七年级上册《绝对值》导学案
初中数学最新版《绝对值》精品导学案(2022年版)

2.4 绝对值学习目标:1.理解绝对值的概念及其几何意义;〔重点〕2.会求一个数的绝对值,会根据绝对值求对应的数;〔重点〕 3.了解绝对值的非负性,并能用其非负性解决相关问题.〔重点、难点〕自主学习一、知识链接1.a 的相反数表示为.2.在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示-34 和34 的点呢? 二、新知预习〔预习课本P22-24〕填空并完成练习:1.在数轴上,表示一个数的点到叫做这个数的绝对值,用“〞表示.2.一个正数的绝对值是_;一个负数的绝对值是它的__;0的绝对值是.3.任何一个有理数的绝对值总是正数和0〔通常也称〕,即对有理数a ,总有|a|0. 练习:1.写出以下各数的绝对值. +4,-21,0,-5.1. 2.计算:〔1〕|-1|+|+3|; 〔2〕|-1.2|+|-0.7|.合作探究一、要点探究探究点1:绝对值的意义及求法【概念提出】在数轴上,表示一个数的点到叫做这个数的绝对值,用“〞表示. 问题1 分别写出3,0,-6的绝对值和到原点的距离,你发现了什么? 【要点归纳】一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是. 问题2 分别计算5和-5,3和-3,和的绝对值,你发现了什么? 【要点归纳】互为相反数的两个数的绝对值. 【典例精析】12,-53,,0.〔1〕|﹣0.25|; 〔2〕+|﹣3.14|; 〔3〕﹣|2.3|.【针对训练】化简:〔1〕﹣|+2.5|; 〔2〕-|﹣4|; 〔3〕|﹣〔﹣3〕|. 探究点2:绝对值的性质及应用思考1:观察这些数的绝对值,它们有什么共同点? |5|=5;|-10|=10;;|-5000|=5000;|0|=0……思考2: 假设字母a 表示一个有理数,你知道a 的绝对值等于什么吗? (1)当a >0时,|a |=;(2)当a<0时,|a|=;(3)当a=0时,|a|=.【要点归纳】任何一个有理数的绝对值总是正数和0〔通常也称〕.【典例精析】(1)绝对值等于0的数是;(2)绝对值等于的正数是_;(3)绝对值等于的负数是;2的数是_.|a|+|b|=0,求a,b的值.提示:由绝对值的性质可得|a|≥0,|b|≥0.【方法总结】几个非负数的和为0,那么这几个数都为0.二、课堂小结1.数轴上表示数a的点与原点的距离叫做数a的绝对值.2.绝对值的性质:(1)|a|≥0;(2)(0)||(0)0(0)a aa a aa>⎧⎪=-<⎨⎪=⎩当堂检测6.﹣|﹣2|=;|﹣〔﹣〕|=;|﹣〔+〕|=;﹣|﹣1|=.7.计算:〔1〕56-++; 〔2〕5.02.1---; 〔3〕535-⨯-. 参考答案自主学习一、知识链接1.-a2.解:-5和5到原点的距离均为5,-34 和34 到原点的距离都是34 . 二、新知预习1.原点的距离 | |2.它本身 相反数 03.非负数 ≥ 练习:1.解:它们的绝对值分别是4,21,0,5.1. 2.解:〔1〕原式=1+3=4; 〔2〕原式=1.2+0.7=1.9. 合作探究 二、要点探究探究点1:绝对值的意义及求法【概念提出】原点的距离 | | 〞表示. 【要点归纳】它本身 相反数 0 【要点归纳】相等 【典例精析】〔1〕|12|=12;〔2〕|﹣53|=53;〔3〕|﹣7.5|=;〔4〕|0|=0.解:〔1〕|﹣0.25|=;〔2〕+|﹣3.14|=;〔3〕﹣|2.3|=﹣.【针对训练】解:〔1〕﹣|+2.5|=﹣;〔2〕-|﹣4|=-4;〔3〕|﹣〔﹣3〕|=|3|=3. 探究点2:绝对值的性质及应用思考1:解:它们的绝对值都是正数或0. 思考2: (1)a (2)-a (3)0 【要点归纳】非负数 【典例精析】(2)5.25 (3)-5.25 (4)±2|a|≥0,|b|≥0,|a|+|b|=0,所以|a|=0,|b|=0,所以a=0,b=0. 当堂检测6.﹣2 ﹣17.解:〔1〕115656=+=-++;〔2〕7.05.02.15.02.1=-=---;〔3〕3535535=⨯=-⨯-. 第1课时 单项式与单项式、多项式相乘1.探索并了解单项式与单项式、单项式与多项式相乘的法那么,并运用它们进行运算.(重点)2.熟练应用运算法那么进行计算.(难点) 一、情境导入1.教师引导学生回忆幂的运算公式.学生积极举手答复:同底数幂的乘法公式:a m ·a n =a m +n(m ,n 为正整数).幂的乘方公式:(a m )n =a mn(m ,n 为正整数).积的乘方公式:(ab )n =a n b n(n 为正整数).2.教师肯定学生的答复,并引入课题——单项式与单项式、多项式相乘. 二、合作探究探究点一:单项式乘以单项式【类型一】 直接利用单项式乘以单项式法那么进行计算计算:(1)(-23a 2b )·(56ac 2);(2)(-12x 2y )3·3xy 2·(2xy 2)2;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2.解析:运用幂的运算法那么和单项式乘以单项式的法那么计算即可. 解:(1)(-23a 2b )·(56ac 2)=-23×56a 3bc 2=-59a 3bc 2;(2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5.方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x3m +1y 2n与7x n -6y-3-m的积与x4y 是同类项,∴⎩⎪⎨⎪⎧3m +1+n -6=4,2n -3-m =1,解得:⎩⎪⎨⎪⎧m =2,n =3,∴m 2+n =7.方法总结:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项,列出二元一次方程组.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的矩形空地,现在要在这块地中规划一块长35x m ,宽34y m的矩形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出矩形绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,矩形空地绿化的面积是35x ×34y =920xy (m)2,那么剩下的面积是xy -920xy =1120xy (m 2).方法总结:掌握长方形的面积公式和单项式乘单项式法那么是解题的关键. 探究点二:单项式乘以多项式【类型一】 直接利用单项式乘以多项式法那么进行计算计算: (1)(23ab 2-2ab )·12ab ;(2)-2x ·(12x 2y +3y -1).解析:先去括号,然后计算乘法,再合并同类项即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2;(2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y -(-2x )·1=-x 3y +(-6xy )-(-2x )=-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式乘以多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法那么计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab .故防洪堤坝的横断面积为(12a 2+12ab )平方米;(2)堤坝的体积V =Sh =(12a 2+12ab )×100=50a 2+50ab .故这段防洪堤坝的体积是(50a2+50ab )立方米.方法总结:通过此题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法那么是解题的关键.【类型三】 化简求值先化简,再求值:3a (2a 2-4a +3)-2a 2(3a +4),其中a =-2.解析:首先根据单项式与多项式相乘的法那么去掉括号,然后合并同类项,最后代入的数值计算即可.解:3a (2a 2-4a +3)-2a 2(3a +4)=6a 3-12a 2+9a -6a 3-8a 2=-20a 2+9a ,当a =-2时,原式=-20×4-9×2=-98.方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.【类型四】 单项式乘多项式,利用展开式中不含某一项求未知系数的值如果(-3x )2(x 2-2nx +23)的展开式中不含x 3项,求n 的值.解析:原式先算乘方,再利用单项式乘多项式法那么计算,根据结果不含x 3项,求出n 的值即可.解:(-3x )2(x 2-2nx +23)=(9x 2)(x 2-2nx +23)=9x 4-18nx 3+6x 2,由展开式中不含x3项,得到n =0.方法总结:单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.三、板书设计单项式与单项式、多项式相乘1.单项式与单项式相乘法那么:单项式与单项式相乘就是它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.2.单项式与多项式相乘的法那么:单项式与多项式相乘,只要将单项式分别乘以多项式的每一项,再将所得的积相加.本节知识的重点是让学生理解单项式与单项式、多项式相乘的法那么,并能应用.这就必须要求学生对乘法的分配律以及幂的运算法那么有一定的根底,因此课前可以要求学生先复习该局部的知识,同时在上新课前也可以通过练习题让学生回忆知识.对于运算法那么的得出,教师通过“试一试〞逐步解题,通过计算演示法那么的内容,更有利于学生理解运算法那么.。
七年级数学《绝对值》教案【优秀6篇】

七年级数学《绝对值》教案【优秀6篇】数学《绝对值》教案篇一●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、。
七年级数学上册绝对值导学案教案

绝对值绝对值的定义:数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。
问题情境1:绝对值定义的运用. 情形1:已知一个数,求其绝对值.问题模型:绝对值的定义,一个数的绝对值是在数轴上表示这个数的点到原点的距离. 求解模型:⑴ 在数轴上画出表示各已知数的点; ⑵ 确定该点到原点的距离. 例1写出下列各数的绝对值.-2.5,1.5,0. 分析:解:如图1所示,在数轴上分别画出表示-2.5的点A ,表示1.5的点B .因为点A 与原点的距离为2.5,所以|-2.5|=2.5;因为点B 与原点的距离是1.5,所以|1.5|=1.5;因为点C 与原点的距离是0,所以|0|=0。
变式:1.在数轴上画出表示下列各数的点,-4,2.5,-0.5,0,1。
填空:|-4|= ;|2.5|= ;|-0.5|= ;|0|= ;|1|= 。
参考答案:2.(2010,芜湖)-6的绝对值是( )A .6B .-6C .+16D .-16参考答案:A.3.求下列各数的绝对值: +465,172-,0,-2.4参考答案:|+465|=465;|172-|=172;|0|=0;|-2.4|=2.4。
4.-2的绝对值的相反数为 。
5.情形2:已知一个数的绝对值,求这个数.问题模型:绝对值的定义,一个数的绝对值是在数轴上表示这个数的点到原点的距离.图1求解模型:⑴在数轴上画出符合题意的点; ⑵写出该点表示的数.例2 (1)绝对值是4的数有几个,各是什么?(2)绝对值是0的数有几个,各是什么? (3)绝对值是-5的数有几个,各是什么?分析:本题要根据绝对值的几何意义去考虑,表示4和-4的点到原点的距离都是4,到原点的距离是0的数只有0,而没有到原点的距离是负数的点。
解:(1)绝对值是4的数有两个,它们分别是4和-4;(2)绝对值是0的数只有0; (3)绝对值是-5的数不存在。
总结:与例1相比,这两个是互逆的过程。
但互逆不是简单的互逆,一个数的绝对值只有一个,而绝对值为正数的数有两个。
《绝对值》导学案

《绝对值》导学案一、学习目标1、理解绝对值的概念,会求一个数的绝对值。
2、理解绝对值的几何意义和代数意义。
3、掌握绝对值的性质,并能运用绝对值的性质解决相关问题。
二、学习重点1、绝对值的概念和求法。
2、绝对值的性质及其应用。
三、学习难点1、绝对值的几何意义的理解。
2、绝对值性质的灵活运用。
四、知识回顾1、数轴的三要素:原点、正方向、单位长度。
2、在数轴上,表示互为相反数的两个点,位于原点的两侧,且到原点的距离相等。
五、新课导入在日常生活中,我们经常会遇到一些与距离有关的问题。
比如,小明家距离学校 5 千米,小李家距离学校 3 千米。
这里的“5 千米”和“3 千米”就是表示距离的量。
在数学中,我们也有一个类似的概念,叫做绝对值。
六、知识讲解1、绝对值的定义一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。
例如,数轴上表示-5 的点与原点的距离是 5,所以|-5| = 5;表示5 的点与原点的距离是 5,所以|5| = 5。
2、绝对值的几何意义一个数的绝对值就是数轴上表示这个数的点到原点的距离。
距离总是非负的,所以绝对值一定是非负的,即|a| ≥ 0。
例如,|-3|表示数轴上表示-3 的点到原点的距离,这个距离是3,所以|-3| = 3。
3、绝对值的代数意义(1)正数的绝对值是它本身;即若 a > 0,则|a| = a。
(2)0 的绝对值是 0;即|0| = 0。
(3)负数的绝对值是它的相反数;即若 a < 0,则|a| = a。
例如,|5| = 5,|0| = 0,|-8| =(-8) = 8。
4、绝对值的性质(1)互为相反数的两个数的绝对值相等。
例如,|-5| =|5| = 5。
(2)绝对值具有非负性,即|a| ≥ 0。
(3)若|a| =|b|,则 a = ±b。
七、例题讲解例 1:求下列各数的绝对值:(1)-7 (2)0 (3)35 (4)-25解:(1)|-7| = 7(2)|0| = 0(3)|35| = 35(4)|-25| = 25例 2:已知|x| = 4,求 x 的值。
七年级数学上册2.3《绝对值》导学案

2.3 绝对值【学习目标】1.借助数轴,理解绝对值和相反数的概念2.知道|a |的含义以及互为相反数的两个数在数轴上的位置关系.3.能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小.4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【学习方法】 自主学习与合作探究【自主学习】一、自学指导看书学习第30~31页的内容,思考下面的问题.1.在数轴上和原点相距3个单位长度的点表示的数是什么?-5在原点的哪一侧,与原点相距几个单位?你能在数轴上标出这些距离吗?2.通过学习,你能写出绝对值的定义吗?3.一个有理数a 的相反数怎样表示?通过本节的学习你知道一个有理数a 的绝对值怎样表示吗?二、知识探究1.一般地, ,叫做数a 的绝对值.2.一个正数的绝对值是 ,即:若a>0,则|a|= ; 一个负数的绝对值是 ,即:若a<0,则|a|= ;0的绝对值是 (双重性).3、两个负数比较大小, .三、自学反馈(检测题) 1.数轴上有一点到原点的距离为6.03,那么这个点表示的数是 .所以|6.03|= ,|-6.03|= .2.求下列各数的绝对值: +13、 -8、 +513、 -8.22(温馨提示:注意解题格式呦) 3.-312的绝对值是 ,绝对值等于312的数是 ,它们是一对 .4.已知|a|=3,|b|=5,a 与b 异号,求a 、b 两数在数轴上所表示的点之间的距离.5.在|-7|,5,-(+3),-|0|中,负数共有( )A.1个B.2个C.3个D.4个6.一个数的绝对值等于这个数本身,这个数是( )A.1B.+1,-1,0C.1或-1D.非负数非负数的绝对值是它本身,负数的绝对值是它的相反数.7、比较大小:-3 -6【合作探究】一、活动1:小组讨论1.-2的相反数是 ,a 的相反数是 ,-a 的相反数是 。
2.下列四组数中不相等的是( )A.-(+3)和+(-3)B.+(-5)和-5C.+(-7)和-(-7)D.-(-1)和|-1|3.判断: (1).一个数的绝对值的相反数一定不是负数 ( )(2).一个数的绝对值一定不是负数 ( )(3).一个数的绝对值一定是正数 ( )(4).一个数的绝对值一定是非正数 ( )4.若|x-3|+|y-2|=0,则x= ,y= .二、活动2:小组比赛完成课本第32页“随堂练习”,比一比那个小组做的又快又好。
(完整版)七年级上册绝对值导学案

《1.2.4绝对值》导学案 班级 姓名活动一 明确目标,自主学习(一)学习目标:1、借助于数轴,初步理解绝对值的概念,能求一个数的绝对值;2、通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
重点:绝对值的概念和求一个数的绝对值难点:理解绝对值的概念,绝对值的意义。
(二)自学探究知识回顾:1.在数轴上分别标出–5,3.5,0及它们的相反数所对应的点。
2.在数轴上找出与原点距离等于6的点。
3.相反数是怎样定义的?活动二 小组合作,探究新知问题1、两位同学在书店O 处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A 处,乙车向西行驶了10公里到达B 处。
若规定向东为正,则A处记做__________,B处记做__________。
(1)请同学们在数轴上标出A 、B 的位置;(2)这两辆出租车行驶路线相同吗?它们行驶路程的远近(距离)相同吗?实际生活中距离是不是与方向无关?(3)在数轴上表示-5的点到原点的距离是 ,在数轴上表示+5的点到原点的距离是如果说-5和+5的绝对值相等,就刚才学习的内容,猜测一下什么是绝对值?归纳:一般地,在数轴上 叫做数a 的绝对值,记作: 活动三 深度记忆,强化新知1、 4的绝对值指在数轴上表示 与 的距离,所以| 4|= 。
同理:—6的绝对值指在数轴上表示 与 的距离,所以| —6|= 。
2、请与同桌交流| 7|、∣—2.25∣、∣25 ∣、∣0∣的意义及其值。
小组之间互相出题考查。
问题2、试一试:你能从中发现什么规律?(1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ; (3)|-2|= ,|-51|= ,|-8.2|= . 归纳:把你所发现的规律写在下面,并在小组内验证是否正确。
小结:一个正数的绝对值是它 ,即:当a>0时,|a|=一个负数的绝对值是它的 ,即:当a<0时,|a|=0的绝对值是 ,即:当a=0时,|a|=活动四 亲身体验,领会知识深入到游戏中,总结归纳一个数a 的绝对值应是什么样的数?活动五 我总结,我收获,我提高!活动六 达标检测,反馈拓展【基础过关】1、绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零2.、在-(+2),-(-8),-5,+(-4)中,负数有 ( )A .1个B .2个C .3个D .4个3、绝对值等于它本身的数是____________。
1.2.4.2 绝对值 第2课时 导学案 2022-2023学年 人教版数学 七年级上册

1.2.4.2 绝对值第2课时导学案
一、学习目标
1.了解绝对值的概念;
2.掌握绝对值的运算性质;
3.能够利用绝对值解决实际问题。
二、课前预习
1.课本P16、P17页的练习题和题解;
2.了解数轴的基本概念和绘制方法(可参考网络资料);
3.复习取反和相反数的定义及运算规律。
三、课堂授课
1.绝对值的定义:对任何实数x,其绝对值|x|都是一个非负数,它的值为x
与0之间的距离,即|x| = { x , (x≥0);-x , (x<0)}。
2.绝对值的运算性质:
•非负性:对于任何实数x,都有|x|≥0,且|x|=0当且仅当x=0;
•三角不等式:对于任何实数x、y,都有|x+y|≤|x|+|y|和|x-y|≥|x|-|y|;
•分类讨论应用:
|x| + |y| = |x + y| 或 |x - y|,当且仅当 x、y 同号时成立。
|x| - |y| = |x - y| 或 |x + y|,当且仅当 x、y 异号时成立。
3.绝对值的实际应用举例:
•温度计:温度计的刻度设定为-30,-29,-28,……,0,……,29,30度,每个刻度之间相隔1度。
则0度和-10度之间的温度差为10度,而0度和10度之
间的温度差仍然是10度。
用绝对值符号将该温度差表达为:|0-(-10)| = 10;
•立体几何:求两个点在空间中的距离。
•等等……
四、课后作业
1.完成课本P20页练习31~35题;
2.总结绝对值的定义及运算性质,并完成一道综合练习题。
最新人教版初中七年级数学上册《绝对值》导学案

1.2.4 绝对值第1课时绝对值一、导学1.课题导入:小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的方向相同吗?他们行走的路程相同吗?学生回答后,老师设问:上述这个问题反映了什么数学知识呢?从而导入这节课要学习的课题——绝对值.2.学习目标:(1)知识与技能能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.(2)过程与方法经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.(3)情感态度通过解释绝对值的几何意义,渗透数形结合的思想.3.学习重、难点:重点:绝对值的概念;会求一个已知数的绝对值.难点:绝对值运算法则的文字表述和符号表述.4.自学指导:(1)自学内容:教材第11页“练习”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真看课本,重要的内容做上记号,图文对照来理解绝对值的几何意义和代数意义.(4)自学参考提纲:①绝对值的几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,这里的数a可以是正数、负数、0.②上图中,小红、小明两人对应的数分别是10和-10,它们和原点的距离都是10个单位,所以10和-10的绝对值都是10,即|10|=10,|-10|=10.③一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.④绝对值的代数意义用式子表示:Ⅰ.当a>0时,|a|=a;Ⅱ.当a<0时,|a|=-a;Ⅲ.当a=0时,|a|=0.⑤判断:Ⅰ.若a=-a,则a<0.(×)Ⅱ.绝对值等于它本身的数一定是正数.(×)Ⅲ.绝对值最小的数是1.(×)Ⅳ.任何有理数的绝对值都是正数.(×)二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师深入学习小组之中,了解学生对自学问题的认知和理解情况,掌握自学进度和认识偏差.(2)差异指导:对个别学生在以下方面进行指导.①几何意义的理解.②绝对值求法.③a为有理数,|a|等于什么?④运用|a|=a与|a|=-a时,“a可为0”的忽视.2.生助生:同学间相互交流解决自学中存在的疑难问题.四、强化1.知识要点:(1)一个正数的绝对值是它本身,即:若a>0,则a=a;一个负数的绝对值是它的相反数,即:若a<0,则a=-a;0的绝对值是0(双重性).(2)若a=a,则a≥0;若a=-a,则a≤0.(3)a≥0.2.练习:(1)写出下列各数的绝对值:6,-8,-3.9,52,-211,100,0解:6,8,3.9,52,211,100,0(2)判断下列等式是否成立:①5=5(√) ②-|5|=|-5|(×) ③-5=|-5|(×) ④-|-5|=-(-5)( ×)五、评价1.学生的自我评价(围绕三维目标):自我总结学习成果,查找学习中的不足.2.教师对学生的评价:(1)表现性评价:对课堂学习中的表现进行点评总结,指出优点与不足. (2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时应从生活中的实际问题出发,引导学生探索绝对值的概念、表示方法,根据绝对值的意义会求一个数的绝对值,通过观察和分析知道一个数的绝对值并会求这个数.教学中,以问题为载体给学生提供探索的空间,强调学生的自主学习和小组交流,在形成一定的认识后,教师出示相应习题,指导学生完成以巩固所学知识.一、基础巩固(70分)1.(10分)|-2|的值是(A)A.2B.12C.- 12D.-22.(10分)若|a|=|b|,则a与b的关系是(C)A.a=-bB.a=bC.a=b或a=-bD.不能确定3.(40分)下列说法中正确的有③④.(填序号)①符号相反的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上越靠右;③一个数的绝对值越大,表示它的点在数轴上离原点越远;④当a≠0时,|a|总是大于0.4.(10分)写出下列各数的绝对值:-125,+23,-3.5,0,23,-32,-0.05.上面的数中哪个数的绝对值最大?哪个数的绝对值最小?解:125,23,3.5,0,23,32,0.05.-125的绝对值最大,0的绝对值最小.二、综合应用(20分)5.(10分)若|a|=-a,则a一定是(C)A.正数B.负数C.非正数D.非负数6.(10分)检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数,具体数据如下:+5,-3.5,+0.7,-2.5,-0.6,从轻重的角度看,哪个球最接近标准?解:-0.6的球最接近标准.三、拓展延伸(10分)7.(10分)(1)若a>0,则aa=1,若||a=1,则a是正数.a(2)若|x|=3,则x=±3;若|-x|=4,则x=±4.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上课流程及时间预设:预习合作课:解读目标(2)—独学(15)—对学(5)—群学(10)—老师精讲(5)—整理导学案(3)
一、学习目标: 理解绝对值和相反数的概念及表示方法;能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小;
学习重难点:正确理解绝对值的概念;绝对值的几何意义,负数大小比较。
二、学习过程:
(一)自主学习:
1、画一条数轴,并在数轴上标出下列各数:
-3,4,0,3,-1 5,-4,23,2,-2
3 我发现,其中 和 , 和 , 和 只有符号不同,那么称其中一个数为另一个数的相反数。
从数轴上看,互为相反数的点到原点的距离 。
在数轴上,一个数所对应的点与原点的距离叫做这个数的 。
(二)合作探究:
1、+5的绝对值是 ,在数轴上表示+5的点到原点的距离是 ,
-4的绝对值是 ,在数轴上表示-4的点到原点的距离是 .
2、一个正数的绝对值是它 ;一个负数的绝对值是它的 ;0的绝对值是 ,表明它到原点的距离是 ;互为相反数的两个绝对值 。
一般地,一个数a 的绝对值就是数轴上表示a 的点到 的距离。
3、两个负数,绝对值 的反而小。
4、由数轴上a 、b 的位置可以知道a <0,b >0,且|a|<|b|
所以|a|= ,| b|= ,|a+b|= ,|b-a|=
(三)小组合作展示
1、 在括号里填写适当的数:
(1)5.3-=( ); (2) 2
1+=( ); (3) -5-=( ); (4)-3+=( ); (5) ()=0; (6) -()=-2。
2、 计算下列各题:
(1)|-3|+|+5|; (2) |-3|+|-5|; (3)|+2|-|-2|;
(4)|-3|-|-2|; (5)|-21|×|-31|; (6) |-2
1|÷|-2|; (四)、达标检测:
1. 求8,-8,41,-4
1,0,6,-π,π-5的绝对值。
2. 判断下列各式正确的是( ):
A 、|-0.1|<|-0.01|;
B 、|- 31|<41;
C 、 32<43-;
D 、81 ﹥-7
1 3. 比较下列每对数的大小: (1)-85与-83;(2)-113与0;(3)-73与-9
4; (4)- 65与-1110;(5)- 32与-53;(6)- 97与-11
9 (五)、课堂自主小结:
1、用a 表示一个数,如何表示a 是正数,a 是负数,a 是0?
2、怎样表示a 的本身,a 的相反数?
3、现在可以把一个数a 绝对值的代数定义表示成 ;
4、利用数轴我们已经会比较有理数的大小
(六)自我反思:这节课我学到了 。
我的课堂表现优点: ,不足 。