数学建模大赛货物运输问题

合集下载

2023年国赛数学建模d题

2023年国赛数学建模d题

2023年国赛数学建模d题
以下是2023年国赛数学建模d题,供您参考:
1.一个自行车车队计划进行一次长途骑行,总路程为200公里。


个队员的骑行速度不同,车队的速度由最慢的队员决定。

假设车队中的队员骑行速度在5-15公里/小时之间均匀分布,请问车队完成整个骑行所需的最短时间是多少?
2.一家快递公司需要在规定时间内将货物送达目的地。

假设快递公
司有n辆卡车,每辆卡车的运输速度不同,且运输速度在v1到v2之间均匀分布。

如果将所有卡车按照其运输速度从慢到快排列,那么最慢的卡车将决定整个运输队伍的速度。

快递公司希望找到一种最优的卡车排列方式,使得整个运输队伍的平均运输速度达到最大。

请设计一个数学模型来解决这个问题。

3.一个公司有n个销售代表,每个销售代表每个月可以完成一定数
量的销售任务,且完成销售任务的数量在区间[a, b]之间均匀分布。

如果将所有销售代表按照其销售能力从低到高排列,那么销售能力最低的销售代表将决定整个销售团队的销售业绩。

公司希望找到一种最优的销售代表排列方式,使得整个销售团队的平均销售业绩达到最大。

请设计一个数学模型来解决这个问题。

4.一个城市有n个居民区,每个居民区的居民数量不同。

居民区之
间的距离也不同,且已知每个居民区到市中心的最短距离。

居民们可以选择不同的交通方式前往市中心,每种交通方式的费用和
时间也不同。

城市管理者希望找到一种最优的交通方式组合,使得所有居民到达市中心的总费用最小。

请设计一个数学模型来解决这个问题。

数学建模之运输问题

数学建模之运输问题

数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。

这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。

2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。

我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。

3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。

设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。

我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。

那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。

这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。

2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。

进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。

4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。

线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。

对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。

这些算法可以快速找到较好的解,但不能保证找到最优解。

常用的算法包括模拟退火算法、遗传算法等。

5. 应用领域运输问题在许多实际应用中都有广泛的应用。

例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。

2023年研究生数学建模竞赛-b题

2023年研究生数学建模竞赛-b题

2023年研究生数学建模竞赛-b题2023年研究生数学建模竞赛b题涉及一个有关航运和港口设施规划的问题。

为了解决这个问题,我们将使用数学建模的方法来分析并提出最佳的规划方案。

该问题中,我们面临的挑战是如何设计一个最优的航运系统,以减少货物运输的时间和成本,并提高港口的运营效率。

具体来说,我们需要考虑以下几个方面的因素:1.货物流动模式:我们需要研究和分析货物的流动模式,包括货物的来源和目的地,货物的种类和数量。

通过对货物的流动模式进行建模和分析,我们可以确定最佳的航线和货物运输方案。

2.航线规划:针对货物的流动模式,我们需要设计最佳的航线,以确保货物可以以最短的时间和最低的成本从起点运输到目的地。

在航线规划中,我们需要考虑航线的距离、交通状况等因素,以便确定最佳的航运路径。

3.船只调度:在货物运输过程中,船只的调度非常重要。

我们需要确定最佳的船只调度方案,以确保船只在正确的时间和位置上提供服务。

在船只调度中,我们需要考虑船只的容量、速度和行驶时间等因素,以便优化船只的运营效率和运输能力。

4.港口设施规划:另一个重要的方面是港口设施的规划和布局。

我们需要确定最佳的港口设施规划,以便满足货物运输的需求。

在港口设施规划中,我们需要考虑港口的容量、装卸能力和设施布局等因素,以便优化港口的运营效率和货物的处理能力。

为了解决这个问题,我们可以使用数学建模的方法来分析和优化上述因素。

我们可以建立数学模型来描述货物的流动模式、航线规划、船只调度和港口设施规划等问题。

然后,我们可以使用数学和优化方法来求解这些模型,并得出最佳的规划方案。

在建立数学模型时,我们可以使用图论、线性规划、整数规划等数学方法来描述货物的流动模式、航线规划、船只调度和港口设施规划等问题。

我们可以将货物视为节点,航线视为边,并使用图论的方法来描述货物的流动模式和航线规划。

我们可以使用线性规划和整数规划的方法来描述船只调度和港口设施规划等问题,并使用数学优化方法来求解这些模型。

数学建模 货运列车编组运输问题

数学建模 货运列车编组运输问题

2016高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):许昌学院参赛队员 (打印并签名) :1. 徐晨曦2. 陈永生3. 刘志宽指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2016 年 8 月 27 日赛区评阅编号(由赛区组委会评阅前进行编号):2016高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):货运列车编组运输问题摘要对于这次我们需要求的货车编组运输,通过不同的情况制定最佳运送方案。

对于问题一,我们首先确定的是以运输货物最多,运输总量最小为目标函数的双目标优化问题,这里我们首先是将复杂的B类货物单独的分开来,看成是两种类型的货物,我们为了简化运算我们先针对单个目标数量最多对其进行优化求解,用lingo软件得出数量最多为24,分别有几组数据,然后在以数量为最多的条件下为约束,求取另一个目标总重量最小,用lingo分析得出其中最小的总重量为179吨,然后再将两者的求得结果相互结合得出,数量最多为24的情况下,总重量最小为179吨。

数学建模—货物配送问题

数学建模—货物配送问题

数学建模—货物配送问题本文将会探讨货物配送问题,其中会使用到数学建模的方法来解决。

问题描述假设有 $n$ 个城市需要被配送货物,每个城市之间的距离是已知的 $d_{i,j}$,其中 $d_{i,j}$ 表示第 $i$ 个城市和第 $j$ 个城市之间的距离。

需要找到一种合理的方案使得每个城市都能够被配送到且总的成本最小。

模型建立这是一个典型的旅行商问题,可以使用线性规划的方法来解决。

我们设 $x_{i,j}$ 表示是否从城市 $i$ 转移到城市 $j$,则可以得到以下的规划模型:$$\begin{aligned}\min \quad & \sum_{i=1}^n \sum_{j=1}^n d_{i,j} x_{i,j} \\s.t. \quad & \sum_{j=1}^n x_{i,j} = 1, \quad i=1,\cdots,n \\& \sum_{i=1}^n x_{i,j} = 1, \quad j=1,\cdots,n \\& u_i - u_j + nx_{i,j} \leq n-1, \quad i,j=2,\cdots,n, i \neq j \\& x_{i,j} \in \{0,1\}, \quad i,j=1,\cdots,n\end{aligned}$$其中,第一个约束是保证每个城市都恰好被访问一次,第二个约束也是保证每个城市都恰好被访问一次,第三个约束是 TSP 约束条件。

结论通过进行线性规划求解,可以求得货物配送问题的最优解。

当然,对于特别大的问题,我们还可以使用遗传算法等启发式算法来解决。

通过本文的学习,相信大家可以掌握货物配送问题的建模方法,并且对于线性规划方法有更深入的了解。

数学建模,线性规划,运输为问题

数学建模,线性规划,运输为问题
X26 20.00000 0.000000
X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 0.000000 7.000000
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
供应限制:x11+x12+x13+x14+x15+x16=20

货物配送问题数学建模

货物配送问题数学建模

货物配送问题数学建模一、问题描述在物流配送中,如何合理地安排货物的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化,是一个重要的问题。

本文将以某物流公司为例,探讨如何利用数学建模的方法解决货物配送问题。

二、问题分析该物流公司需要将货物从A地配送到B地,其中A地有n个发货点,B地有m个收货点。

每个发货点的货物重量不同,每个收货点的需求量也不同。

为了保证配送效率,该物流公司需要在每个发货点选择最优的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化。

具体而言,该问题需要考虑以下因素:1.货物重量:每个发货点的货物重量不同,需要考虑不同重量的货物在配送过程中的影响。

2. 配送路线:如何选择最优的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化。

3. 配送成本:配送成本包括人工成本、车辆成本、油费等,需要考虑如何在保证配送效率的同时最小化配送成本。

三、数学建模为了解决上述问题,我们可以采用数学建模的方法。

具体而言,我们可以将该问题建模为一个最小费用最大流问题。

最小费用最大流问题是图论中的一个经典问题,其主要思想是在网络流的基础上,引入费用这一概念,使得在满足流量限制的同时,最小化总费用。

在本问题中,我们可以将发货点看作源点,收货点看作汇点,货物的重量看作每个边的流量限制,配送成本看作每个边的费用。

具体而言,我们可以将该问题建模为以下几个步骤:1. 建立网络模型:将发货点和收货点看作网络中的节点,将货物的配送路线看作网络中的边,建立网络模型。

2. 确定流量限制:将每个发货点的货物重量看作每个边的流量限制。

3. 确定费用:将配送成本看作每个边的费用。

4. 求解最小费用最大流:利用最小费用最大流算法,求解最小费用最大流,得到最优的配送路线。

四、实际案例为了验证上述方法的有效性,我们在某物流公司的实际配送中进行了测试。

具体而言,我们将该问题建模为一个最小费用最大流问题,并利用最小费用最大流算法求解最优的配送路线。

数学建模--运输问题

数学建模--运输问题

运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。

关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。

考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。

关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。

首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。

即最短路线为:1-5-7-6-3-4-8-9-10-2-1。

但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。

关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。

这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。

因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。

得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。

关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模大赛货物运输问题SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#货物配送问题【摘要】本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。

我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。

针对问题一,我们在两个大的方面进行分析与优化。

第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。

第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。

最后得出耗时最少、费用最少的方案。

耗时为小时,费用为元。

针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。

我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。

耗时为小时,费用为元。

针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。

我们经过简单的论证,排除了4吨货车的使用。

题目没有规定车子不能变向,所以认为车辆可以掉头。

然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。

最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。

最后得出耗时最少、费用最省的方案。

耗时为小时,费用为。

一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1)。

货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。

每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。

运输车载重运费元/吨公里,运输车空载费用元/公里。

一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。

卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。

问题:1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。

2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数应如何调度3、(1)如果有载重量为4吨、6吨、8吨三种运输车,载重运费都是元/吨公里,空载费用分别为,,元/公里,其他费用一样,又如何安排车辆数和调度方案(2)当各个公司间都有或者部分有道路直接相通时,分析运输调度的难度所在,给出你的解决问题的想法(可结合实际情况深入分析)。

二、模型假设1)港口的容量足够大,多辆运输车同时到达港口时不会发生阻塞现象;2)多辆运输车可以在港口同时装车,不必等待;3)双向道路上没有塞车现象;4)8个公司之间没有优先级别,货运公司只要满足他们的需求量就可以;货车完成他们日常的送货任务之后,回到港口。

5)假设运输车不会因天气状况,而影响其行驶速度,和装载、卸载时间。

6)运输路不会影响运输车行驶速度。

7)运输车正常出车。

三、问题分析运输过程的最大特点是三种原料重量不同,分为大小件,当大小件同车,卸货时必须先卸小件,而且不允许卸下来的材料再装上车,要区别对待运输途中是否可以调头的费用。

在问题一中,运输途中不能调头,整个送货路线是一个环形闭合回路,如果沿着某一方向同时给多家公司送货时,运输车必须为距离港口近的公司卸下小件,为距离港口远的公司运送大件;而在问题二中,运输途中可以调头,可以首先为远处公司运送小件,在返回途中为距离较近的公司卸下大件。

从表面上看,这样运输能够节省车次,降低出车费用。

但我们通过分析,在本题中,载重调头运输并不能降低费用。

运费最小是货运公司调度运输车的目标,运费包括派车固定成本、从港口出车成本、载重费用和空载费用。

建立模型时,要注意以下几方面的问题:目标层:如果将调度车数、车次以及每车次的载重和卸货点都设为变量,模型中变量过多,不易求解。

由于各辆运输车之间相互独立,可以将目标转化为两个阶段的求解过程,第一阶段是规划车次阶段,求解车次总数和每车次的装卸方案;第二阶段是车辆调度阶段,安排尽量少的车辆数,每车次尽量满载,使总的运费最小。

约束层:(1)运输车可以从顺时针或者逆时针方向送货,要考虑不同方向时的载重用;(2)大小件的卸车顺序要求不同原料搭配运输时,沿途必须有序卸货;(3)每车次的送货量不能超过运输车的最大载重量;(4)满足各公司当日需求。

四、符号说明和名词约定五、建立模型一、问题一i.车次规划模型的分析车次规划阶段只涉及到载重费用、空载费用和港口出车费用。

运输途中不能掉头,所以每车次都是沿闭合回路绕圈行驶。

1)运输途中不能掉头,所以为某些公司送货时,运输车从港口出发,按顺时针方向沿闭合回路绕行,为其它公司送货时,按逆时针方向沿闭合回路绕行。

公司和港口之间存在顺时针距离和逆时针距离,如下表:出的最佳运输路径进行货物的分配运输。

即若港口按顺时针和逆时针两个不同方向出发,根据货运里程短,④点为顺时针货运方向最远点,也是空载回港口的最近点,根据货运里程短,⑤点为逆时针货运方向最远点,也是空载回港口的最近点。

结论:在符合载重相对最大化情况下,①~④公司顺时针送货为最佳方案,⑤~⑧公司逆时针送货最佳方案。

如下图所示:2)根据3种原料的重量和运输车的最大运载量可以看出,A和C可以搭配运输,B和C 可以搭配运输,而A与B不能同车运输。

不论是以顺时针方向送货还是以逆时针方向送货,当大小件搭配运输时,必须首先卸下小件,在后续公司卸下大件。

我们把这种特点总结如下:1、若在第j个公司卸下的是大件A,说明本车次的货物已经卸完,不能够再为后续公司运送小件C(A与B不能同车运输,更不可能有B);2、若在第j个公司卸下的是B,说明本车次的货物已经卸完,不能够再为后续公司运送小件C。

ii.模型建立基于以上约束条件建立如下模型:第一步:根据车载重相对最大化的基本思想。

可以分为两小步:分为两种满载方案:第1种为每个车次装载1单位A和2单位C;第2种是每个车次装载2个单位B。

并使每一车次在同一公司卸货。

满载运载方案如下表1:保证满足各公司对A需求量条件下,1C与1A搭配满足载重相对最大化方法运输;第二批次运输,我们使B材料有优先运输权,在此次运输我们满足各公司尚缺B材料的量小于或等于2个单位;第三批次运输剩下所需的货物。

具体运输方式:首先优先考虑A货物的处理方法,可知1公司还需1个车次的1A 和一个车次的1A1C,4公司还需要2个车次的1A,8公司还需要4个车次的1A和1个车次的1A1C;接着处理B货物,1公司和2公司共需要1个车次的2B,8公司和4公司共需要1个车次的2B;最后处理C货物,5、6、7公司共需要1个车次的6C。

由此可知共出车28次。

如下表2:费及时间如下表3:iii. 目标分析运费最小是货运公司调度运输车的目标,运费包括派车固定成本、从港口出车成本、载重费用和空载费用。

最后经过模型的计算得到最少费用为:元,最少耗时为:小时。

二、 问题二i. 车次规划模型的分析两个定理的证明定理一、车辆当且仅当运完最后一件货物时才调头途中允许调头,运输车可以先为较远的公司送去小件原料,然后调头,为比较近的公司送去大件。

从表面上看,这样运输能够节省车次,降低出车费用。

但我们通过分析,在本题中,载重调头运输并不能降低费用。

证明过程如下:在上图中,记O 点为港口,N 、M 为两公司。

M 到港口的距离是S1,NM 两个公司之间的距离为S2。

假设将两种货物a 和b (重量分别为x 吨、y 吨),分别运往N 和M 两公司,现有两种运输方案:1.若先运货a 、b 到N ,将a 卸到N ,调头返回,将货物b 运往M ,那么a 必为C 原料(x =1),b 为A 或B (34y ≤≤),记运费用为f 12.若先单独运送货物a 到N ,返回港口后,再次出车,将货物b 运往M ,即出车两次,记运费用为f 2。

两种方案需要的车辆相同时,为比较两种运输方式费用的大小,两种运输的种类质量均相同,记:12f f f =- 若f > 0恒成立,则载重调头送货不节省费用,通过数据处理提取函数: 因为 43y ≥≥ 并且N 、M 两公司在本题中的最小距离24s = 代入到 f 中,化简得到令 min 131.60.40f s =-< 得到 175s >而港口到所有公司最短路的最大值为29公里,所以min 0f >恒成立。

说明前一种花费较高。

方案二比方案一需要的车辆多时第二种方案是出车两次,运输时间较长,在8小时的工作时间内,可能会比调头载重运输时多安排车辆,派车费用增加。

我们考虑一种最差情况,因多运一次而增派一辆车,此时有得到 1s 29≥ 因为港口到所有公司的最短路径 129s ≤ 所以 min 0f ≥综上,载重调头运输花费较高。

证明了以运费用最小为目标时,车辆当且仅当运完最后一件货物时才调头。

定理一的推论:运载里程与空载里程相同(表四中的第28车次例外),且每次出车均不绕圈工作。

定理二、车辆载重行程是各公司到港口的最短路,且载重费用固定不变在定理一的基础上,车辆当且仅当运完最后一件货才调头,且每次出车均不绕圈工作,那么每一单位的原料都可以由最短路径运至需货公司。

我们变换视角,从宏观的角度看去,对8个公司所需货物的数量分别乘以公司和港口的最短距离和载重单价(元/吨公里)就是将货物运至公司的载重费用,载重费用因子:货物的数量、公司和港口的最短距离、载重单价都是定值,因此,载重费用是固定不变的。

车次规划阶段只涉及到载重费用、空载费用和港口出车费用。

运输途中可以掉头,即货车可以送完货沿原路返回港口。

ii. 模型建立根据问题一约束条件:在符合载重相对最大化情况下,①~④公司顺时针送货为最佳方案,⑤~⑧公司逆时针送货最佳方案。

此结论也可以适用货车可以掉头的情况。

加上上面两个定理,数学模型与问题一几乎相同,只是空载路径不同。

故同样分为两步骤:第一步分为两种满载方案:第1种为每个车次装载1单位A 和2单位C ;第2种是每个车次装载2个单位B 。

相关文档
最新文档