九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.1概率及其意义习题讲评课件新版华
人教版九年级上册第25章第二节第一课时《25.2.1用列举法求概率》赛课教案

第二十五章概率初步25.2用列举法求概率第1课时运用直接列举或列表法求概率教学内容:人教版九年级上册第25章第二节第一课时运用直接列举或列表法求概率学习目标:1.2. 学会正确“列表”表示出所有可能出现的结果.3. 知道如何利用“列表法”求随机事件的概率.会用“直接列举法”和“列表法”列举所有可能出现的结果.教学重难点重点:知道如何利用“列表法”求随机事件的概率.难点:会正确“列表”表示出所有可能出现的结果.教学方法教法:创设情景提问法、演示法、启发式教学.学法:小组合作、讨论交流.教学过程:一、情境导入1、12.4 H国家宪法日(PPT出示志愿者图片)(设计意图:通过宪法的导入, 让学生们了解宪法,增强法律意识)2、再由我校也将开展进社区宣传宪法的活动,向每班招募一名志愿者,但是小辛玉和安琪都想去,引出抛硬币活动,正面向上小车玉去,反面向上安琪去,学生判断公平的依据。
学生说概率公式P (A)=-n(设计意图:增强学生对社会的服务意识,复习旧知)3、当小车玉抛出硬币是正面,决定小车玉去参加活动时,安琪提出一人抛一枚硬币更公平。
老师提问:同时抛两枚硬币,怎么制定规则比较公平呢?(设计意图:引出本节课的主题:用列举法求概率)4、确定本节课的学习目标。
二、探索新知(一)用直接列举法求概率问题1:同时掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面朝上,一枚硬币反面朝上。
学生抛硬币,得出结论:抛掷两枚硬币的所有可能为:正正,正反,反正,反反请学生分别回答上面三个问题。
(学生做出判断,老师评价,及时表扬)(设计意图:由学生自己动手操作,得出结论,吸引学生的兴趣)问题2:如何制定规则,让小车玉和安琪都觉得公平呢?学生回答:落地后一正一反,小车玉赢;如果落地后两面一样,安琪赢.其他学生判断公平性。
(设计意图:使学生理解公平与概率之间的关系)问题3:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?学生以小组为单位讨论,并由小组汇报讨论结果。
华师版九年级数学上册作业课件(HS)第25 章 随机事件的概率 第1课时 概率及其意义

解:(1)∵成绩在80~90分(含80分,不含90分)的学生有3人,占抽查人 数的15%,∴被抽查的学生人数为3÷15%=20(人),则成绩在100~110 分的学生人数m=20-(2+3+7+3)=5 (2)这名学生成绩为优秀的概率为5+ 203 =25
(3)估计本次检测中该校初三年级数学成绩为优秀的人数为300×25 = 120(人)
5.(宜昌中考)在“践行生态文明,你我一起行动”主题有奖竞赛活动 中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类 别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇 参赛时抽到“生态知识”的概率是( B ) A.12 B.14 C.18 D.116
6.(2020·恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈 准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽 和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( D )
解:(1)根据题意,知白球有290×219 =10(个),红球和黑球总数为290 -10=280(个),设黑球有x个,则红球有(2x+40)个,∴x+2x+40= 280,解得x=80.故红球有2x+40=200(个) (2)80÷290=289 .答:从 袋中任取一个球是黑球的概率是289
14.(兰考期末)一个不透明的袋中装有5个黄球、13个黑球和22个红球, 它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率; (2)现从袋中取出若干个黑球,并放入相同的数量的黄球,搅拌均匀后使 从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?
3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的
一次函数的概率为_5___. 12
13.(眉山中考)一个口袋中放有290个涂有红、黑、白三种颜色的质地 相同的小球.若红球个数是黑球个数的2倍多40个,从袋中任取一个
华师大版数学九年级上册《25.2 随机事件的概率》教学设计

华师大版数学九年级上册《25.2 随机事件的概率》教学设计一. 教材分析《25.2 随机事件的概率》是华师大版数学九年级上册的一部分,主要介绍了随机事件的概率及其计算方法。
本节课的内容是学生学习概率的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
教材通过具体的案例和练习题,帮助学生理解和掌握概率的基本概念和计算方法。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于事件的分类和条件概率有一定的了解。
但是,对于随机事件的概率计算方法和更复杂事件的概率计算仍然存在一定的困难。
因此,在教学过程中需要注重学生的参与和实践,通过具体的例子和练习题,帮助学生理解和掌握概率的计算方法。
三. 教学目标1.了解随机事件的定义和特点,能够正确判断一个事件是否为随机事件。
2.掌握必然事件、不可能事件和随机事件的概念,能够区分不同类型的事件。
3.学会使用频率来估计事件的概率,并能够计算简单事件的概率。
4.能够应用概率的基本性质和计算方法,解决实际问题。
四. 教学重难点1.随机事件的定义和特点,以及与必然事件和不可能事件的区分。
2.频率与概率的关系,以及如何利用频率来估计概率。
3.简单事件的概率计算方法,包括互斥事件和独立事件的概率计算。
五. 教学方法1.讲授法:通过讲解和解释随机事件的定义和概率的计算方法,帮助学生理解和掌握相关概念。
2.案例分析法:通过具体的案例和例子,让学生亲身体验和观察事件的随机性,加深对随机事件的理解。
3.练习法:通过布置练习题和解答疑问,帮助学生巩固所学知识和提高解题能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,包括教材内容的展示、案例的分析、练习题的呈现等。
2.案例材料:准备一些具体的案例和例子,用于讲解和分析随机事件的概率。
3.练习题:准备一些练习题,包括简单事件的概率计算和实际问题的解决。
七. 教学过程1.导入(5分钟)通过一个简单的抽奖游戏,引起学生的兴趣,引入随机事件的定义和概率的概念。
华师大版数学九年级上册《25.2 随机事件的概率》教学设计2

华师大版数学九年级上册《25.2 随机事件的概率》教学设计2一. 教材分析《25.2 随机事件的概率》是华师大版数学九年级上册中的一章,主要介绍了随机事件的概率及其计算方法。
本章内容是在学生已经掌握了概率的基本概念和一些基本运算方法的基础上进行讲解的。
本节内容的学习,有助于学生更好地理解概率的内涵,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的概念和基本运算方法已经有了初步的认识。
但是,对于随机事件的概率的理解和计算仍然存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率模型,培养学生的建模能力。
三. 教学目标1.理解随机事件的概率的含义,掌握计算随机事件概率的基本方法。
2.能够从实际问题中抽象出概率模型,解决实际问题。
3.培养学生的建模能力和逻辑思维能力。
四. 教学重难点1.随机事件的概率的含义和计算方法。
2.从实际问题中抽象出概率模型。
五. 教学方法采用问题驱动的教学方法,引导学生从实际问题中出发,探索随机事件的概率的计算方法,并通过实例讲解,让学生加深对概率的理解。
同时,注重学生的合作交流,培养学生的团队协作能力。
六. 教学准备1.准备相关的实际问题,用于引导学生探索随机事件的概率。
2.准备PPT,用于展示问题和实例讲解。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考随机事件的概率的含义和计算方法。
问题:抛掷一枚硬币,正面朝上的概率是多少?2.呈现(10分钟)呈现PPT,展示各种实际问题,让学生尝试解决。
问题1:从一副扑克牌中随机抽取一张,抽到红桃的概率是多少?问题2:一个袋子里有5个红球,3个蓝球,2个绿球,随机抽取一个球,抽到红球的概率是多少?问题3:一个班级有30名学生,其中有18名女生,12名男生,随机选取一名学生,选到男生的概率是多少?3.操练(10分钟)学生分组讨论,尝试解决以上问题。
2024年人教版九年级数学上册教案及教学反思第25章25.1.2 概 率

25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大抽取的可能性大小相等,所以我们可以用15小.出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().m=p An事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=1;6(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=1;2(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=1.3出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)=2.3巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.(1)指向红色有3种等可能的结果,P(指向红色)=37;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=57;(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.3解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P (中奖号码数字相同)=110. 7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
华师版九年级数学上册作业课件(HS)第25 章 随机事件的概率 第2课时 频率与概率

2.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为 ( A) A.14 B.13 C.12 D.34
3.(大连中考)不透明袋子中装有红、绿小球各一个,除颜色外无其他 差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都 摸到红球的概率为( D )
A.23 B.12 C.13 D.14
解:(1)补图略 (2)49
10.(呼和浩特中考)某学习小组做“用频率估计概率”的试验时,统计了 某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验 最有可能的是( D ) A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个, 取到红球 B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数 C.先后两次掷一枚质地均匀的硬币,两次都出现反面 D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之 和是7或超过9
12.完成下表,利用你得到的结论解答下列问题:
(1)根据表中的数据填空; (2)估计这批柑橘损坏的概率为________,完好柑橘的概率是________; (结果精确到0.1) (3)如果某水果公司以1元/千克的成本购进20000 千克柑橘,则这批柑橘中 完好柑橘的质量是________; (4)若公司希望这批柑橘能够获利约9000元,则售价应定为多少元/千克? (结果精确到0.1) 解:(1)0.101 0.103 (2)0.1 0.9 (3)18000千克 (4)1.6元/千克
6.(2020·盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地 区1000名九年级男生的身高数据,统计结果如下:
根据以上是( C ) A.0.32 B.0.55 C.0.68 D.0.87
7.(2020·宜昌)技术变革带来产品质量的提升.某企业技术变革后,抽检 某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以 估计该产品合格的概率为____0_.9_9_____.(结果要求保留两位小数)
九年级数学上册 第25章 随机事件的概率 25.2 随机事件的概率 25.2.2 频率与概率课件

;
2、从1、2、3、4、5,6这6个数字中任取两个数 字组成(zǔ chénɡ)一个两位数,则组成(zǔ chénɡ)能被4整除 的数的概率是 ;
12/12/2021
第三页,共二十二页。
回味无穷(huíwèi wú qióng) w频率与概率(gàilǜ)的关系
当试验次数很大时,一个事件发生频率也 稳定在相应的概率附近.因此,我们可以 通过(tōngguò)多次试验,用一个事件发生的频 率来估计这一事件发生的概率.
不能,因为只有当重复实验次数大量增加时,事件发生的频率才稳定
在概率附近。
(2)抽检1000件衬衣,其中不合格(hégé)的衬衣有2件, 由此估计任抽一件衬衣合格(hégé)的概率是多少?
499/500
(3) 1998年,在美国密歇根州汉诺城市的一个农场里出生 了1头白色的小奶牛,据统计,平均出生1千万头牛才 会有1头是白色的,由此估计(gūjì)出生一头奶牛为白色 奶牛的概率是多少?
第十二页,共二十二页。
练一练
2.有两双手套,形状、大小,完全相同,只有颜色不同
(bù tónɡ)。黑暗中,任意抽出两只配成一双的概率是多少?
分析 假设两双手套的颜色(yánsè)分别为红黑,如下分析
: (fēnxī)
红1
黑1 黑2
红1
黑2
黑1
红2 黑1 黑1 红1 黑2 红1
红2
黑2
红2
红2
P(配成一双) = 4 = 1
第十八页,共二十二页。
知识点 3:用频率估计概率 4.绿豆在相同条件下的发芽试验,结果如下表所示:
则绿豆发芽的概率估计值是(B )
A.0.96 B.0.95 C.0.94 D.0.90
九年级数学上册第25章随机事件的概率25

(2)若得到的两数字之和是3的倍数,则小杰赢;若 得到的两数字之和是7的倍数,则小玉赢,此游 戏公平吗?为什么? 解:此游戏公平,理由:列出得到的两数字之和
的所有可能的结果如下:
共有 9 种等可能的结果,其中“和为 3 的倍数”的有 3 种, “和为 7 的倍数”的有 3 种,∴P(小杰赢)=39=13,P(小玉 赢)=39=13.因此游戏是公平的.
学习延伸
一、与同学们讨论下各自的学习心得 二、老师们指点下本课时的重要内容
课后延伸
给自己一份,悠然前行。 为了看阳光,我来到这世上; 为了与阳光同行,我笑对忧伤。
学习延伸
第25章 随机事件的概率
25.2. 3
列举所有机会均等的结果
目标三 用概率判断游戏规则 的公平性
习题链接
温馨提示:点击 进入讲评
1 2 3 4
答案呈现
【2020·德阳】为了加强学生垃圾分类意识,某校对学 1
生进行了一次系统全面的垃圾分类宣传.为了解这次 宣传的效果,从全校学生中随机抽取部分学生进行了 一次测试,测试结果共分为四个等级:A.优秀;B.良 好;C.及格;D.不及格.根据 调查统计结果,绘制了如下 所示的不完整的统计表.
解:(m,n)所有可能出现的结果:(1,1),(1,2), (1,3),(2,1),(2,2),(2,3),(3,1),(3,2), (3,3).
(2)甲、乙两人玩游戏,规则如下:按上述要求, 两人各抽一次卡片,卡片上数字之和为奇数则 甲赢,数字之和为偶数则乙赢.你认为这个游 戏公平吗?请说明理由.
数字(若指针指在分界线上则重转),小玉再从瓶子中随机 取出一个小球,记下小球上的数字.
(1)请用列表或画树状图的方法(选其中一种)表示出所有可 能出现的结果.