43xD .y=1x5.下列各图中,为轴对称图形的是( )6.要了解一批种子的发芽天数,抽取了l00粒种子,考查其发芽天数,其中的100是( )A .总体B .个体C .总体的一个样本D .样本容量 7.一个几何体的三视图中有一个是长方形,则该几何体不可能是( ) A .直五棱柱B .圆柱C .长方体D .球 8.等腰三角形的顶角是底角的 4倍,则其顶角为( ) A .20° B .30° C .80° D .120 A .B .C .D .9.如图,AB ∥DE ,︒=∠65E ,则C B ∠+∠=( )A . ︒135B . ︒115C . ︒36D . ︒65二、填空题10.已如图所示,两个同样高度的建筑物 AB 和CD ,它们相距 8m ,在 BD 上一点E 处测得A 点的仰角为 60°,C 点的仰角为 30°,则两建筑物的高度为 m .11.小华与父母一同从重庆乘火车到广安邓小平故居参观.火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是 .12.在Rt △ABC 中,已知∠C=90°,若∠A=30°3,则∠B=______, b=______,c=______.13. 写出下列锐角三角函数值:(1) sin300= ;(2) tan600= .14.两个相似三角形的面积比为4:9,那么它们周长的比为___________.15.12y y y =+,若 y l 与x 成正比例,y 2 与x 成反比例,当x=1 时,y= 一5,且它的图象经过点 (2,一4),则 y 关于x 的函数解析式为 .16.已知直角三角形的两条边长分别是方程214480x x -+=的两个根,则此三角形的第三边是 .17.在□ABCD 中,若∠A+∠C=120°,则∠A= ,∠B= .18.如图,在平面直角坐标系中,O (0,0),A (0,3),B (4,4),C (1,4),•则四边形OABC 是 .19.123的结果是 .20.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .21.若点P (3a-9,1-a)是第三象限的整数点(横、纵坐标都是整数),则a = .22.必然发生的事件的概率为 ,不可能发生的事件的概率为 ,不确定事件发生的概率介于 与 之间. 三、解答题23.已知圆锥的全面积为12πcm 2,侧面积为8πcm 2,试求圆锥的高与母线之间的夹角.24.如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.25.如图,菱形ABCD 中,∠ABC=60°,有一度数为60°的∠MAN 绕点A 旋转.(1)如图①,若∠MAN 的两边AM ,AN 分别交BC ,CD 于点E ,F ,则线段CE ,DF 的大小关系如何?请证明你的结论.(2)如图②,若∠MAN 的两边AM ,AN 分别交BC ,CD 的延长线于点E ,F ,则线段CE ,DF 的大小关系还有(1)中的结论吗?请说明你的理由.26.如图所示,已知 AB ∥CD ,∠2 = 2∠1,求∠2 的度数.27.如图已知∠B=∠C ,AB=AC ,则BD=CE ,请说明理由(填充)解:在△ABD 和△ACE 中∠B=∠C ( ) F E D C B A∠A= ( ) AB= ( 已知 )∴△ABD ≌ ( )∴BD= ( )28.如图,大正方形的边长为9 cm ,阴影部分的宽为1 cm ,试用平移的方法求出空白部分的面积.29.求作两个方程,使它们的解都是32-.30.计算:(1)2[92(52)]⨯-(精确到 0.01)(2)3243552π(精确到 0.01)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.A4.C5.C6.D7.D8.D9.D二、填空题10..31 12. 60°,12,3813. (1) 21;(2)3 14.2:315.4y x x=--16.10或17.60°,120°18.平行四边形19.20.421.222.1,0,0,1三、解答题23.高与母线之间的夹角为30°24.(1)证明:∵四边形ABCD 是平行四边形,∴CD AB CD AB =,//, ∴FCE ABE CFE BAE ∠=∠∠=∠,.∵E 为BC 的中点,∴EC EB =,∴FCE ABE ∆≅∆∴CF AB =.(2)解:当AF BC =时,四边形ABFC 是矩形.理由如下: ∵CF AB CF AB =,//, ∴四边形ABFC 是平行四边形.∵AF BC =,∴四边形ABFC 是矩形25.(1)CE=DF ,连结AC ,证△AEC ≌△AFD ;(2)CE=DF 仍成立,证法与(1)类似 26.120°27.略28.49 cm 229.略30.(1)17.06 (2)6.92在此输入试卷标题,也可以从WORD 文件复制粘贴。
浙江省杭州市建兰中学2019年七年级上学期期中模拟试卷(数学 解析版)

2019杭州建兰中学七年级数学上册期中模拟试卷(总分100分)一、选择题(每小题2分,共20分)1.下列各数中,比﹣3小的数是( )A. ﹣5B. ﹣1C. 0D. 1解:-5<-3<-1<0<1,所以比-3小的数是-5,故答案为:A.2.下列各式不成立的是()A. -(-3)=3B. |2|=|-2|C. 0>|-1|D. -2>-3解:A、-(-3)=3,故A不符合题意;B、∵,∴,故B不符合题意;C、∵,∴0<1,即0<,故C符合题意;D、两个负数相比较绝对值大的反而小,∴-2>-3,故D不符合题意;故答案为:C.3.如图,点A所表示的数的绝对值是()A. 3B. ﹣3C.D.解:|-3|=3,故答案为:A.4.已知一组数据,π,,0.0456,,1.010010003…,则无理数的个数是( )A. 1B. 2C. 3D. 4解:π,,1.010010003…,是无理数,∴无理数有3个.故答案为:C.5.为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为()A. B. C.D.解:550000=5.5×105故答案为:B6.下列四个算式中,有一个算式与其他三个算式计算结果不同,则该算式是()A. -1÷1B. -12C. (-1)3D. (-1)2解:A、-1÷1=-1;B、-12=-1;C、(-1)3=-1;D、(-1)2=1.故答案为:D .7.有下面的算式:①(-1)2001=-2001;②0-(-1)=1;③ ;④2×(-3)2=-12;⑤-3÷ ×2=-3;⑥ =±4,正确的有( )个A. 1B. 2C. 3D. 4-解:依题可得:①(-1)2001=-1,故错误;②0-(-1)=1,故正确;③ ,故正确;④2×(-3)2=18,故错误;⑤-3÷ ×2=-12,故错误;⑥ =4,故错误;综上所述:正确的有②③.故答案为:B.8.下列说法中,不正确的是( )A. 10的立方根是B. -2是4的一个平方根C. 的平方根是D. 0.01的算术平方根是0.1解:A、10的立方根是,故A不符合题意;B、2是4的一个平方根,故B不符合题意;C、的平方根是± ,故C符合题意;D、0.01的算术平方根是0.1,故D不符合题意;故答案为:C9.已知a<-b,且>0,化简|a|-|b|+|a+b|+|ab|=()A. 2a+2b+abB. -abC. -2a-2b+abD. -2a+ab解:∵a<-b,>0∴a+b<0且a、b同号∴a<0,b<0∴a+b<0,ab>0∴原式=-a+b+(-a-b)-ab=-a+b-a-b-ab=-2a+ab故答案为D10.若a2=4,b2=9,且ab<0,则a-b的值为()A. -2B. ±5C. 5D. -5解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=-3,a=-2,b=3,则a-b的值为:2-(-3)=5或-2-3=-5.二、填空题(每小题3分,共30分)11.比较大小,请在横线上填“>”或“<”或“=”-3________-2;-22 ________(-2)2; ________解:∵-3<-2,∵-22=-4,(-2)2=4,∴-4<4,∴-22<(-2)2,∵=3,=3,∴=,故答案为:<,<,=.12.在算式1-|-2口3|中的“口”里,填入运算符号(在符号+,-,×,÷中选择一个):________,使得算式的值最小.解:要想使1﹣|﹣2□3|的值最小,只要|﹣2□3|的值最大就行.①假设填入运算符号是+,则|﹣2□3|的值是1;②假设填入运算符号是﹣,则|﹣2□3|的值是5;③假设填入运算符号是×,则|﹣2□3|的值是6;④假设填入运算符号是÷,则|﹣2□3|的值是;∵1<5<6,∴在□里填入运算符号是×,则|﹣2□3|的值最大,使得算式的值最小.故答案为:×.13.已知|a|=4,=2,ab<0,则的值为________.解:因为|a|=4,=2,ab<0,所以a=-4,b=8,所以的值为2,故答案为:214.一般地,如果,则称为的四次方根,一个正数的四次方根有两个.它们互为相反数,记为,若,则________.解:∵,∴,∴.故答案为:.15.1,2,3……,100这100个自然数的算术平方根和立方根中,无理数的个数有________个。
浙江省杭州市建兰中学2019年九年级考前综合模拟检测试卷数学试题(无答案)

杭州市建兰中学2019年九年级考前综合模拟检测卷数学试题第Ι卷(选择题 共30分)一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.一组数据为:1,2,8,4,3,9,5,4,5,4,现有如下判断:① 这组数据的中位数是6② 这组数据的众数是4③ 这组数据的平均数是4其中正确的判断个数是()A. 1个B. 2个C. 3个D. 0个2.下列命题中正确的有( )个.A.1 B.2 C.3 D.4①平方等于本身的数有±1,0②算术平方根等于本身的数有±1,0③立方根等于本身的数有±1,0④倒数等于本身的数有±1,03.以下五个图形中,是中心对称的图形共有( )4.如图.∠1=∠2,若∠3=30°,为了使球反弹后能进入袋中,那么击球时必须得让∠1=( )A.30° B.45° C.60° D.75°5.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y-21=21y -y=-35,很快便补好了这个常数,这个常数应是 ( )A.1 B.2 C.3 D.46.两张等宽的纸条交叉重叠在一起,重叠部分是( )A.平行四边形. B.矩形 C.菱形. D.正方形7.蜗牛前进的速度每秒只有1.5毫米.恰好是某人步行速度的1000分之一,那么此人行进的速度大约是每小时( ).A.9千米 B.5.4千米 C.900米 D.540米8.如图.PA与PB是⊙O的切线,A.B为切点,C在⊙O上,如果∠P=50°. 那么∠ACB=( ).A.40° B.50° C.65° D.130°9.正八边形和边长相同的某一图形可实现密铺,则此图形是( )A.正三角形 B.正方形10.我市的中小学生每年都要举行春季达标运动会.为了进一步科学地指导学生提高运动成绩,某体育老师在学校的春季达标运动会上根据一名同学1500m 跑的测试情况绘成图3,图中OA是一条折线段.图形反映的是这名同学跑的距离与时间的关系,由图可知下列说法错误的是( )A.这名同学跑完1500m 用6分钟,最后一分钟跑了300m .B.这名同学的速度越来越快.C.这名同学第3到第5分钟的速度最慢.D.这名同学第2.第3分钟的速度是一样的.第Ⅱ卷(非选择题 共100分)二.填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡相应位置). 11.将一条细木固定在墙上,只需两个钉子,是根据 . 12.一幅三角板拼成的图案中,若∠AOD=135°则∠EPF=13.1232-124×122= .14.如图,一几何体的三视图如下:那么这个几何体是15.如图,一个窗户的上半部是由4个扇形组成的半圆形,下部是边长相同的4个小正方形,则这个窗户的面积为俯视图左视图主视图第18题图三.解答题(在答题卷中作答,要有必要的解题步骤.每小题6分,共30分).16.先化简:42232-÷⎪⎪⎭⎫ ⎝⎛+-+x x x x x x .再选一个你喜欢又合理的数求值. 17.求不等式组⎪⎩⎪⎨⎧<-<--034)12(23x x x 的整数解 18.作图题(要求:用尺规作图,写作法,保留作图痕迹).如图,在ABC ∆中,AC=3cm,BC=4.5cm,AB=5.5cm,∠B=36°,∠A=50°请你从中选择适当的数据,用尺规作一与ABC ∆全等的三角形.19.在某地,人们发现蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系,下表是蟋蟀所叫次数与温度变化情况对照表:①根据表中数据确定该一次函数的关系式;②如果蟋蟀1分钟叫了63次,那么该地当时温度多少?20.水平放置的一个油桶的截面半径为12cm ,其中有油部分油面高6cm ,求油面的宽度和弧AB的长.四.解答题(在答题卷中作答,要有必要的解题步骤.21、22题各8分,23、24题各9分,共34分).21.要建一个面积为130m 2的仓库,仓库的一边靠墙(墙长16m ),并在与墙平行的一边开一道1m 宽的门,现有能围成32m 长的木板,求仓库的长和宽?22.小豪和小杰同学做同样的摸球实验:在一个不透明的袋子里装有10个白球和若干个黄球,每次随意从袋子里摸出一个球,记录下它的颜色,然后放回去,再摸下一次。
2019年浙江省杭州市中考数学全真模拟试卷附解析

2019年浙江省杭州市中考数学全真模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为若太阳光与地面成40°角,一棵树的影长为10㎝,则树高 h 所满足的范围是( )A .h>15B . 10<h<15C . 5<h<10D . 3<h<5 2.如图,在△ABC 中,DE ∥BC ,AD :DB=2:3,且△ABC 的周长是20cm ,则△ADE 的周长等于( )A .5cmB .6cmC .7cmD .8cm 3.一种花边是由如图的弓形组成的,弧 ACB 的半径为 5,弦AB=8,则弓高 CD 为( ) AA .8B .152C .7D .1434.在下列定理中,没有逆定理的是( )A .有斜边和一直角边对应相等的两个直角三角形全等B .直角三角形两个锐角互余C .全等三角形对应角相等D .角平分线上的点到这个角两边的距离相等5.已知一次函数y=kx+b ,当-3≤x ≤l 时,对应的y 值为l ≤y ≤9,则kb 的值为( )A . 14B .-6C .-4或21D .-6或14 6.如果函数y=ax+b (a<0,b<O )和y=kx (k>0)的图象交于点P ,那么点P 应该位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.如果5x y -=,5y z -=,那么z x -的值是( ) A .5 B .10 C .-5D .-10 8.下列选项中的三角形全等的是( )A .两角及其夹边对应相等的两个三角形B .有两个角对应相等的两个三角形C .面积相等的两个三角形D .都是锐角三角形的两个三角形9.我国民间流传着许多诗歌形式的数学题,令人耳目一新,你能解决“鸡兔同笼”问题吗?“鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几只鸡来几只免?”设鸡为x 只,兔为y 只,则可列方程组( )A .⎩⎨⎧=+=+1002236y x y xB .⎩⎨⎧=+=+1002218y x y x C . ⎩⎨⎧=+=+1002436y x y x D .⎩⎨⎧=+=+1004236y x y x 10.用科学记数法表示0.00038得( )A .53810-⨯B .43.810-⨯C .43.810⨯D .30.3810-⨯11.某课外小组分组开展活动,若每组 7 人,则余下 3 人;若每组8人,则少5人,设课外小组的人数为 x 人和分成的组数为y 组,根据题意可列方程组( )A . 7385y x y x =+⎧⎨+=⎩B . 385y x x y =+⎧⎨=+⎩C . 7385y x y x =-⎧⎨=+⎩D . 7385y x y x =+⎧⎨=+⎩ 12.由图,可知销售量最大的一年是( )A . 2005年B . 2006年C .2007年D .无法确定13. 如图,在已知的数轴上,表示-2. 75 的是( )A .E 点B .F 点C .G 点D .H 点二、填空题如图,小明的身高是1.7m ,他的影长是2m ,同一时刻学校旗杆的影长是10m ,则旗杆的高是_____m .15.如图是某个立体图形的三视图,则该立体图形的名称是 _ __.16.如图,实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )17.已知3x=4y ,则yx =________.18..观察下列各式:31142-=,52193-=,731164-=,941255-=,…,请你将猜想的规律用含自然数(1)n n ≥的代数式表示出来 .19.不等式322104x x --+>的所有整数解的积为 . 20.袋中装有10个小球,颜色为红、白、黑三种,除颜色外其他均相同.若要求摸出一个球是白球和不是白球的可能性相等,则黑球和红球共有 个.21.在括号里填上适当的代数式,使等式成立:(1)21664x x ++=( )2;(2)21025p p -+=( )2;(3)229124a ab b -+=( )2;(4)214t t -+=( )2; (5)2244ab a b ++=( )2;(6)222()()m m m n m n +-+-=( )222.如图,当半径为30 cm 的转动轮转过l80°角时,传送带上的物体A 平移的距离为 cm .23.写出一个小于-2的数 .三、解答题24.如图,在水平桌面上的两个“E ”,当点 P 1、P 2、0在一条直线上时,在点0处用①号“E ”测得的视力与用②号“E ”测得的视图相同.(1)图中 b l ,b 2,1l ,2l 满足怎样的关系式?(2)若b l =3.2㎝, b 2=2㎝, ①号“E ”的测试距离1l =8㎝,要使测得的视力相同,则②号“E ”的测试距离2l 应为多少?A B C D25.两个正方形的面积的和为l06 cm 2,它们的周长的差是l6 cm ,问这两个正方形的边长各是多少?26.阅读理解题:(1)如图,在△ABC 中,AD 是BC 边上的中线,且AD=12 BC . 求证:∠BAC=90°. 证明:∵AD=12 BC ,BD=CD=12BC , ∴AD=BD=DC , ∴∠B=∠BAD ,∠C=∠CAD ,∵∠B+∠BAD+∠CAD+∠C=180°,∴∠BAD+∠CAD=90°,即∠BAC=90°.(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为1+ 3 ,求这个三角形的面积.27.如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,AD 是斜边BC 上的中线,AD=5 cm ,求△ABC 的面积.28.(1)解方程1211x -=-. (2)利用(1)的结果,先化简代数式21(1)11x x x +÷--,再求值.29.一个锐角的余角是这个锐角的补角的14,求这个角的度数.30.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连结CC′,设AB=a,BC=b,AC=c,请利用四边形BCC′D′的面积证明勾股定理222a b c+=.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.A4.C5.D6.C7.D8.A9.D10.B11.C12.C13.D二、填空题14.8.515.三棱柱16.0.80 17.4318.1n n + 19. 020.521.(1)8x +;(2)5p -;(3)32a b -;(4)12t -;(5)2a b +;(6)2m n - 22.30π23.答案不唯一,如:-3三、解答题24.(1)1212b b l l =.(2) 1212b b l l =,∴23.228l =,25l =㎝ 25.5 cm ,9 cm26.(2)如果三角形一边上的中线等于这边的一半,则这个三角形是直角三角形.(3)S= 3 2 27. 25 cm 2 28.(1)满足方程1211x -=-的解是2x = (2)21(1)(1)(1)1213111x x x x x x x x x -++÷=⨯=+=+=--- 29. 60° 30. 略。
2019届九年级数学 中考模拟试卷含解析

2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。
2019年浙江省杭州市中考数学必刷模拟试卷附解析

2019年浙江省杭州市中考数学必刷模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.抛物线2(23)y x =-+的对称轴为( )A . 直线x=-3B .直线32x =-C .直线 y=3D .y 轴2.平行四边形的一边为32,则它的两条对角线长不可能是( ) A .20和40 B .30和50 C .40和50 D .20和60 3.代数式34x +的值不小于 0,则据此可列不等式为( )A .340x +<B .340x +>C .340x +≤D .340x +≥4.在1()n m n x x -+⋅=中,括号内应填的代数式是( )A .1m n x++B .2m x+C .1m x+D .2m n x++5.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是( ) A . 该班总人数为50人 B . 骑车人数占总人数的20% C . 乘车人数是骑车人数的2.5倍D . 步行人数为30人6.在数12-,0,4.5,9,-6.79中,属于正数的有( ) A .2个B .3个C .4个D .5个7.某种话梅原零售价每袋3元,凡购买2袋以上(包括2袋),商场推出两种优惠销售办法.第一种:1袋话梅按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量话梅的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买话梅( ) A .4袋B .5袋C .6袋D .7袋二、填空题8.若tanx=0.2378, 则x= (精确到l ′). 9.抛物线y =3x 2-6的顶点坐标是 . (0,-6)10.四边形的内角和等于 .11.如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形. 12.下面的判断是否正确:(1)我从书架上取出了5本书,5本书都是数学书.因此书架上的书都是数学书. ( ) (2)有一条线段AB 长3 cm .另一条线段BC 长2 cm ,那么AC 长5cm ( ) (3)直线AB ,CD 相交于O ,∠AOC=30°,那么∠BOD=30°. ( )13.抽取某校学生一个容量为l50的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生l500人,则可以估计出该校身高位于160 cm 至165 cm 之间的学生大约有 .人.14.定义运算“@”的运算法则为: x @y 4xy +,则 (2@6)@8= .15.已知摄式温度(℃)与华式温度(℉)之间的转换关系是:华式温度=59×(华式温度-32).若华式温度是68℉,则摄式温度是 ℃.16.直线y=kx+b 经过点A(-2,0)和y 轴正半轴上的一点B ,若△ABO(0为坐标原点)的面积为2,则b 的值为 .17.在“222a ab b □□”方框中,任意填上“+”或“-”.能够构成完全平方式的概率是 .18.甲、乙两台机器分别灌装每瓶标准质量为500g 的矿泉水,从甲、乙灌装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是2 4.8S =甲g 2,2 3.6S =乙 g 2,那么 (填“甲”或“乙”)机器灌装的矿泉水质量比较稳定.19.有 8个大小相同的球,设计一个摸球游戏,使摸到白球的概率为12,摸到红球的概率为14,摸到黄球的概率为14,摸到绿球的概率为0;则白球有 个,红球有 个,绿球有 个. 20.5的所有正整数之和为 .21.用四舍五入法取l29543的近似值,保留3个有效数字,并用科学记数法表示是 .三、解答题22.如图,矩形ABCD 的周长为20cm ,两条邻边AB 与BC 的比为2 : 3. 求(1) AC 的长; (2)α∠的三个锐角三角函数值.23.有一直径为2m的圆形纸片,要从中剪去一个最大的圆心角是90°的扇形ABC(如图).(1)求被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?(3)求圆锥的全面积.24.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等. 高比长多0. 5 m.(1)长方体的长用 x(m)表示. 长方体需要涂漆的表面轵 S(m2)何表示?(2)如果涂漆每平方米需要的费用是 5元,油漆每个长方体所需费用用 y(元)表示,那么 y 的表达式是什么?25.已知关于x的方程5(2)324(1)+-=--的解为正数,试确定k的取值范围.x k x kk<-626.有一个骰子,在它的各个面上分别标上数字1、2、3、4、5、6,掷过三次,每次看到的结果如图所示,数字l、2、3、4、5、6的对面分别标的是什么数字?27..有一块菜地,地形如图,试求它的面积s(单位:m).28.借助计算器计算下列各题:31= ;33123++= ;+= ;333123333+++= . 由上面的各题,你发现了什么规律?试用含n的算式表示这个结果. 1234-,现有批一批食品,需要在-27c 下冷藏,如果29.某冷冻厂的一个冷库,现在室温是c 3每小时能降温4c ,要降到所需的温度,需要几小时?30.下表为某公司股票在本周内每日的涨跌统计表. (上涨为正;单位:元)星期一二三四五备注每股涨跌+1.25-1.00+1.25+2.10-0.30(1)(2)若每股 27 元,本周内最高价每股是多少元?最低价每股是多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.C5.D6.A7.A二、填空题8.13°23′9.10.360°11.(1)× (2)× (3)√13.30014.615.2016.217. 12 18. 乙 19.4,2,020.321.1.30×105三、解答题 22.(1)132;(2)13132sin =α,13133cos =α,32tan =α. 23.解:(1)连接BC .∵∠C=90°,∴BC 为⊙O 的直径. 在Rt △ABC 中,AB=AC ,且AB 2+AC 2=BC 2,∴AB=AC=1,∴S 阴影=S ⊙O -S 扇形ABC =π·(2)2-2901360π⨯=12π-14π=14π(cm 2).(2)设圆锥底面半径为r ,则⌒BC 长为2πr .∴901180π⨯=2πr ,∴r=14(m ). (3)S 全=S 侧+S 底=S 扇形ABC +S 圆=14π+(14)2·π14=516πm 2.(1) 224(0.5)S x x x =++,即262(0)S x x x =+> (2)25(62)y x x =+,即23010y x x =+.25.6k <-26.1的对面是5,2的对面是4,3的对面是627.24m 228.各空分别填 1,3,6,10. 由上面的各题,发现有如下规律:3(1)122n n n n +++=+++=29. 6小时30.(1)上涨,上涨3.3元 (2)最高每股30. 6元,最低每股27. 25元。
2019年杭州中考模拟试卷数学卷

2019年中考模拟试卷数学试题卷(本试卷满分120分,考试时间100分钟)一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
1.31的倒数是(▲)A. 31 B.31-C.3D. -32. 数据2019000用科学记数法表示为(▲)A.2019×103B.2.019×106C. 2.019×10-6D.2.019×1073. 如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A,B,C ;直线DF 分别交l 1,l 2,l 3于点D,E,F ,已知DE=3,EF=5,AB=4,则AC=(▲) A.320 B.332 C.8 D.94.下列运算正确的是(▲)【原创】A.44a a a =⋅B.426a a a =÷C.22)(ab ab =D.523)(a a =5.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是(▲) A .中位数 B .平均数 C .众数 D .方差 6.下列命题的逆命题是真命题的是(▲)【原创】A .同弧所对的圆周角相等 B.垂直于弦的直径平分弦C .矩形的对角线相等D .相似三角形的对应角都相等 7. 下列方程变形中正确的是(▲)【原创】 A .1)1(352+-=x x 变形为1)1(152+-=x x B .1)1(152+-=x x 变形为11152+-=x xC. 11152+-=x x 变形为11152+-=-x x D .26=x 变形为3=x8. 某学校进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,容分别是:①不要相互嬉水;②选择有人看护的游泳池;③不游潜泳;④比赛闭气时间;⑤选择水流湍急的水域;⑥互相关心,互相提醒.小莉从这6纸条中随机抽出一,抽到容描述正确的纸条的概率是(▲)【根据2017年省市中考数学试卷第5题改编】 A.32 B. 21 C.65D.1 9. 已知点M 为某封闭图形边界上一定点,动点P 从点M 出发,沿其边界顺时针匀 速运动一周.设点P 运动的时间为x ,线段MP 的长为y .表示y 与x 的函数关系 的图象大致如图所示,则该封闭图形可能是( ▲ ) 【根据2015年市一模第9题改编】(第9题)A .B .C .D .10.设a ,b 是任意两个实数,用b}min{a ,表示a ,b 两数中的较小者,如:-44}-min{-1=,,1}3min{1=,,2018}2018min{2018=,.则下列结论:①2-3-2}-3-min{-=,π;②若min{45,23}23x x x +-+=-+,则31x ->;③无论x 取何值,22min{22,1}22x x x x -+--=-+-恒成立;④222min{25,6}25x x y x x -+++=-++.正确的是( ▲ )【原创】 A .③④ B .①③ C .①③④ D .①②④ 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的容,尽量完整地填写答案。