《平行线的性质》优秀教案
平行线的性质教案

平行线的性质教案一、教学目标通过本教案的学习,学生将能够: - 理解平行线的定义; - 掌握平行线的性质和判定方法; - 运用平行线的性质解决实际问题。
二、教学重点•平行线的定义和性质;•平行线的判定方法。
三、教学难点•运用平行线的性质解决问题。
四、教学准备•讲义和笔记;•平行线的示意图。
五、教学过程1. 导入(5分钟)教师通过提问和示意图引入平行线的概念,引发学生对平行线的思考。
2. 定义和性质(20分钟)2.1 定义 - 教师向学生介绍平行线的定义:在同一个平面上,不相交的两条直线称为平行线。
- 教师引导学生观察示意图,理解平行线的概念。
2.2 性质 - 教师向学生介绍平行线的性质: - 平行线之间的距离保持恒定; - 平行线分别与同一条直线相交,内角和外角相等; - 平行线分别与同一条直线相交,同位角相等; - 平行线分别与两条截线相交,对应角相等。
3. 判定方法(25分钟)教师向学生介绍平行线的判定方法,包括: - 两条直线被一条截线截断,同位角相等; - 两条直线被一条截线截断,内角和外角相等; - 两条直线被平行线截断,对应角相等。
4. 运用与实践(25分钟)教师给学生提供一些实际问题,要求运用平行线的性质解决。
例如:问题一:如何用直尺和圆规画一条与给定线段平行的线段?问题二:若两条平行线分别与一条截线所成的内角和为60°和120°,求这两条平行线之间的夹角是多少?5. 小结与拓展(10分钟)教师对本节课的内容进行小结,并对下一节课的拓展内容进行预告。
鼓励学生复习和巩固所学内容。
六、教学反思通过本节课的教学,学生对平行线的定义和性质有了更深入的了解。
通过解决实际问题,学生能够运用平行线的性质进行推理和解决问题。
教师可以通过更多的实例提供拓展训练,帮助学生巩固所学知识。
在教学过程中,教师应该注重引导学生思考和互动,提高课堂的参与度和学习效果。
《平行线的性质》优秀教案(精品文档)_共3页

平行线的性质(第1课时)优秀教案威宁县龙街第二中学白刻生教学目标:1、知识与技能目标: 经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动。
在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益。
通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既普遍联系又相互区别的辩证唯物主义思想.教学过程一、复习回顾活动内容:复习已学过的同位角、内错角、同旁内角的概念及两直线平行的条件。
(1)因为∠1=∠5 (已知)所以a∥b()(2)因为∠4=∠(已知)所以a∥b(内错角相等,两直线平行)(3)因为∠4+∠=1800 (已知)所以a∥b()活动目的:平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,因此,复习判定直线平行的条件为后面学习性质做好准备。
二、动手操作、探求新知反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这是我们这节课要探究的问题。
活动内容:课本52页的“探究”部分。
如图,直线a与直线b平行。
(1)测量同位角∠1 和∠5 的大小,它们有什么关系?图中还有其他同位角吗?它们的大小有什么关系?(2)图中有几对内错角?它们的大小有什么关系?为什么?(3)图中有几对同旁内角?它们的大小有什么关系?为什么?(4)换另一组平行线试试,你能得到相同的结论吗?这是本节课的主体部分,具体教学时,可把该探究细分成如下几个活动:活动1、先测量角的度数,把结果填入表内.角∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8度数活动2、根据测量所得的结果作出猜想:同位角具有怎样的数量关系?内错角具有怎样的数量关系?同旁内角呢?活动3、验证猜测.另外画一组平行线被第三条直线所截,同样测量并计算各角的度数,检验刚才的猜想是否成立?如果直线a与b不平行,猜想还成立吗?活动4、归纳平行线的性质性质1:两条平行直线被第三条直线所截,同位角相等。
七年级数学上册《平行线的性质》教案、教学设计

(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组选择一个具有挑战性的问题进行讨论,如:如何利用平行线性质求解角度或线段长度。
2.学生在小组内展开讨论,互相交流想法,共同解决问题。
3.教师巡回指导,参与学生讨论,引导学生深入思考,拓展思维。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结平行线的定义、性质和应用规律。
2.学生分享学习心得,交流学习方法,提高学习效率。
3.教师强调平行线在几何学习中的重要性,激发学生学习几何的兴趣。
4.布置课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好准备。
五、作业布置
3.结合平行线的性质,让学生尝试证明以下几何问题:在三角形中,若两边平行,则这两边所对的角相等。
4.完成一份关于平行线性质的思维导图,要求涵盖平行线的定义、判定方法、性质及应用等方面,培养学生系统梳理知识的能力。
5.针对本节课的学习内容,写一篇学习心得体会,要求学生从知识掌握、能力提升、情感态度等方面进行反思,以提高学生的学习自我监控能力。
为了巩固本节课所学的平行线性质,提升学生的几何素养,特布置以下作业:
1.完成课本第chapter页的练习题,包括选择题、填空题和解答题,要求学生在理解平行线性质的基础上,熟练运用相关知识解决问题。
2.设计一道实际生活中的问题,让学生运用平行线的性质进行求解。例如:在学校的操场上,有一条跑道和两条平行的跳远沙坑,如果已知跑道的宽度为w米,求跳远沙坑的宽度。
6.预习下一节课内容,了解平行线与相交线之间的关系,为后续学习奠定基础。
请同学们认真完成作业,及时发现问题,通过自主学习、合作交流等方式解决疑惑,不断提升自己的几何素养。教师将根据作业完成情况,给予针对性的指导和评价,助力学生成长。
《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:(1)理解平行线的定义;(2)掌握平行线的性质;(3)能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、思考、交流,培养学生的抽象思维能力;(2)利用几何画板软件,直观展示平行线的性质,提高学生的动手操作能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点1. 教学重点:(1)平行线的定义;(2)平行线的性质。
2. 教学难点:(1)平行线性质的推导与理解;(2)运用平行线性质解决实际问题。
三、教学方法1. 情境创设:利用生活实例引入平行线的概念,激发学生兴趣;2. 合作学习:分组讨论,共同探索平行线的性质;3. 直观展示:利用几何画板软件,动态展示平行线的性质;4. 练习巩固:设计相关习题,巩固所学知识。
四、教学过程1. 导入新课:(1)利用生活实例,如同一平面内两条永不相交的直线;(2)引导学生思考:如何判断两条直线是否平行?2. 探究平行线的性质:(1)学生分组讨论,共同探究平行线的性质;(2)每组汇报探究成果,师生共同总结平行线的性质。
3. 直观展示:(1)利用几何画板软件,动态展示平行线的性质;(2)引导学生观察、思考,加深对平行线性质的理解。
4. 练习巩固:(1)设计相关习题,让学生运用所学知识解决问题;(2)教师点评,纠正错误,巩固知识点。
五、课后作业1. 概念巩固:回顾平行线的定义,加深对平行线概念的理解;2. 性质练习:完成课后习题,运用平行线的性质解决问题;3. 拓展延伸:探究平行线在实际生活中的应用,如交通规则等。
六、教学评估1. 课堂提问:通过提问了解学生对平行线性质的理解程度;2. 课后作业:检查学生完成作业的情况,巩固所学知识;3. 小组讨论:观察学生在小组讨论中的表现,了解合作学习能力;4. 期中期末考试:检验学生对平行线知识的掌握程度。
《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。
2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等。
(2)平行线之间的夹角相等。
(3)平行线与截线所形成的内错角相等。
(4)平行线与截线所形成的同位角相等。
三、教学重点与难点1. 教学重点:平行线的性质及其应用。
2. 教学难点:平行线性质的推理和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。
2. 利用几何画板等软件,直观展示平行线的性质。
3. 组织小组讨论,培养学生的合作能力。
五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。
2. 自主探究:学生独立观察、操作,发现平行线的性质。
3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。
4. 教师讲解:总结平行线的性质,并进行推理和证明。
5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。
6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。
2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。
3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。
3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。
教案平行线的性质与判定

经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。
2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及如何在实际问题中运用。
2. 教学难点:平行线的判定方法,以及如何灵活运用平行线的性质解决复杂问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。
2. 运用案例分析法,让学生通过实际问题理解平行线在生活中的应用。
3. 采用小组讨论法,培养学生的团队协作能力和沟通能力。
4. 利用多媒体辅助教学,增强课堂趣味性,提高学生的学习兴趣。
五、教学安排1. 课时:2课时(90分钟)2. 教学过程:第一课时:1. 导入:通过生活实例引入平行线的概念,让学生感知平行线。
2. 探究:引导学生发现平行线的性质,总结平行线的判定方法。
3. 应用:运用平行线的性质和判定方法解决实际问题。
4. 总结:对本节课的内容进行总结,布置课后作业。
第二课时:1. 复习:回顾上节课的内容,检查学生的掌握情况。
2. 拓展:引导学生进一步探究平行线的应用,解决更复杂的问题。
3. 练习:进行课堂练习,巩固所学知识。
4. 总结:对本节课的内容进行总结,布置课后作业。
六、教学活动1. 导入:通过复习上节课的内容,引入本节课的学习主题——平行线的性质和判定。
2. 探究:引导学生通过实际操作,发现并证明平行线的性质。
3. 判定:讲解并演示平行线的判定方法,让学生理解并掌握。
4. 应用:运用平行线的性质和判定方法解决实际问题,巩固所学知识。
5. 总结:对本节课的内容进行总结,布置课后作业。
七、教学策略1. 采用问题驱动法,引导学生主动探究平行线的性质和判定。
平行线的性质优秀教案
平行线的性质【课时安排】2课时【第一课时】【教学目标】1.理解平行线的判定方法1:同位角相等,两直线平行。
2.学会用“同位角相等,两直线平行”进行简单的几何推理。
3.体会用实验的方法得出几何性质(规律)的重要性与合理性。
【教学重点】“同位角相等,两直线平行”的判定方法。
【教学难点】例1的推理过程的正确表达。
【教学过程】(一)活动1:合作动手实验引入。
1.复习画两条平行线的方法:提问:(1)怎样用语言叙述上面的图形?(直线L1、L2被AB所截)(2)画图过程中,什么角始终保持相等?(同位角相等,即∠1=∠2)(3)直线L1,L2位置关系如何?(L1∥L2)(4)可以叙述为:∵∠1=∠2∴L1∥L2(?)(二)活动2:平行线的判定方法1:由上面,同学们你能发现判定两直线平行的方法吗?语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单地说:同位角相等,两直线平行。
几何叙述:∵∠1=∠2∴L1∥L2(同位角相等,两直线平行)(三)活动3:课堂练习:(四)活动4:例题讲解例:已知直线L1、L2被L3所截,如图,∠1=45°,∠2=135°,试判断L1与L2是否平行。
并说明理由。
解:L1∥L2理由如下:∵∠2+∠3=180°,∠2=135°∴∠3=180°-∠2=180°-135°=45°∵∠1=45°∴∠1=∠3∴L1∥L2(同位角相等,两直线平行)思路:1.判定平行线方法。
2.图中有无同位角(注∠3位置)3.能说明∠3=∠1吗?4.结论。
5.∠3还可以是其它位置吗?你能说明L1∥L2吗?(五)活动5:小结与反思你学到了什么?你认为还有什么不懂的?你有什么经验与收获让同学们共享呢?【第二课时】【教学目标】1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
《平行线的性质》教案
《平行线的性质》优秀教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。
2. 培养学生观察、思考、归纳的能力,提高学生解决实际问题的能力。
3. 培养学生合作学习、积极参与的精神,提高学生的数学素养。
二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线互相平行。
(2)平行线与横穿它们的直线相交,交角相等。
(3)平行线之间的距离相等。
三、教学重点与难点1. 教学重点:平行线的概念及性质。
2. 教学难点:平行线性质的理解和应用。
四、教学方法1. 采用直观演示法,让学生通过观察、实践,理解平行线的性质。
2. 采用归纳法,引导学生通过观察、讨论,总结出平行线的性质。
3. 运用案例分析法,让学生通过解决实际问题,掌握平行线的性质。
五、教学步骤1. 导入新课:利用图片、生活实例等方式,引导学生了解平行线的概念。
2. 探究平行线的性质:(1)让学生自主尝试画出平行线,观察并总结平行线的性质。
(2)分组讨论,分享各组的发现,引导学生归纳出平行线的性质。
3. 讲解与应用:(1)教师讲解平行线的性质,并结合实例进行解释。
(2)设置练习题,让学生运用平行线的性质解决问题。
4. 总结与拓展:(1)对本节课所学内容进行总结,加深学生对平行线性质的理解。
(2)提出拓展问题,激发学生的学习兴趣,为后续学习做铺垫。
5. 布置作业:设计适量作业,巩固学生对平行线性质的掌握。
六、教学评估1. 课堂提问:通过提问了解学生对平行线概念和性质的理解程度。
2. 练习题反馈:分析学生完成练习题的情况,评估学生对平行线性质的掌握情况。
3. 作业批改:检查学生作业,了解学生对课堂所学知识的巩固程度。
七、教学反思1. 教师总结课堂教学效果,反思教学方法是否适合学生。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
3. 关注学生的学习需求,不断优化教学内容,提升教学质量。
八、教学拓展1. 利用多媒体展示平行线的实际应用场景,让学生感受数学与生活的联系。
数学教案平行线的性质
数学教案平行线的性质教学目标:1. 理解平行线的定义及性质;2. 能够运用平行线的性质解决实际问题;3. 培养学生的观察、思考和动手能力。
教学内容:一、平行线的定义1. 引导学生观察图片,发现平行线的特征;2. 讲解平行线的定义,让学生理解平行线的概念。
二、平行线的性质1. 引导学生通过观察、操作,发现平行线的性质;2. 讲解平行线的性质,让学生能够熟练掌握。
三、平行线的判定1. 引导学生通过观察、操作,发现平行线的判定方法;2. 讲解平行线的判定方法,让学生能够熟练运用。
四、平行线的应用1. 引导学生运用平行线的性质解决实际问题;2. 讲解平行线在实际问题中的应用,让学生能够灵活运用。
五、课堂练习1. 设计练习题,让学生巩固所学知识;2. 引导学生完成练习题,检查学生的学习效果。
教学方法:1. 采用观察、操作、讲解、练习的方法,让学生掌握平行线的性质;2. 通过实例讲解,让学生理解平行线在实际问题中的应用。
教学评价:1. 课后作业:设计一份课后作业,让学生巩固所学知识;2. 课堂练习:观察学生在课堂练习中的表现,了解学生的学习效果;3. 学生反馈:听取学生的反馈意见,了解学生的学习需求。
教学资源:1. 图片:准备相关图片,帮助学生理解平行线的特征;2. 练习题:设计课后作业和课堂练习题,巩固所学知识。
教学步骤:一、导入新课1. 引导学生观察图片,发现平行线的特征;2. 提问:什么是平行线?平行线有哪些特征?二、讲解平行线的定义1. 讲解平行线的定义,让学生理解平行线的概念;2. 举例说明平行线的特征。
三、探索平行线的性质1. 引导学生通过观察、操作,发现平行线的性质;2. 讲解平行线的性质,让学生能够熟练掌握。
四、讲解平行线的判定1. 引导学生通过观察、操作,发现平行线的判定方法;2. 讲解平行线的判定方法,让学生能够熟练运用。
五、应用平行线解决实际问题1. 引导学生运用平行线的性质解决实际问题;2. 讲解平行线在实际问题中的应用,让学生能够灵活运用。
平行线的性质教案
平行线的性质教案教学目标:1. 了解平行线的概念及其性质;2. 熟练运用平行线的性质解决相关问题;3. 培养学生的逻辑思维和问题解决能力。
一、知识导入1. 引入:平行线的概念老师可通过举例引入平行线的概念,例如:两条直线交叉形成的角称为相交角,如果两条直线上的相交角都是直角,则这两条直线是平行的。
2. 平行线的记号介绍平行线的标志记号“||”,并与学生一同探索平行线的特点和性质。
二、知识展示1. 平行线的性质平行线的性质包括:同位角相等性质、内错角互补性质、同旁内角相等性质、同旁外角相等性质等。
可以通过示意图和具体例子来展示每个性质,引导学生通过观察和分析来总结规律。
2. 平行线性质的证明与延伸对于某些性质,如同位角相等性质,可以引导学生进行简单的证明过程,培养他们的逻辑思维和推理能力。
同时,可以延伸教学内容,说明平行线的性质在实际问题中的应用,如建筑、地理、航空等领域的应用。
三、知识拓展与巩固1. 练习题设计一些练习题,既能巩固所学知识,又能培养学生运用所学知识解决问题的能力。
例题1:如图,AB∥CD,∠BCE=80°,求∠EAC的度数。
例题2:如图,AB∥CD,∠BAC=60°,求∠ACD的度数。
2. 拓展应用提供一些应用题,使学生能够将平行线的性质应用于实际问题的解决中。
例题3:某建筑地基挖掘时,两个挖掘点P和Q处夹角为90°,为了避免损坏已铺设的管道,在不撤除管道的情况下如何使得挖掘机从P 点到达Q点?四、课堂总结通过本节课的学习,学生应对平行线的概念和性质有了更深入的了解,并能够熟练运用所学知识解决相关问题。
教师可以对本节课的重点知识进行总结,并激发学生对数学学科的兴趣和思考。
五、课后作业布置适量的课后作业,以巩固学生对平行线性质的理解和应用能力。
例题4:如图,AB∥CD,且∠EAF=60°,求∠ADC的度数。
例题5:如图,AB∥CD,∠B=65°,求∠C的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质(第1课时)优秀教案
威宁县龙街第二中学白刻生
教学目标:
1、知识与技能目标: 经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动。
在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益。
通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既普遍联系又相互区别的辩证唯物主义思想.
教学过程
一、复习回顾
活动内容:复习已学过的同位角、内错角、同旁内角的概念及两直线平行的条件。
(1)因为∠1=∠5 (已知)
所以a∥b
()
(2)因为∠4=∠(已知)
所以a∥b(内错角相等,两直线平
行)
(3)因为∠4+∠=1800(已知)
所以a∥b
( )
活动目的:平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,因此,复习判定直线平行的条件为后面学习性质做好准备。
二、动手操作、探求新知
反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这是我们这节课要探究的问题。
活动内容:课本52页的“探究”部分。
如图,直线a与直线b平行。
(1)测量同位角∠1和∠5 的大小,它们有什么关系?图中还有其他同位角吗?它们的大小有什么关系?
(2)图中有几对内错角?它们的大小有什么关系?为
什么?
(3)图中有几对同旁内角?它们的大小有什么关系?
为什么?
(4)换另一组平行线试试,你能得到相同的结论吗?
这是本节课的主体部分,具体教学时,可把该探究细分成如下几个活动:
活动1、先测量角的度数,把结果填入表内.
角∠1∠2 ∠3 ∠4 ∠5∠6∠7 ∠8
度数
活动2、根据测量所得的结果作出猜想:
同位角具有怎样的数量关系?内错角具有怎样的数量关系?同旁内角呢?
活动3、验证猜测.
另外画一组平行线被第三条直线所截,同样测量并计算各角的度数,检验刚才的猜想是否成立?如果直线a与b不平行,猜想还成立吗?
活动4、归纳平行线的性质
性质1:两条平行直线被第三条直线所截,同位角相等。
简称为两直线平行, 同位角相等.
性质2:两条平行直线被第三条直线所截,内错角相等。
简称为两直线平行, 内错角相等.
性质3:两条平行直线按被第三条线所截,同旁内角互补。
简称为两直线平行,同旁内角互补.
三、联系拓广,综合应用
如图 2-18,一束平行光线 AB与
DE 射向一个水平镜面后被反射,此时
∠1 =∠2,∠3 =∠4.
(1)∠1 与∠3 的大小有什么关系? ∠ 2
与∠4 呢?
(2)反射光线BC 与EF也平行吗?
活动目的: 两个问题都是关于平行线性质和判定直线平行的条件的综合应用。
通过具体问题,使学生进一步认识和理解平行线的性质和判定直线平行的条件的区别和联系。
知道什么时候用性质,什么时候用判定直线平行的条件。
2、题活动注意事项:1、注意平行线性质和判定直线平行的条件的区别。
ﻫ
目综合性较强,在当前阶段要把两者结合起来考虑确实有一定的难度。
课堂上速度要放慢,给学生充足的思考与讨论的时间。
3、充分发挥学生的作用,让他们在相互讨论,相互启发中逐渐理解几何推理的要领,从而分清推理中因为和所以所表达的意义ﻫ四、课堂小结
活动内容:师生交流,共同总结本节课所学的知识,并有针对性的布置作业。
1.本节课你有哪些收获?
2.在本节课的学习中,你还存在哪些疑问?
活动目的:通过对以上问题的思考引导学生回顾整节课的学习历程,让学生对知识有一个沉淀、吸收的过程。
让学生畅谈自己学习的体会,通过教师为学生提供的交流互动的平台,使学生倾听别人的想法、意见,从而不断完善自己的认识,形成完整的知识结构.
五、布置作业
习题2.5 1,2,3
六、教学反思
本节课研究的内容是平行线的性质,它是在学生学习了判定直线平行的条件之后来进行学习的。
因此,在引入环节,就充分考虑到这一点,从复习判定直线平行的条件入手,进而引导学生进行平行线性质的探究。
在教学中,有意识、有计划地设计了教学活动,充分挖掘知识内涵,引导学生体会平行线性质与两直线平行的条件之间的联系与区别,使学生体会数学知识间的密切联系。