2017九年级数学二次函数的应用5.doc
2017年中考数学备考专题复习二次函数的应用含解析

二次函数的应用一、单选题(共12题;共24分)1、(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A、1或﹣5B、﹣1或5C、1或﹣3D、1或32、(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A、y=﹣(x﹣)2﹣B、y=﹣(x+ )2﹣C、y=﹣(x﹣)2﹣D、y=﹣(x+ )2+3、(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A、当a=1时,函数图象过点(﹣1,1)B、当a=﹣2时,函数图象与x轴没有交点C、若a>0,则当x≥1时,y随x的增大而减小D、若a<0,则当x≤1时,y随x的增大而增大4、(2016•黄石)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A 、b≥B、b≥1或b≤﹣1C、b≥2D、1≤b≤25、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A、y=60(300+20x)B、y=(60﹣x)(300+20x)C、y=300(60﹣20x)D、y=(60﹣x)(300﹣20x)6、(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④ <a<⑤b>c.其中含所有正确结论的选项是()A、①③B、①③④C、②④⑤D、①③④⑤7、(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A、y=(x﹣2)2+3B、y=(x﹣2)2+5C、y=x2﹣1D、y=x2+48、(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A 、B 、C 、D 、9、(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2﹣4ac>0,其中正确的个数是()A、1B、2C、3D、410、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、011、(2016•攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A、2a﹣b=0B、a+b+c>0C、3a﹣c=0D、当a= 时,△ABD是等腰直角三角形12、(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A 、B 、C 、D 、二、填空题(共5题;共5分)13、(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.14、(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.15、(2016•大庆)直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为________.16、(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是________.17、(2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是________ (只填写序号).三、综合题(共5题;共65分)18、(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.19、(2016•义乌)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.20、(2016•连云港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B (2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N 的坐标.21、(2016•扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.22、(12分)(2016•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.答案解析部分一、单选题【答案】B【考点】二次函数的最值【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【分析】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+ ,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+ ﹣3=﹣(x﹣)2﹣.故选A.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【答案】D【考点】二次函数的图象,二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.【答案】A【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∴抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,∵二次项系数a=1,∴抛物线开口方向向上,∴b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥ ;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1, x2,∴x1+x2=2(b﹣2)≥0,b2﹣1≥0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1>0,③由①得b<,由②得b>2,∴此种情况不存在,∴b≥ ,故选A.【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b 的不等式组解决问题.【答案】B【考点】根据实际问题列二次函数关系式【解析】【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【答案】D【考点】二次函数的性质【解析】【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴ =1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴ >a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.【答案】C【考点】二次函数图象与几何变换【解析】【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x= >0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,对称轴x= <0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x= >0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】D【考点】二次函数图象与系数的关系【解析】【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y= x2﹣x﹣,把x=1代入得y= ﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C错误;由a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).【答案】A【考点】二次函数的图象,二次函数的应用【解析】【解答】解:S△AEF = AE×AF= x2, S△DEG = DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+ x+ ,则y=4×(﹣x2+ x+ )=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题【答案】(1,4)【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】(0,4)【考点】二次函数的性质,一次函数的性质【解析】【解答】解:∵直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,∴kx+b= ,化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴ ,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【分析】根据直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k 的乘积为﹣1.【答案】P>Q【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c <0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q 的值.本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.【答案】②【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征【解析】【解答】解:由题意二次函数图象如图所示,∴a<0.b<0,c>0,∴abc>0,故①正确.∵a+b+c=0,∴c=﹣a﹣b,∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又∵x=﹣1时,y>0,∴a﹣b+c>0,∴b﹣a<c,∵c>O,∴b﹣a可以是正数,∴a+3b+2c≤0,故②错误.故答案为②.∵函数y′= x2+x= (x2+ x)= (x+ )2﹣,∵ >0,∴函数y′有最小值﹣,∴ x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,∵x1•1= =﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又a﹣b+c>0,所以b﹣a<c,故b﹣a可以是正数,由此可以周长判断.③正确.利用函数y′= x2+x= (x2+ x)= (x+ )2﹣,根据函数的最值问题即可解决.④令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,则x1•1= =﹣,求出x1即可解决问题.本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.三、综合题【答案】(1)解:把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0)(2)解:①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD = •4•t + •8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△CDF=﹣(7﹣3)2+25=9,∴此时S=2S△CDF=18.【考点】待定系数法求二次函数解析式,与二次函数有关的动态几何问题【解析】【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.【答案】(1)解:由已知可得:AD= ,则S=1× m2(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大【考点】二次函数的应用【解析】【分析】此题考查二次函数的应用,关键是利用二次函数的最值解答.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【答案】(1)解:把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,故抛物线的函数表达式为y= x2﹣x,∵BC∥x轴,设C(x0, 2).∴ x02﹣x0=2,解得:x0=﹣或x0=2,∵x0<0,∴C(﹣,2)(2)解:设△BCM边BC上的高为h,∵BC= ,∴S△BCM = •h= ,∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y= x2﹣x=0,解得:x1=0,x2= ,∴M1(0,0),M2(,0),令y= x2﹣x=4,解得:x3= ,x4=,∴M3(,0),M4(,4),综上所述:M点的坐标为:(0,0),(,0),(,0),(,4)(3)解:∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2),∴OB=2 ,OA= ,OC= ,∴∠AOD=∠BOD=45°,tan∠COD= ,①如图1,当△AOC∽△BON时,,∠AOC=∠BON,∴ON=2OC=5,过N作NE⊥x轴于E,∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,在Rt△NOE 中,tan∠NOE=tan∠COD= ,∴OE=4,NE=3,∴N(4,3)同理可得N(3,4);②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN,∴BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,∴NF⊥BF,∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD= ,∴BF=4,NF=3,∴N(﹣1,﹣2),同理N(﹣2,﹣1),综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).【考点】二次函数的性质,相似三角形的性质,与二次函数有关的动态几何问题【解析】【分析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y= x2﹣x,由于BC∥x轴,设C(x0, 2).于是得到方程x02﹣x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y= x2﹣x=0,或令y= x2﹣x=4,解方程即可得到结论;(3)解直角三角形得到OB=2 ,OA= ,OC= ,∠AOD=∠BOD=45°,tan∠COD= ①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x 轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.【答案】(1)解:∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x(2)解:由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2 ,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+ ,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+ ,4)或(1﹣,4).(3)解:设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,由解得,∴OM= = ,ON=m• ,∴ = ,∴k= 时,= .∴当k= 时,点T运动的过程中,为常数.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题【考点】待定系数法求二次函数解析式,二次函数与一次函数的交点问题【解析】【分析】(1)利用待定系数法即可解决问题(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.【答案】(1)解:△ABC为直角三角形,当y=0时,即﹣x2+ x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3 ,0),∴O A= ,OB=3 ,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3 ﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形(2)解:如图,∵B(3 ,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+ a+3),∴G(a,﹣a+3),∴PG=﹣a2+ a,设点D的横坐标为x D, C点的横坐标为x C,S△PCD = ×(x D﹣x C)×PG=﹣(a﹣)2+ ,∵0<a<3 ,∴当a= 时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y= x+ ,当x=0时,y= ,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH= ,P′H= ,AP′= ,∴点Q运动得最短路径长为PM+MN+AN= + = ;(3)解:在Rt△AOC中,∵tan∠OAC= = ,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2 ,∴A′E′=AE=2 ,∵直线AE的解析式为y= x+2,设点E′(a,a+2),∴A′(a﹣2 ,﹣2)∴C1E′2=(a﹣2 )2+(+2﹣)2= a2﹣a+7,C1A′2=(a﹣2 ﹣)2+(﹣2﹣)2= a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7= a2﹣a+49,∴a= ,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1= ,a2= ,∴E′(,7+ ),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1= ,a2= (舍),∴E′(,3+ ),即,符合条件的点E′(,5),(,7+ ),或(,7﹣),(,3+ )【考点】二次函数的最值,勾股定理的逆定理,与二次函数有关的动态几何问题【解析】【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC 是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.此题是二次函数综合题,主要考查了函数极值的确定方法,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质,解本题的关键是分类讨论,也是解本题的难点.。
九年级数学辅导: 二次函数的应用

二次函数的应用【知识要点】二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少能运用二次函数的图像和性质解决一些贴近生活的实际问题.在解决实际问题时,首先要认真阅读题目,审清题意,建立数学模型,转化为数学问题进行求解,最后得到实际问题的解.在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决。
步骤:第一步设自变量;第二步建立函数的解析式;第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(注意:在自变量的取值范围内)。
【经典例题】例1.(2006年旅顺口区)如图,已知边长为4的正方形截去一个角后成为五边形ABCDE,其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.例2.某产品每件成本10元,试销阶段每件产品的销售价x(元)•与产品的日销售量y(件)之间的关系如下表:x(元)15 20 30 …y(件)25 20 10 …若日销售量y是销售价x(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?例3.一个球从地面上竖直向上弹起时的速度为10m/s,经过t(s)时求的高度为h(m)。
已知物体竖直上抛运动中,h=v0t-12gt2 (v0表示物体运动上弹开始时的速度,g表示重力系数,取g=10m/s2)。
问(1)球从弹起至回到地面需多少时间?(2)经多少时间球的高度达到3.75m?例4.B船位于A船正东26km处,现在A、B两船同时出发,A船以每小时12km 的速度朝正北方向行驶,B船以每小时5km的速度向正西方向行驶,何时两船相距最近?最近距离是多少?例5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件)。
在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面1023米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。
九年级数学二次函数的应用

பைடு நூலகம்
早晨起床梳洗,望着镜中的脸,竟是一张不再熟悉而陌生的脸。痴痴的注视着镜中的黄黄的带点沧桑的脸。竟似忘了时间,忘了自己。莫名的生出许多的疑问来:你是谁?你怎么跑到我家来刷牙?我好 像在哪儿见过你吧。为何对你有似曾相识的熟悉。我却已记不起。你还记得吗?你认的出我谁么?接连的问题,无一回答。梆,梆,梆洗手间的门被拍打的很响声。接着听到小王子的叫嚷声:妈妈妈妈, 素素素素,你到底好了没有啊,我要尿尿,快要忍不住了。好似有些不耐烦的语气。我霎地的回过神来,用冰冷的水泼了泼脸,开门出去。让他进去尿尿,梳洗。
我静静地感受雪的绽放,看它发于水,积于云,绽于木,落于地,凝在我心头。优游 自然,除却今日,在静夜绽放的,还有明月。明月自然有,红月不多得。曾经,在月圆后的一个静夜里,我看见一轮火红的月亮,才露出山头,羞怯般与我对望。看过月全食时的红月亮,倒不是这般的 红。多次望月,不曾见如此绽放的红月亮。我不知为何有如此红月,更不知月为何如此般红,难道在它平静的表面下也有不安与躁动?待月升高时,它便依然皎洁了。 在静夜里,绽放的还有流星。它闪过天际,留下短暂的明亮。我不知道它是上天送信的白驹,还是群星舞动的剑气,若生命如此闪亮,哪怕如此短促! 在静夜里,一同绽放的还有我的思想。夜,消逝了光与噪,滤去了华与奢。我相信,夜是一种精灵,在人们熟睡时,它会剥去虚拟的外衣,摘下伪善的面具,赤裸于世间,在睡梦中展示每个人的真实。 我在静夜里与大自然对话,感受时间的流淌,绽放我的思想。我采撷自然的雨露,历经社会的碰撞,体味人生的酸甜,绽两三花瓣,发一缕幽香,与雪 二〇一四正月初七夜
九年级上册数学 人教版二次函数的实际应用

二次函数的实际应用错题回顾1、m为何值时,抛物线y=(m-1)x2+2mx+m-1与x轴没有交点?2、当m取何值时,抛物线y=x2与直线y=x+m(1)有公共点;(2)没有公共点.3、已知抛物线y=-x2-(m-4)x+3(m-1)与x轴交于A,B两点,求m的取值范围.5、写出二次函数的三种形式握手问题公式病毒传播 增长率1、二次函数与一元二次方程的关系:抛物线2(0)y ax bx c a =++≠与x 轴的交点的横坐标12,x x 是一元二次方程 的根.2、(1)当24b ac - 0 时,方程20(0)ax bx c a ++=≠有两个不相等的实数根,二次函数2(0)y ax bx c a =++≠与x 轴有 个不同的交点;(2)当24b ac -=0 时,方程20(0)ax bx c a ++=≠有 根,二次函数2(0)y ax bx c a =++≠与x 轴有 个交点;(3)当24b a c - 0 时,方程20(0)ax bx c a ++=≠没有实数根,二次函数2(0)y ax bx c a =++≠与x 轴 交点;课题:二次函数的实际应用知识点一:利用二次函数求图形面积是最值问题在日常生活中,经常遇到求某种图形的面积最大等问题,这类问题可以利用二次函数的图形和性质进行解决,也就是把面积最大问题转化为二次函数的最大值问题。
求图形的面积实测会涉及线段及线段之间的关系,同城是根据图形中线段的关系,找到相应线段与面积之间的函数关系式,转化为函数问题,就可以用函数的图象性质来解决。
解这类题时要注意自变量的取值范围,保证自变量和函数具有实际意义。
例1、在环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边..用总长为40m 的栅栏围成,若设花园平行于墙的一边BC 的长为()x m ,花园的面积为2()y m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围。
初中数学二次函数应用题型分类——抛物线形物体问题5(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题5(附答案)1.一同学推铅球,铅球高度y(m)关于时间x(s)的函数表达式为y=ax 2+bx(a≠0).若铅球在第7秒与第14秒时的高度相等,则在第m 秒时铅球最高,则m 的值为( ) A .7B .8C .10.5D .212.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A .篮圈中心的坐标是()4,3.05B .此抛物线的解析式是21 3.55y x =-+ C .此抛物线的顶点坐标是()3.5,0 D .篮球出手时离地面的高度是2m3.如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t ﹣5t 2.下列叙述正确的是( )A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m4.一学生推铅球,铅球行进的高度()y m 与水平距离()x m 之间的关系为21251233y x x =-++,则学生推铅球的距离为( ) A .35m B .3mC .10mD .12m飞行的高度()h m 与发球后球飞行的时间()t s 满足关系式22 1.5h t t =-++,则该运动员发球后1s 时,羽毛球飞行的高度为( ) A .1.5mB .2mC .2.5mD .3m6.铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为y =-112x 2+23x +53.则该运动员此次掷铅球的成绩是( ) A .6 mB .12 mC .8 mD .10 m7.从地面竖直向上先后抛出两个小球,小球的高度h (单位:)m 与小球运动时间t (单位:)s 之间的函数关系式为240(3)409h t =--+,若后抛出的小球经过2.5s 比先抛出的小球高103m ,则抛出两个小球的间隔时间是( )s A .1 B .1.5 C .2 D .2.58.一个运动员打高尔夫球,若球的飞行高度y (m )与水平距离x (m )之间的函数表达式为:y 150=-(x ﹣25)2+12,则高尔夫球在飞行过程中的最大高度为( )m . A .12B .25C .13D .149.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定10.如图,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y =﹣22531312x x ++,则此运动员把铅球推出多远( )11.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是______m .12.如图,是一学生掷铅球时,铅球行进高度()y cm 的函数图象,点B 为抛物线的最高点,则该同学的投掷成绩为________米.13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则他将铅球推出的距离是__________m .14.校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度()y m 与水平距离(m)x 之间的函数关系式为21251233y x x =-++,小明这次试掷的成绩是__________.15.从地面竖直向上抛出一小球,小球离地面的高度h (米)与小球运动时间t (秒)之间关系是h=30t ﹣5t 2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是______米. 16.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管的长为_____.17.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是()2510042y x x x =-+≤≤.水珠可以达到的最大高度是________(米).18.某运动员对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该运动员此次实心球训练的成绩为____米.19.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y =﹣5x 2+20x ,在飞行过程中,当小球的行高度为15m 时,则飞行时间是_____.20.如图,铅球运动员掷铅球的高度y (m )与水平距离x (m )之间的函数关系式是y=﹣112x 2+23x+53,则该运动员此次掷铅球的成绩是_____ m .21.一个斜抛物体的水平运动距离为x (m ),对应的高度记为h (m ),且满足h =ax 2+bx ﹣2a (其中a≠0).已知当x =0时,h =2;当x =10时,h =2. (1)求h 关于x 的函数表达式;(2)求斜抛物体的最大高度和达到最大高度时的水平距离.22.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是53m . (1)求羽毛球经过的路线对应的函数关系式; (2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为3124m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.23.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示. ()1求演员弹跳离地面的最大高度;()2已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.24.小明跳起投篮,球出手时离地面m ,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m 处达到最高度4m .已知篮筐中心距地面3m ,与球出手时的水平距离为8m ,建立如图所示的平面直角坐标系. (1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?25.在一次篮球比赛中,如图队员甲正在投篮.已知球出手时离地面209m ,与篮圈中心的水平距离为7 m ,球出手后水平距离为4 m 时达到最大高度4 m ,设篮球运行轨迹为抛物线,篮圈距地面3 m.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,对方队员乙在甲面前1 m 处跳起盖帽拦截,已知乙的最大摸高为3.1 m ,那么他能否获得成功?26.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,如果每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球从发射出到第一次落在桌面的运行过程中,设乒乓球与端点A的水平距离为x(米),距桌面的高度为y (米),运行时间为t(秒),经多次测试后,得到如下部分数据:t(秒)0 0.16 0.2 0.4 0.6 0.64 0.8 …x(米)0 0.4 0.5 1 1.5 1.6 2 …y(米)0.25 0.378 0.4 0.45 0.4 0.378 0.25 …(1)如果y是t的函数,①如图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;②当t为何值时,乒乓球达到最大高度?(2)如果y是关于x的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?27.在一场篮球比赛中,一名球员在关键时刻投出一球,已知球出手时离地面高2米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,已知篮球运行的轨迹为抛物线,篮圈中心距离地面3.19米.(1)以地面为x轴,篮球出手时垂直地面所在直线为y轴建立平面直角坐标系,求篮球运行的抛物线轨迹的解析式;(2)通过计算,判断这个球员能否投中?28.如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.()1在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)()2守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?29.初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?30.如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.(1)a=,c=;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?参考答案1.C 【解析】 【分析】由由第7秒和第14秒的高度相同,知道这两个点是关于抛物线的对称轴对称的,从而求出抛物线的对称轴,知道顶点的横坐标,得到答案. 【详解】解:由第7秒和第14秒的高度相同,知道抛物线的对称轴为7142122x +==, 所以顶点的横坐标为212,即函数取得最大值,铅球最高时的时间,所以10.5m =. 故选C . 【点睛】本题考查的是抛物线的性质,掌握抛物线上纵坐标相等的两个点是关于抛物线对称轴对称的是关键. 2.A 【解析】 【分析】设抛物线的表达式为y=ax 2+3.5,依题意可知图象经过的坐标,由此可得a 的值,可判断A ;根据函数图象可判断B 、C ;设这次跳投时,球出手处离地面hm ,因为求得21 3.55y x =-+,当x=-2,5时,即可判断D . 【详解】解:A 、∵抛物线的顶点坐标为(0,3.5), ∴可设抛物线的函数关系式为y=ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5, ∴a=15-, ∴21 3.55y x =-+,故本选项正确; B 、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误; C 、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误; D 、设这次跳投时,球出手处离地面hm ,因为(1)中求得y=-0.2x2+3.5,∴当x=-2.5时,h=-0.2×(-2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m,故本选项错误.故选:A.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.3.C【解析】【分析】直接利用h=15以及结合配方法求出二次函数最值分别分析得出答案.【详解】A、当h=15时,15=20t﹣5t2,解得:t1=1,t2=3,故小球的飞行高度能达到15m,故此选项错误;B、h=20t﹣5t2=﹣5(t﹣2)2+20,故t=2时,小球的飞行高度最大为:20m,故此选项错误;C、∵h=0时,0=20t﹣5t2,解得:t1=0,t2=4,∴小球从飞出到落地要用时4s,故此选项正确;D、当t=1时,h=15,故小球飞出1s时的飞行高度为15m,故此选项错误;故选C.此题主要考查了二次函数的应用,灵活运用所学知识是解题关键.4.C【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 令函数式21251233y x x =-++中,y =0, 即21251233x x -++=0, 解得1210,2x x ==- (舍去),即铅球推出的距离是10m.故选C.【点睛】考查二次函数的应用以及函数式中自变量与函数表达式的实际意义,需要结合题意. 5.C【解析】【分析】根据函数关系式,求出t=1时的h 的值即可.【详解】22 1.5h t t =-++∴t=1s 时,h=-1+2+1.5=2.5故选C.【点睛】本题考查了二次函数的应用,知道t=1时满足函数关系式是解题的关键.6.D【解析】【分析】依题意,该二次函数与x 轴的交点的x 值为所求.即在抛物线解析式中.令y=0,求x 的正【详解】把y=0代入y=-112x 2+23x+53得: -112x 2+23x+=0, 解之得:x 1=10,x 2=-2.又x >0,解得x=10.故选D .7.B【解析】【分析】把t=2.5代入240(3)409h t =--+,求得3509h =,当35010320939h =-=时,解方程即可得出结论.【详解】解:把t=2.5代入240(3)409h t =--+,得3509h =, 当35010320939h =-=时,即240320(3)4099t --+=, 解得 t=4或t=-2(不合题意,舍去)∴抛出两个小球间隔的时间是4-2.5=1.5.故选B.【点睛】本题主要考查了二次函数的应用,正确理解题意是解题的关键.8.A【解析】【分析】直接根据二次函数的图象及性质即可得出答案.【详解】解:∵y 150=-(x ﹣25)2+12, 顶点坐标为(25,12), ∵150-<0, ∴当x =25时,y 有最大值,最大值为12.故选:A .【点睛】本题主要考查二次函数的最大值,掌握二次函数的图象和性质是解题的关键.9.C【解析】分析:(1)将点A (0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x =9和x =18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A (0,2)代入2(6) 2.6y a x =-+,得:36a +2.6=2, 解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x =9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网, 当x =18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.10.B【解析】【分析】令y =﹣22531312x x ++=0,解得符合题意的x 值,则该值为此运动员把铅球推出的距离,据此可解.【详解】解:令y =﹣22531312x x ++=0 则:x 2﹣8x ﹣20=0∴(x+2)(x ﹣10)=0∴x 1=﹣2(舍),x 2=10由题意可知当x =10时,符合题意故选:B.【点睛】本题考查二次函数的实际应用,利用数形结合思想解题是本题的关键.11.10【解析】【分析】要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令0y =,求出x 的值,x 的正值即为所求.【详解】 在函数式21(4)312y x =--+中,令0y =,得 21(4)3012x --+=,解得110x =,22x =-(舍去), ∴铅球推出的距离是10m.【点睛】 本题是二次函数的实际应用题,需要注意的是21(4)312y x =--+中3代表的含义是铅球在起始位置距离地面的高度;当0y =时,x 的正值代表的是铅球最终离原点的距离.12.(4+【解析】【分析】根据函数的顶点B 的坐标设解析式为y =a (x −4)2+3,把(0,2)代入得出2=a (0−4)2+3,求出a ,得出函数的解析式是21(4)316y x =--+,把y =0代入解析式,求出方程的解即可. 【详解】∵函数的图象的最高点是B ,B 的坐标是(4,3),∴设函数的解析式是y =a (x −4)2+3,∵图象过(0,2)点,∴代入得:2=a (0−4)2+3, 解得:116a =-, ∴函数的解析式是21(4)316y x =--+, 把y =0代入解析式得:210(4)316x =--+,解得:1244x x =+=-∴(4A +,故答案为(4+【点睛】考查二次函数在实际问题中的应用,掌握待定系数法求二次函数解析式是解题的关键.. 13.10【解析】【分析】令y=0时求出x 的值,保留正值,即为该男生将铅球推出的距离.【详解】解:当y=0时,2125=01233x x -++, 解方程得,x 1=10,x 2=-2(负值舍去),∴该男生把铅球推出的水平距离是10 m .故答案为:10.【点睛】本题考查了二次函数在实际问题中的应用,可以用配方法写成顶点式求得;同时本题还考查了二次函数与一元二次方程的关系及解一元二次方程,本题属于中档题.14.10米【解析】【分析】根据题意,将y=0代入解析式中,求出x 的值即可.【详解】解:将y=0代入21251233y x x =-++中,得 212501233x x -++= 解得:1210,2x x ==-(不符合实际,舍去)∴小明这次试掷的成绩是10米故答案为:10米.【点睛】此题考查的是二次函数的应用,掌握x 和y 的实际意义和一元二次方程的解法是解决此题的关键.15.50【解析】【分析】根据题目中的函数解析式可以求得h 的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h =30t−5t 2=−5(t−3)2+45(0≤t≤6),∴当t =3时,h 取得最大值,此时h =45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=50(米), 故答案为:50.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.16.2.25m .【解析】【分析】设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x ≤3),将(3,0)代入求得a 值,则x=0时得y 值即为水管的长.【详解】解:由于在距池中心的水平距离为1m 时达到最高,高度为3m ,则设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x ≤3),代入(3,0)求得:a =34-, 将a 值代入得到抛物线的解析式为:y =34-(x ﹣1)2+3(0≤x ≤3), 令x =0,则y =94=2.25. 则水管长为2.25m .故答案为:2.25m .【点睛】本题主要考查了二次函数的应用,掌握二次函数的应用是解题的关键.17.10【解析】【分析】将一般式转化为顶点式,依据自变量的变化范围求解即可.【详解】 解:()()222555104210222y x x x x x =-+=--=--+,当x=2时,y 有最大值10, 故答案为:10.【点睛】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值.18.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】当y=0时,212501233x x -++= 解得,x=-2(舍去),x=10.故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.19.1s 或3s【解析】【分析】根据题意可以得到15=﹣5x 2+20x ,然后求出x 的值,即可解答本题.【详解】∵y=﹣5x 2+20x ,∴当y=15时,15=﹣5x 2+20x ,得x 1=1,x 2=3,故答案为1s 或3s .【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.20.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】 解:在21251233y x x =-++中,当y=0时, 212501233x x -++= 整理得:x 2-8x-20=0,(x-10)(x+2)=0,解得x 1=10,x 2=-2(舍去),即该运动员此次掷铅球的成绩是10m .故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.21.(1)h =﹣x 2+10x+2;(2)斜抛物体的最大高度为27,达到最大高度时的水平距离为5.【解析】【分析】(1)将当x =0时,h =2;当x =10时,h =2,代入解析式,可求解;(2)由h =−x 2+10x +2=−(x−5)2+27,即可求解.【详解】(1)∵当x =0时,h =2;当x =10时,h =2.∴222100102a a b a =-⎧⎨=+-⎩解得:110a b =-⎧⎨=⎩ ∴h 关于x 的函数表达式为:h =﹣x 2+10x+2;(2)∵h =﹣x 2+10x+2=﹣(x ﹣5)2+27,∴斜抛物体的最大高度为27,达到最大高度时的水平距离为5.【点睛】本题考查了二次函数的应用,求出二次函数的解析式是本题的关键.22.(1)215(4)243y x =--+;(2)此球能过网,见解析;(3)2m 【解析】【分析】(1)依题意,函数图象的顶点坐标为(4,53),则可设函数的解析式为:25(4)3y a x =-+,再由点(0,1)在抛物线上,代入求得a 即可(2)将x =5代入所求的函数解析式,求得y 即可判断;(3)将y =3124代入函数解析式求得x ,即可求出乙与球网的水平距离. 【详解】解(1)依题意,函数图象的顶点坐标为54,3⎛⎫ ⎪⎝⎭, 故设函数的解析式为:25(4)3y a x =-+,∵点(0,1)在抛物线上,∴代入得251(04)3a =-+, 解得124a =-, 则羽毛球经过的路线对应的函数关系式为:215(4)243y x =--+; (2)由(1)知羽毛球经过的路线对应的函数关系式为215(4)243y x =--+, 则当5x =时,21513(54) 1.6252438y =-⨯-+==, ∵1.625 1.55>,∴此球能过网;(3)由(1)知羽毛球经过的路线对应的函数关系式为215(4)243y x =--+, 当3124y =时,有23115(4)24243x =--+, 解得11x =(舍去),27x =,∴此时乙与球网的水平距离为:752m -=.【点睛】本题考查了二次函数在实际生活中的应用,利用待定系数法求出羽毛球经过的路线对应的函数关系式是解题的关键.23.(1) 194;(2)能成功;理由见解析. 【解析】【分析】(1)将抛物线解析式整理成顶点式,可得最大值,即为最大高度;(2)将x=4代入抛物线解析式,计算函数值是否等于3.4进行判断.【详解】 (1)y=-35x 2+3x+1=-35252x ⎛⎫- ⎪⎝⎭+194 ∵-35<0,∴函数的最大值是194.答:演员弹跳的最大高度是194米.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.【点睛】此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.24.(1)y=;(2)不能正中篮筐中心;3米.【解析】试题分析:(1)根据顶点坐标(4,4),设抛物线的解析式为:y=,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心.试题解析:(1)设抛物线为y=,将(0,)代入,得=,解得a=,∴所求的解析式为y=;(2)令x=8,得y==≠3,∴抛物线不过点(8,3),故不能正中篮筐中心;∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移个单位长度,故小明需向上多跳m再投篮(即球出手时距离地面3米)方可使球正中篮筐中心.考点:二次函数的应用.25.(1)能准确投中(2)能获得成功【解析】【分析】(1)根据条件先确定抛物线的解析式,然后令x=7,求出y的值,与3m比较即可作出判断;(2)将x=1代入抛物线的解析式,求出y的值与3.1比较大小即可.【详解】解:(1)由题意可得抛物线的顶点为(4,4),出手点为(0,209),设2()y a x h k=-+,则h=4,k=4,然后把点(0,209)代入解析式得19a=-,所以()21449y x=--+,当x=7时,y=3,所以此球能准确投中.(2)当x=1时,y=3<3.1,他能获得成功.考点:二次函数的应用26.(1)①见解析;②t=0.4(秒),乒乓球达到最大高度;(2)52 m.【解析】【分析】(1)①根据描出了上表中y与t各对对应值为坐标的点,画出该函数的图象即可;②利用网格中数据直接得出乒乓球达到最大高度时的时间;(2)首先求出函数解析式,进而求出乒乓球落在桌面时,与端点A的水平距离.【详解】解:(1)①如图所示,②由表格中数据可得,t=0.4(秒),乒乓球达到最大高度;(2)由表格中数据,可设y=a(x﹣1)2+0.45,将(0,0.25)代入,可得:a=﹣15,则y=﹣15(x﹣1)2+0.45,当y=0时,0=﹣15(x﹣1)2+0.45,解得:x1=52,x2=﹣12(舍去),即乒乓球与端点A 的水平距离是52m .【点睛】考点:二次函数的应用.27.(1)21(4)48y x =-+;(2)不能投中 【解析】【分析】(1)根据题意可得抛物线的顶点,设函数的顶点式,再将(0,2)代入,求得二次项系数,从而可得抛物线的解析式;(2)判断当x =7时,函数值是否等于3.19即可.【详解】(1)依题意得抛物线顶点为(4,4),则设抛物线的解析式为y =a (x ﹣4)2+4依题意得抛物线经过点(0,2)∴a (0﹣4)2+4=2解得18a =- ∴抛物线的解析式为21(4)48y x =-+ (2)当x =7时,21(4)48y x =-+=23 3.198≠ ∴这个球员不能投中.【点睛】本题考查了二次函数解析式的求法以及实际应用,关键是求得函数的解析式,借助二次函数解决实际问题.28.(1)能射中球门;(2)他至少后退0.4m,才能阻止球员甲的射门.【解析】【分析】(1)、根据条件可以得到抛物线的顶点坐标是(4,3),利用待定系数法即可求得函数的解析式;(2)、求出当x=2时,抛物线的函数值,与2.52米进行比较即可判断,再利用y=2.52求出x的值即可得出答案.【详解】(1)、抛物线的顶点坐标是(4,3),设抛物线的解析式是:y=a(x-4)2+3,把(10,0)代入得36a+3=0,解得a=-112,则抛物线是y=-112(x-4)2+3,当x=0时,y=-112×16+3=3-43=53<2.44米,故能射中球门;(2)当x=2时,y=-112(2-4)2+3=83>2.52,∴守门员乙不能阻止球员甲的此次射门,当y=2.52时,y=-112(x-4)2+3=2.52,解得:x1=1.6,x2=6.4(舍去),∴2-1.6=0.4(m),答:他至少后退0.4m,才能阻止球员甲的射门.【点睛】本题主要考查了待定系数法求二次函数的解析式,以及二次函数的应用,属于中等难度的题型.根据题意得出函数的顶点坐标,求得函数解析式是解题的关键.29.(1)y=−19(x−4)2+4;能够投中;(2)能够盖帽拦截成功.【解析】【分析】(1)根据题意可知:抛物线经过(0,209),顶点坐标是(4,4),然后设出抛物线的顶点式,将(0,209)代入,即可求出抛物线的解析式,然后判断篮圈的坐标是否满足解析式即可;(2)当1x 时,求出此时的函数值,再与3.1m比较大小即可判断. 【详解】解:由题意可知,抛物线经过(0,209),顶点坐标是(4,4).设抛物线的解析式是()244y a x =-+, 将(0,209)代入,得()2200449a =-+ 解得19a =-, 所以抛物线的解析式是()21449y x =--+; 篮圈的坐标是(7,3),代入解析式得()2174439y =--+=, ∴这个点在抛物线上,∴能够投中 答:能够投中.(2)当1x =时,()2114439y =--+=<3.1, 所以能够盖帽拦截成功.答:能够盖帽拦截成功.【点睛】此题考查的是二次函数的应用,掌握二次函数的顶点式和利用二次函数解析式解决实际问题是解决此题的关键.30.(1)2516-,12;(2)当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ;(3)能.【解析】【分析】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),代入函数的表达式即可求出a ,c 的值;(2)利用配方法即可求出足球飞行的时间以及足球离地面的最大高度;(3)把x =28代入x =10t 得t =2.8,把t =2.8代入解析式求出y 的值和2.44m 比较大小即可得到结论.【详解】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴20.53.50.850.8c a c =⎧⎨=+⨯+⎩, 解得:251612a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:y =﹣2516t 2+5t +12, 故答案为:﹣2516,12; (2)∵y =﹣2516t 2+5t +12, ∴y =﹣2516(t ﹣85)2+92, ∴当t =85时,y 最大=4.5, ∴当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ; (3)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =﹣2516×2.82+5×2.8+12=2.25<2.44, ∴他能将球直接射入球门.【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解题的关键.。
中考初中数学一轮复习专题导引40讲-15二次函数的应用

中考初中数学一轮复习专题导引40讲第15讲二次函数的应用☞考点解读:知识点名师点晴二次函数的应用1.实际背景下二次函数的关系会运用二次函数的性质求函数的最大值或最小值来解决最优化问题。
2.将实际问题转化为数学中二次函数问题会根据具体情景,建立适当的平面直角坐标系。
3.利用二次函数来解决实际问题的基本思路(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展。
☞考点解析:考点1:二次函数与几何的综合运用。
基础知识归纳:求点的坐标,求抛物线解析式,求线段长或图形面积的最值,点的存在性。
基本方法归纳:待定系数法、数形结合思想、分类讨论思想。
注意问题归纳:合理使用割补法表达面积,分类讨论要全面。
【例1】(湖北十堰·12分)已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求抛物线的解析式;(2)令y=0求抛物线与x轴的交点C的坐标,作△POB和△PBC的高线,根据面积相等可得OE=CF,证明△OEG≌△CFG,则OG=CG=2,根据三角函数列式可得P的坐标,利用待定系数法求一次函数AP 和BC的解析式,k相等则两直线平行;(3)先利用概率的知识分析A,B,C,E中的三点为顶点的三角形,有两个三角形与△AB E有可能相似,即△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,根据存在公共角∠BAE=∠BAC,可得△ABE∽△ACB,列比例式可得E的坐标,利用待定系数法求直线BE的解析式,与抛物线列方程组可得交点D的坐标;C.EABEC.E,C.E中的三点为顶点的三角形相似,如图3,同理可得结论.解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣4;(2)当y=0时,x2﹣x﹣4=0,解得:x=﹣2或4,∴C(4,0),如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,∵S△PBO=S△PBC,∴,∴OE=CF,易得△OEG≌△CFG,∴OG=CG=2,设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,tan∠PBM===,∴BM=2PM,∴4+x2﹣x﹣4=2x,x2﹣6x=0,x1=0(舍),x2=6,∴P(6,8),易得AP的解析式为:y=x+2,BC的解析式为:y=x﹣4,∴AP∥BC;(3)以A,B,C,E中的三点为顶点的三角形有△ABC.△ABE.△ACE.△BCE,四种,其中△ABE重合,不符合条件,△ACE不能构成三角形,∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,∵∠BAE=∠BAC,∠ABE≠∠ABC,∴∠ABE=∠ACB=45°,∴△ABE∽△ACB,∴,∴,∴AE=,∴E(,0),∵B(0,﹣4),易得BE:y=,则x2﹣x﹣4=x﹣4,x1=0(舍),x2=,∴D;C.EABEC.E,C.E中的三点为顶点的三角形相似,如图3,∵∠BEA=∠BEC,∴当∠ABE=∠BCE时,△ABE∽△BCE,∴==,设BE=2m,CE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2﹣8m+8=0,(m﹣2)(3m﹣2)=0,m1=2,m2=,∴OE=4m﹣4=12或,OE=C.EOE= C.E∠AEB是钝角,此时△ABE与以B,C.E中的三点为顶点的三角形不相似,如图4,∴E(﹣12,0);同理得BE的解析式为:y=﹣x﹣4,﹣x﹣4=x2﹣x﹣4,x=或0(舍)∴D(,﹣);综上,点D的坐标为或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、一元二次方程、三角形面积以及勾股定理,第3问有难度,确定三角形与△ABE相似并画出图形是关键.【变式1】(四川省攀枝花)如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点,且+=﹣.(1)求抛物线的解析式;(2)抛物线顶点为D,直线BD交y轴于E点;B.DP为线段BD上一点(点P不与B.D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF 面积的最大值;②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)∵抛物线对称轴为直线x=1∴﹣∴b=2由一元二次方程根与系数关系:x1+x2=﹣,x1x2=∴+==﹣∴﹣则c=﹣3∴抛物线解析式为:y=x2﹣2x﹣3(2)由(1)点D坐标为(1,﹣4)当y=0时,x2﹣2x﹣3=0解得x1=﹣1,x2=3∴点B坐标为(3,0)①设点F坐标为(a,b)∴△BDF的面积S=×(4﹣b)(a﹣1)+(﹣b)(3﹣a)﹣×2×4整理的S=2a﹣b﹣6∵b=a2﹣2a﹣3∴S=2a﹣(a2﹣2a﹣3)﹣6=﹣a2+4a﹣3∵a=﹣1<0∴当a=2时,S最大=﹣4+8﹣3=1②存在由已知点D坐标为(1,﹣4),点B坐标为(3,0)∴直线BD解析式为:y=2x﹣6则点E坐标为(0,﹣6)BC.CDBC.CD,则由勾股定理CB2=(3﹣0)2+(﹣3﹣0)2=18CD2=12+(﹣4+3)2=2BD2=(﹣4)2+(3﹣1)2=20∴CB2+CD2=BD2∴∠BDC=90°∵∠BDC=∠QCE∴∠QCE=90°∴点Q纵坐标为﹣3代入﹣3=2x﹣6∴x=∴存在点Q坐标为(,﹣3)【例2】(云南省曲靖)如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A 的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.解:(1)当y=0时,x﹣=0,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,解得,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).【变式2】【例3】(湖北江汉·12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A.B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B.C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为.故(,0);(3,0);.(2)∵点E.点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).【变式3】(辽宁省沈阳市)(12.00分)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y 轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q 的坐标.【分析】(1)应用待定系数法;(2)把x=t带入函数关系式相减;(3)根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.(4)根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进行计算.解:(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1)∴解得:∴抛物线C1:解析式为y=x2+x﹣1(2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2(3)共分两种情况①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1)∴AN=t﹣(﹣2)=t+2∵MN=t2+2∴t2+2=t+2∴t1=0(舍去),t2=1∴t=1②当∠AMN=90°,AN=MN时,由已知M(t,2t2+t+1),A(﹣2,1)∴AM=t﹣(﹣2)=t+2,∵MN=t2+2∴t2+2=t+2∴t1=0,t2=1(舍去)∴t=0故t的值为1或0(4)由(3)可知t=1时M位于y轴右侧,根据题意画出示意图如图:易得K(0,3),B.O、N三点共线∵A(﹣2,1)N(1,1)P(0,﹣1)∴点K、P关于直线AN对称设⊙K与y轴下方交点为Q2,则其坐标为(0,2)∴Q2与点P关于直线AN对称∴Q2是满足条件∠KNQ=∠BNP.则NQ2延长线与⊙K交点Q1,Q1.Q2关于KN的对称点Q3.Q4也满足∠KNQ=∠BNP.由图形易得Q1(﹣3,3)设点Q3坐标为(a,b),由对称性可知Q3N=NQ1=BN=2由∵⊙K半径为1∴解得,1同理,设点Q4坐标为(a,b),由对称性可知Q4N=NQ2=NO=∴解得,∴满足条件的Q点坐标为:(0,2)、(﹣3,3)、、【点评】本题为代数几何综合题,考查了二次函数基本性质.解答过程中应用了分类讨论、数形结合以及构造数学模型等数学思想.考点2:二次函数与实际应用题的综合运用基础知识归纳:待定系数法求抛物线解析式,配方法求二次函数最值。
九年级数学二次函数的一些应用

(0,0) B O
C (2.5,0) x
y
P (0,yp) (-1,2)A
(-1,0)B
O
C (1.5,0) x
方法步骤: ①恰当建立直角坐标系; ②求出抛物线的解析式; ③把抛物线上顶点的横坐标代入解析式, 求出顶点的纵坐标; ④顶点的纵坐标的绝对值即为最值.
问题:如图,抛物线形 的拱桥在正常水位时, 水面AB的宽为20m.涨水 时水面上升了3m,达到 C 了警戒水位,这时水面 A 宽CD=10m. (1)求抛物线的解析 式; (2)当水位继续以每 小时0.2m的速度上升时, 再经过几小时就到达拱 顶?
D
B
y
P(0,yP) C (-5,3) A (-10,0) O Байду номын сангаас (5,3) B (10,0) x
课堂小结
通过学习,你有哪些收获和体会?
抽象 转化
实际问题
数学问题 问题的解 数学知识 返回解释 检验
运用
1.生活中处处有数学,二次函数是描述现实 世界的有效的一个重要模型; 2.建立直角坐标系来确定二次函数时,以使 问题简单化为原则,注意数形结合; 3.可以利用抛物线解决抛物线上一点到地面 的高度问题,方法步骤; 4.当抛物线刻画的是实际问题时,抛物线上 的点都反映一定的实际现象,因此在解决 此类问题时,往往就是在已知抛物线上一 个点的一个坐标的条件下,求这个点的另 一个坐标.
; https:///u/5044679351
开口发话救咯秦顺儿の急。听到王爷底气十足の发话,三各人这才发现爷居然站在帐子门口!这是啥啊情况?众人先是被秦顺 儿打咯壹各措手不及,现在又被突然出现の王爷搞得丈二和尚摸不着头脑。可是不管这是啥啊情况,见到爷之后,第壹件事情 是请安,这是雷打不动の规矩。于是水清和玉盈两各人赶快下咯炕,快步走上前来,和吟雪壹起向王爷请咯安。因为他要撇清 与水清の关系,因为他不想让玉盈误会他和水清有啥啊不清不楚,因此他从来不曾进过她の帐子,但现在已经误闯误撞地进来 咯,只好故作镇定地坐到咯主位。吟雪赶快去奉茶,秦顺儿早就退到咯帐外,水清和玉盈两人老老实实地侧立壹旁。望着眼前 并排而立の两姐妹,他真不知道该说些啥啊才好。两各人全都是披头散发,衣衫不整の样子,这是极为失礼の行为,理应受到 他の严厉训斥。可是他现在根本顾不上责备她们の失礼,因为她们岂止是衣衫不整,两人穿の全都是中衣!第壹次见到除自己 女眷以外の两各诸人穿成这各样子站在他の面前,令他不由得窘迫和局促起来。可是壹想到玉盈,他又对她恨得牙根痒痒。他 这么误打误撞地进到水清の帐子里来,还不是为咯急于知道她去咯哪里?他被玉盈吓怕咯!刚才秦顺儿禀报年仆役不在の时候, 他以为她这壹次又是不辞而别!他当即就急咯壹身の汗!这茫茫の大草原她能去哪里?迷咯路怎么办?遇到野兽豺狼怎么办? 况且这手还伤着!难道是因为昨天爷没有来得及关心她の伤情而生咯爷の气吗?当他刚刚在帐外听到里面有诸人の尖叫声,他 不但没有惊慌,反而心中分外地踏实,屋里有人,玉盈还在!这就足够咯,只要玉盈没有走,啥啊都好说。见到玉盈毫发无损 の样子,他更是放咯壹百各心。不过,下壹各问题又急急地出现在他の脑海,他要尽快解释壹下为啥啊会发生误闯香闺の事情。 香闺?也不算用错咯词,三各大姑娘家住の帐子,不是香闺是啥啊!在他壹会儿尴尬窘迫,壹会儿气急败坏の心情交替支配下, 沉寂咯半响,才终于稳定下情绪,用他那壹贯沉着冷静、波澜不惊の低沉嗓音开口说道:“爷刚刚是让秦顺儿来看看年仆役の 伤势如何,没有别の意思。”玉盈壹听爷是因为她而来の,赶快回咯话:“回爷,玉盈の伤已经好得差不多咯,没有大 碍。”“没有大碍就好。”其实他还想亲自查看壹下她の手,看看她说の是不是真话,她总是避重就轻,前天看到那三各硕大 の水泡,他就知道伤势有多么の严重。可是,现在当着水清の面,他怎么可能拉起她の手?虽然他只是想看看玉盈の伤势恢复 得如何,将来是否会落下疤痕而已。第壹卷 第278章 烂肉直到这各时候,王爷才充分意识到咯水清の存在:这各年氏怎么这 么碍眼!她难道不会像秦顺儿那样有点儿眼力劲儿躲到壹边去吗?咦?不对呀,她怎么会站在这里?这各时间她不是应该在额 娘那里立规矩吗?“你不好好地侍奉额娘,竟敢偷偷跑回来躲清闲来咯?”“回爷,没有,妾身没有偷偷躲回来,是额娘特意 发话,允许妾身回来の。”“啥啊?是额娘要你回来?为啥啊?额娘那里正缺人手,你怎么好意思在这里躲清闲?”水清壹听 这话,心里很是愤愤不平:连德妃娘娘都同意她回来,怎么爷还有意见?看来在爷の眼中,自己可真就是壹各白使唤の宫女呢。 但是跟爷是没有任何道理可讲,水清深知这各道理,于是也没有继续纠缠,只是据实回复道:“回爷,是这样,今天,今天, 二十三小弟妹,小弟妹向额娘说起爷の,爷の侍妾の事情……”水清嘁嘁哎哎地起咯壹各头。“啥啊侍妾!”王爷壹听就恼 咯!玉盈是她の姐姐,怎么能是侍妾!“就是玉盈姐姐,啊不,就是,二十三小弟妹误以为玉盈姐姐是爷の侍妾,然后就跟额 娘说起来。”水清也不知道怎么说清楚这各名词,慌不择言。“额娘怎么说?”王爷倒不怕额娘啥啊,他是担心玉盈の名声和 名节,万壹这件事情闹大咯,他最对不起の就是玉盈。他爱她,他也会娶她,但是他要玉盈光明正大、明媒正娶地成为他の福 晋,嫡福晋现在是不可能咯,但最少必须是侧福晋!壹听爷有些生气,水清也对于自己将姐姐说成是侍妾很内疚,情急之下, 随口答道:“额娘说,说,反正肉是烂在自家锅里,总比便宜咯外人强。”水清当时脑子在走神儿,根本没有仔细听德妃の那 壹套苦口婆心の长篇大论,只是到最后の时候才听咯这壹耳朵,正好也就是这句话,她还稍微有那么点儿印象。王爷壹听这话, 当时差点儿没把鼻子给气歪咯!这叫啥啊话!额娘分明是在奚落她,笑话她,对她冷嘲热讽,她可倒好,怎么连好赖话都听不 出来?哪句话都没有记清楚,怎么就这句记得这么牢靠?这各年氏,心机、手段那么多の壹各人,怎么这各时候又愚蠢成这各 样子!不过,现在不是讨论她の愚蠢问题,而是要解决这各消息如何迅速散播出去の问题。这各情况确实打咯王爷壹各措手不 及,才刚刚请咯胡太医,他这各“侍妾”の消息居然就像长咯腿似地,连二十三小弟妹都知道,还告诉咯额娘!这到底是啥啊 回事儿?塔娜当然是从二十三小格那里知道の,而二十三小格是八小格の左膀右臂。年家与八小格の交情和渊源极深,壹定是 水清将消息泄露给咯八小格。再狡猾の狐狸也会露出尾巴,这壹次终于让他抓住咯年家与八小格壹党串通壹气、私传情报の证 据!面对这各令他万分寒心の诸人,王爷连愤怒の心情都懒得再有,沉思良久,才终于又开口
2017年秋学期人教版九年级数学上册22.1.1二次函数的概念(教案)

4.二次函数的增减性:当a>0时,函数在顶点左侧递减,在顶点右侧递增;当a<0时,函数在顶点左侧递增,在顶点右侧递减。
本节课将围绕以上内容展开教学,结合实际案例,帮助学生深入理解和掌握二次函数的概念及其相关性质。
五、教学反思
今天我们在课堂上探讨了二次函数的概念,整个过程下来,我觉得有几个地方值得反思。首先,我发现同学们对二次函数定义中的a≠0这个条件理解得不够透彻,这是判断一个函数是否为二次函数的关键。在今后的教学中,我需要更加注重这一点的讲解和强调。
其次,关于二次函数图像的顶点式与标准式的互化,明显感觉到这是一个难点。虽然我通过例题和图示进行了解释,但仍有部分同学表示理解起来有些困难。我想,下次可以尝试用更多
此外,课堂上的实践活动和小组讨论环节,总体来说效果还是不错的。同学们积极参与,提出了很多有创意的想法。但在引导讨论的过程中,我发现有些同学可能因为害羞或者不自信而不敢发言。针对这个问题,我打算在以后的课堂上多鼓励大家,创造一个轻松愉快的氛围,让每个同学都有机会表达自己的观点。
还有一个值得注意的地方是,在新课导入时,我提到了二次函数在日常生活中的应用,但感觉这个话题没有引起大家足够的兴趣。可能是因为我举的例子不够贴近他们的生活。在以后的教学中,我需要寻找更多与同学们生活息息相关的事例,激发他们的学习兴趣。
5.培养学生数学抽象素养,理解二次函数的顶点式与标准式之间的转换,提高数学表达与交流能力。通过本节课的学习,使学生形成完整的知识结构,为后续学习打下坚实基础。
三、教学难点与重点
1.教学重点
-二次函数的定义:强调a≠0的条件,使学生理解这是判断二次函数的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.5二次函数的应用
教学目标:
1、让学生进一步熟悉,点坐标和线段之间的转化。
2、让学生学会用二次函数的知识解决有关的实际问题。
3、掌握数学建模的思想,体会到数学来源于生活,又服务于生活。
4、培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。
教学重点:
1、 在直角坐标系中,点坐标和线段之间的关系。
2、 根据情景建立合适的直角坐标系,并将有关线段转化为坐标系中的点。
教学难点:
如何根据情景建立合适的直角坐标系,并判断直角坐标系建立的优劣。
课前准备:
制作多媒体课件,并将有关内容做成讲义。
教学过程:
一、创设情景,引入新课
1、在寒冷的冬天,同学们一般会参加什么样的课外活动呢?
2、由上给出引例:
引例:在跳大绳时,绳甩到最高处的形状可近似的看作抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米和2.5米处,绳子甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,根据以上信息你能知道学生丁的身高吗?
3、要解决这个问题,同学们分析一下,我们会利用哪些知识来解决?
对,本题我们可以利用有关二次函数的知识来解决。
今天我们学习的内容是“二次函数的应用”。
二、新课讲解:
(一)课前练习
1、已知抛物线
23x y =上有一点的横坐标为2,则该点的纵坐标为______。
2、已知二次函数132
612++-
=x x y 的函数图象上有一点的横坐标为2
5, 则该点到x 轴的距离是______________。
3、已知二次函数532
-=x
y 有一点的纵坐标是2,
则该点横坐标为__________.
4、已知抛物线过点A (0,1),B (2,1),C (1,0),则该抛物线解析式为___
5、已知如图A (1,1),AB=3,AB ∥x 轴, 则点A 的坐标为__________.
注:第四题在处理时,只要求学生知道解题方法,而不需要完全解答。
(二)例题讲解
下面我们来解决本堂课的引例。
1、要解决这个实际问题,关键是什么?(建立直角坐标系)
2、那么有几种建立直角坐标系的方法呢?请同学们讨论一下。
(学生分析、讨论完毕后教师进行归纳小结) 3、利用其中一种方法,解决①、②两个 。
①、求点A 、B 、C 的坐标. ②、求过点A 、B 、C 的抛物线的函数解析式.
4、同学们能否根据老师所用的方法,分别求出在上述四个图中第1、2两小题呢? 6、在完成第①、②小题的基础上,请同学们根据老师的方法完成第③、④小题。
③、你能算出丁的身高吗?
④、若现有一身高为1.625m 的同学也想参加这个活动,请问他能参加这个活动吗? 若能,则他应离甲多远的地方进入?若不能,请说明理由?若身高为1.7m 呢? 注:在解决第④小题的过程中,可以让学生思考以下问题:
①、 在解决第一问时,能否利用二次函数的对称性来解决?
②、
在解决第二问时,能否利用二次函数的有关性质来解决?(利用最值来解决)
小结:建立合适的直角坐标系,是解决实际问题的关键。
(教师利用多媒体出示解答过程,强调解题步骤。
)
例:有一座抛物线形拱桥,在正常水位时水面A B 的宽为20m ,如果水位上升3米时,水面CD 的宽为10m .
(1)建立直角坐标系,求点B 、D 的坐标。
(2)求此抛物线的解析式;
(3)现有一辆载有救援物质的货车,从甲出发需经此桥开往乙,已知甲距此桥 280km
(桥长忽略不计)货车以 40km /h 的速度开往乙;当行驶1小时,忽然接到通知,前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位到达最高点E 时,禁止车辆通行)试问:如果货车按原速行驶,
能否安全通过此桥?若能,请说明理由,若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
分析:1、建立直角坐标系是本题的关键,让学生分组讨论。
2、教师选择一种直角坐标系,解决本题。
其他方法请学生课后练习。
3、第③小题是本解课的一个难点可以做以下处理
①、考虑货车能否安全通过的基本条件是什么?(水位还没有到达E 点) ②、考虑水位到达E 点所需时间和货车到达桥的时间的关系是什么? ③、要使货车安全通过此桥,先决条件是什么?
A
B
C D
E
F
A
B
C D O
x y A B
C
D O
x
y
变式:(4)现有一艘载有救援物质的货船,从甲出发需经此桥开往乙,已知甲距此桥 280km ,货船以 40km /h 的速度开往乙;当行驶1小时,忽然接到通知,前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货船接到通知时水位在AB 处,当水位到达CD 时,禁止船只通行)试问:如果货船按原速行驶,能否安全通过此桥?若能,请说明理由,若不能,要使货船安全通过此桥,速度应超过每小时多少千米?
(本题请学生阅读后,作为课后思考题) 三、课后练习:
1、如图是我县某公园一圆形喷水池的效果图,水流在各方向沿形状相同的抛物线落下。
建立如图坐标系,如果喷头所在处A (0,1.25),水流路线最高处B (1,2.25),则该抛物线的解析式为 ___。
如果不考虑其他因素,那么水池的半径至少要_____________米,才能使喷出的水流不致落到池外。
2、如图,在一面靠墙的空地上用长24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米。
(1)求S 与x 的函数关系式及自变量的取值范围; (2)当x 取何值时所围成的花圃面积最大,最大值是多少?
*(3)若墙的最大可用长度为8米,则最大面积是 ?
C
D
A B C D O
x
y A B C
D
O
x
y
四、课堂小结
通过这节课的学习,你学会了什么?你有什么体会?(学生小结)
教师小结:
1、本节课主要复习了已知横坐标(或纵坐标),求纵坐标(或横坐标)的方法。
2、主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决实际问题的方法。
3、利用二次函数解决实际问题时,建立适当的直角坐标系,是解决问题的关键。
五、作业
完成讲义例题的变式和第三大题
六、课后反思
本节课是有关二次函数的复习课,重点是如何利用二次函数建立数学模型,并利用二次函数的有关性质来解决实际问题。
在本堂课的教学过程中有两个难点:1、如何将情景中的已知条件转化为直角坐标系中有关点和线的问题。
2、如何根据实际情景建立最有利于问题解决的直角坐标系。
为了解决上述两个问题,我做了这样的处理:1、设置课前练习,分散难点。
2、设置分组讨论,让学生在集体讨论中体会直角坐标系的建立。
3、将题目问题细化,降低题目难度。
上完本节课后我有以下几点体会:1、本节课作为初三复习课容量显得单薄了些。
2、在讲课过程中学生配合较为默契,思维比较活跃。
但有部分学生对于二次函数的应用题仍无从入手,如何做好这部分同学的教学工作是今后教学中值得探讨的。
3、在选题时,为了力求和实际相结合,使得题目的阅读量加大,造成部分学生对题目的理解有一定的困难。
4、学生的书写格式有待进一步提高。
5、对新形势、新课标下的中考,无法把握其在二次函数方向上的考法。
总之,在今后的教学过程中还要多研究教材,多分析考试说明,多听老教师的课,多和同行探讨。
这样才能使自己的教学水平有所提高。