幂函数及其性质教案
幂函数 优秀教案

幂函数优秀教案幂函数教学目标】1.知识与技能:1) 理解幂函数的概念,能够画出幂函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像。
2) 根据常见的幂函数图像,理解幂函数图像的变化情况和性质,并能进行简单的应用。
2.过程与方法:1) 通过观察、总结幂函数的性质,培养学生的识图能力和概括能力。
2) 使学生进一步体会数形结合的思想方法。
3.情感态度与价值观:1) 通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的研究兴趣。
2) 利用计算机,了解幂函数图像的变化规律使学生认识到现代技术在数学认识过程中的作用,从而激发学生的研究欲望。
教学重点】从五个具体幂函数中认识幂函数的一些性质。
教学难点】画五个具体幂函数的图像并由图像概括其性质,体会图像的变化规律。
教法】启发、引导教学过程】一、创设情景,引入新课通过观察几个例子的函数模型,引入新课。
二、互动探究,讲解新课1.幂函数的定义:一般地,函数y=x^α叫做幂函数,其中x为自变量,α为常数。
练:判断下列函数是否为幂函数?1) y=x^4 (2) y=2x^2 (3) y=-x^3 (4) y=2.常见幂函数的图像与性质:自主探究]分别作出函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像并观察函数图像,将你发现的结论写在下表内:定义域。
|。
值域。
|。
奇偶性。
|。
单调性。
|。
定点。
|R。
|。
R+。
|。
奇函数。
|。
增函数。
|。
(1,1)。
|R。
|。
R+。
|。
偶函数。
|。
增函数。
|。
(0,0)。
|R。
|。
R。
|。
奇函数。
|。
增函数。
|。
(0,0)。
|R*。
|。
R*。
|。
奇函数。
|。
减函数。
|。
(1,1)。
|R+。
|。
R+。
|。
无奇偶性。
|。
增函数。
|。
(0,0)。
|合作探究]根据上表的内容并结合图像,试总结函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的共同性质。
归纳:1) 函数y=x,y=x^2,y=x^3,y=x^-1和y=x^2的图像都通过点(1,1)。
初中数学幂函数的性质教案

初中数学幂函数的性质教案教学目标:1. 知识与技能:理解幂函数的定义,掌握幂函数的性质,能够运用幂函数解决实际问题。
2. 过程与方法:通过观察、实验、探究等方法,引导学生发现幂函数的性质,培养学生的逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,提高学生分析问题、解决问题的能力。
教学重难点:1. 重点:掌握幂函数的性质。
2. 难点:理解幂函数的单调性和奇偶性。
教学准备:1. 教学工具:多媒体课件、黑板、粉笔。
2. 学具:学生准备幂函数的图象和表格。
教学过程:一、导入(5分钟)1. 复习指数函数的定义和性质。
2. 提问:指数函数与幂函数有什么关系?二、新课导入(10分钟)1. 介绍幂函数的定义:一般地,函数的形式为y=x^a(a为常数),称为幂函数。
2. 分析幂函数的性质:a) 当a>0时,幂函数在x>0的区间上单调递增;b) 当a<0时,幂函数在x>0的区间上单调递减;c) 当a=0时,幂函数为常数函数。
三、实例分析(15分钟)1. 分析幂函数y=x^2的性质:a) 图像:抛物线,开口向上;b) 单调性:在x>0的区间上单调递增;c) 奇偶性:偶函数。
2. 分析幂函数y=x^-1的性质:a) 图像:反比例函数的图像;b) 单调性:在x>0的区间上单调递减;c) 奇偶性:奇函数。
四、学生实验探究(15分钟)1. 学生分组,每组选择一个幂函数进行实验。
2. 实验内容:观察幂函数的图像,分析幂函数的单调性和奇偶性。
3. 学生汇报实验结果,教师点评并总结。
五、巩固练习(10分钟)1. 学生自主完成幂函数的练习题。
2. 教师选取部分学生的作业进行点评。
六、课堂小结(5分钟)1. 回顾本节课学习的内容,总结幂函数的性质。
2. 强调幂函数在实际问题中的应用。
七、作业布置(5分钟)1. 完成幂函数的练习题。
2. 调查生活中常见的幂函数现象,下节课分享。
幂函数教案

幂函数教案
幂函数是高中数学中的一个重要概念,也是一个重要的函数类型。
在教学中,我会采用以下教学方法来帮助学生理解和掌握幂函数的概念和性质。
一、引入部分:
我会通过一个简单的例子来引入幂函数的概念。
让学生观察并思考一下图形,从而了解幂函数的定义和特点。
例:画出函数y=x²的图像,并观察图像的特点。
二、定义和性质:
然后,我会给出幂函数的定义和一些基本性质,例如幂函数的定义域、值域、图像的特点等。
再通过一些具体的例子来说明这些性质。
例:给出函数y=2ⁿ的定义和一些性质,例如定义域是实数集,值域是正数集,图像是一个上凸函数等。
三、幂函数的图像和性质:
接下来,我会通过一系列的例题来帮助学生更好地理解和掌握幂函数的图像和性质。
例如画出函数y=2ⁿ的图像,让学生观
察图像的特点,并解释函数的增减性、奇偶性、极限等性质。
例:求函数y=2ⁿ的增减性、奇偶性和极限。
四、幂函数的应用:
最后,我会给出一些幂函数的应用问题,例如经典的利息问题、指数增长问题等,让学生运用已学的知识解决实际问题。
通过这些应用问题,学生能够更好地理解幂函数在实际生活中的应
用。
例:小明存了一笔钱,年利率为3%,如果每年利息都重新投资,求n年后,小明总共的存款。
通过这样的教学方法,学生可以更直观地理解幂函数的概念和性质,并能够运用所学知识解决实际问题。
同时,我也会通过课堂练习和作业等方式来巩固学生对幂函数的理解和掌握。
幂函数教案

幂函数教案幂函数教学设计一、教学内容:本节课主要讲解幂函数的基本概念、性质以及解题方法。
二、教学目标:1. 掌握幂函数的定义及其一般形式。
2. 了解幂函数的图像特点及其变化规律。
3. 能够解决与幂函数相关的实际问题。
三、教学过程:步骤一:导入新课1. 引导学生回顾一元二次函数的知识,并帮助学生发现一元二次函数与平方函数之间的关系。
2. 引导学生思考,如果给定的方程中含有类似于x^n(n为自然数)的项,该如何解决?(请学生回顾类似的方程,并尝试解题)步骤二:讲解幂函数的定义1. 运用幂函数的定义引导学生进行思考:什么样的方程是幂函数?2. 引导学生猜想幂函数的一般形式,即f(x)=x^n,其中n为实数。
3. 张绘制幂函数的图像,并引导学生发现其特点,如:当n>1时,图像呈现递增趋势;当n=1时,图像为直线,并由坐标原点经过;当0<n<1时,图像在原点附近缓慢上升。
步骤三:讲解幂函数的性质1. 解释幂函数的定义域和值域,即当n为偶数时,定义域为R,值域为[0,+∞);当n为奇数时,值域为R。
2. 引导学生发现幂函数与幂函数之间的比较关系,即当0<n<m时,幂函数f(x)=x^n的图像位于幂函数g(x)=x^m的图像之下。
3. 引导学生探究幂函数的奇偶性,即当n为整数时,该幂函数的奇偶性与n的奇偶性一致。
比如,当n为偶数时,函数f(x)=x^n是偶函数;当n为奇数时,函数f(x)=x^n是奇函数。
步骤四:解决幂函数相关的实际问题1. 给学生提供一些实际应用题,如求一块长方形的面积与宽度的关系等,引导学生使用幂函数解决问题。
2. 引导学生分析问题,并运用幂函数的性质进行求解。
3. 鼓励学生自主解决问题,引导学生独立思考并找到解决问题的方法。
四、教学检查及评价:1. 教师可以通过课堂练习、小组讨论等方式进行教学检查,及时发现学生的问题并给予指导。
2. 教师可以根据学生的思考能力和解题情况,评价学生的学习情况,及时提供帮助和改进措施。
幂函数教学设计

幂函数教学设计一、教学目标:1.知识目标:了解幂函数的定义和性质,掌握幂函数的图像、凹凸性和增减性。
2.能力目标:通过练习,培养学生对幂函数的分析和解题能力。
3.情感目标:培养学生对数学的兴趣,培养学生的逻辑思维和分析问题的能力。
二、教学重点:1.幂函数的定义和性质。
2.幂函数的图像、凹凸性和增减性。
三、教学内容:1.幂函数的定义和性质。
包括幂函数的定义、幂函数的图像、幂函数的增减性、幂函数的凹凸性等。
2.幂函数的图像练习。
让学生通过绘制幂函数的图像来加深对幂函数的认识。
3.幂函数的增减性练习。
让学生通过练习判断幂函数的增减性,提高对幂函数的分析能力。
4.幂函数的凹凸性练习。
让学生通过练习判断幂函数的凹凸性,提高对幂函数的分析能力。
四、教学方法:1.预习导入法:通过提问和引入实际问题的方式,让学生预习幂函数的知识,并激发学生对幂函数的兴趣。
2.讲授法:通过讲解幂函数的定义和性质,让学生了解幂函数的基本知识。
3.实例法:通过具体的例子,让学生更好地理解幂函数的概念和特点。
4.练习法:通过练习判断幂函数的图像、增减性和凹凸性,提高学生对幂函数的分析和解题能力。
五、教学过程:1.预习导入:通过提问和实际问题引入,让学生思考并预习幂函数的概念和性质。
2.讲解幂函数的定义和性质:讲解幂函数的定义、幂函数的图像、幂函数的增减性和凹凸性等基本知识点。
3.实例分析法:通过具体的例子,让学生更好地理解幂函数的概念和性质。
4.练习幂函数的图像:让学生自己绘制幂函数的图像,并分析图像的特点。
5.练习幂函数的增减性:通过练习,让学生判断幂函数的增减性,并解释原因。
6.练习幂函数的凹凸性:通过练习,让学生判断幂函数的凹凸性,并解释原因。
7.小结归纳:对幂函数的定义和性质进行小结和归纳,梳理幂函数的重点和难点。
六、教学评价方式:1.学生的课堂练习成绩。
2.学生的课堂表现和参与度。
3.学生的课后作业完成情况。
七、教学反思:通过这节课的教学设计,学生可以通过对幂函数的定义和性质的学习,进一步加深对幂函数的理解。
高中数学幂函数的教案

高中数学幂函数的教案
一、教学目标:
1. 理解幂函数的基本概念和特点;
2. 掌握幂函数的图像特征和性质;
3. 能够解决幂函数相关的问题。
二、教学重点:
1. 幂函数的定义和基本特点;
2. 幂函数的图像性质。
三、教学难点:
1. 幂函数的特殊情况的解决方法;
2. 幂函数的应用问题的解决。
四、教学过程:
1. 导入:通过实际生活中的例子引入幂函数的概念,引发学生的兴趣。
2. 概念讲解:介绍幂函数的定义和基本特点,解释幂函数的图像特征和性质。
3. 实例演练:通过案例分析,让学生运用所学知识解决幂函数相关的问题。
4. 拓展应用:引导学生探讨幂函数在实际问题中的应用,开拓思维。
五、课堂讨论:组织学生讨论幂函数的特殊情况和解决方法,促进学生之间的交流和思考。
六、练习测试:布置与幂函数相关的习题,检验学生对知识的掌握程度。
七、总结反思:引导学生总结本节课的重点知识,反思学习过程中的问题和感悟。
八、课后复习:提醒学生及时复习幂函数相关知识,完成作业,并准备下节课内容。
九、教学手段:采用多媒体教学、案例分析、讨论互动等方式,激发学生学习兴趣。
十、教学评估:根据学生的学习情况和表现,及时调整教学策略,确保教学效果。
十一、教学延伸:鼓励学生主动学习,拓展幂函数相关知识,提高数学思维能力。
以上是高中数学幂函数的教案范本,仅供参考。
祝教学顺利!。
幂函数概念的教案

幂函数概念的教案教案标题:幂函数概念的教案教案目标:1. 使学生了解幂函数的定义和特点。
2. 帮助学生掌握幂函数的图像、性质和应用。
3. 培养学生的问题解决能力和数学思维。
教案步骤:引入活动:1. 利用实际生活中的例子引入幂函数的概念,例如:计算机的指数运算、音乐音量的调节等。
概念解释:2. 解释幂函数的定义:幂函数是指以自变量为底数,以常数为指数的函数形式,表示为f(x) = a^x,其中a是常数,x是自变量。
3. 强调幂函数的特点:幂函数的定义域为实数集,且幂函数的图像随着底数a和指数x的不同而变化。
图像展示:4. 利用投影仪或白板绘制幂函数的图像,包括底数a的不同取值和指数x的正、负、零值的情况。
解释图像的变化规律。
性质探究:5. 引导学生观察和总结幂函数的性质,如幂函数的奇偶性、单调性、零点、极值等。
通过数学推理和实例验证,让学生理解这些性质。
应用实例:6. 提供一些实际问题,让学生应用幂函数的概念和性质解决问题,如人口增长、细菌繁殖等。
鼓励学生在小组或个人中进行讨论和解答。
练习巩固:7. 分发练习题,包括计算、分析和应用题型,以检验学生对幂函数的理解和掌握程度。
鼓励学生积极参与,解答并讨论问题。
课堂总结:8. 对本节课的内容进行总结,强调幂函数的概念、性质和应用。
鼓励学生提问和反馈,澄清疑惑。
拓展延伸:9. 鼓励有兴趣的学生进一步探究幂函数的相关知识,如对数函数、指数函数等。
提供相关阅读材料或引导学生进行自主学习。
评估反馈:10. 根据学生在课堂上的表现和练习题的答案,进行评估并给予反馈。
鼓励学生提出问题和改进意见。
教学资源:- 投影仪或白板- 幂函数图像示例- 练习题及答案- 相关阅读材料教学扩展:- 可以引导学生利用电脑软件或在线工具绘制幂函数的图像,进一步观察和探究。
- 可以组织学生进行小组研究,调查幂函数在不同领域的应用,如经济学、生物学等。
注:以上教案仅供参考,具体教学过程和资源可根据实际情况进行调整。
幂函数教案

幂函数教案一、教学目标1.了解幂函数的定义和性质;2.掌握幂函数的图像和变化规律;3.能够应用幂函数解决实际问题。
二、教学重点1.幂函数的定义和性质;2.幂函数的图像和变化规律。
三、教学难点1.幂函数的应用。
四、教学内容1. 幂函数的定义和性质幂函数是指形如f(x)=x a的函数,其中a是一个实数。
当a>0时,幂函数是单调递增的;当a<0时,幂函数是单调递减的;当a=0时,幂函数是常数函数f(x)=1。
2. 幂函数的图像和变化规律当a>1时,幂函数的图像是一个开口向上的拋物线,且随着a的增大,拋物线的开口越来越窄,曲线越来越陡峭;当0<a<1时,幂函数的图像是一个开口向下的拋物线,且随着a的增大,拋物线的开口越来越宽,曲线越来越平缓;当a<0时,幂函数的图像是一条关于x轴对称的曲线。
3. 幂函数的应用幂函数在实际问题中有广泛的应用,例如:3.1. 指数增长指数增长是指某种数量随着时间的增长呈现出指数级别的增长。
例如,某种细菌的数量随着时间的增长呈现出指数增长的趋势。
假设某种细菌的数量N 随着时间t的增长满足以下关系式:N=N0⋅2t/T其中N0是初始数量,T是细菌繁殖周期。
将上式变形得到:log2N=log2N0+t T这是一个关于t的一次函数,可以用幂函数的知识求出细菌数量随时间的变化规律。
3.2. 投资回报率投资回报率是指某项投资的收益与投资成本之比。
假设某项投资的收益R 随着投资时间t的增加满足以下关系式:R=P⋅(1+r)t其中P是投资成本,r是年化收益率。
将上式变形得到:log1+r R=log1+r P+t这是一个关于t的一次函数,可以用幂函数的知识求出投资回报率随时间的变化规律。
五、教学方法1.讲解幂函数的定义和性质;2.展示幂函数的图像和变化规律;3.通过实例演示幂函数的应用。
六、教学过程1. 幂函数的定义和性质幂函数是指形如f(x)=x a的函数,其中a是一个实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数及其性质专题
一、幂函数的定义ﻩ
一般地,形如y x α=(x ∈R)的函数称为幂函数,其中x 是自变量,α是常数.如
112
3
4
,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基
本初等函数.
【思考】幂函数与指数函数有何不同?
本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 【例】1.下列函数:①31
x
y =;②23-=x y ;③24x x y +=;④32x y =,其中幂函数的个数为( )
2.若函数22)5(x k k y --=是幂函数,则实数k的值是( )
3.已知点)33,3
3
(
在幂函数f(x )的图像上,则f(x)的表达式是? 4.当()+∞∈,0x 时,幂函数()3521----=m x m m y 为减函数,则实数m 的值为?
二、函数的图像和性质
(1)y x = (2)1
2
y x = (3)2y x = (4)1y x -= (5)3y x =
用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出:
【例】已知幂函数f(x)的图像过点
(
)
2,2,幂函数
g(x )的图像过点⎪⎭
⎫
⎝⎛41,2,(1)求f (x),g (x)的解
析式;(2)当x为何值时:①f(x)>g (x );②f(x)=g (x);③f(x)<g (x) 【变式】若点
(
)
2,2改为()8,2,探求f(x)与g (x )
中较小的一个的单调性及奇偶性。
【规律小结】 (1)求幂函数解析式的步骤为以下几点:①设出幂函数的一般形式y=x α(α为常数); ②根据已知条件求出α的值(待定系数法);
③定出幂函数的解析式.
(2)作直线x=t,t ∈(1,+∞)与幂函数的各个图象相交,则交点自上而下的排列顺序恰好是按幂指数的降幂排列的. 【幂函数性质】
(1)单调性:①所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); ②0>a 时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数
③0<a 时,幂函数的图象在区间(0,+∞)上是减函数. (2)奇偶性:幂函数中既有奇函数,又有偶函数,也有非奇非偶函数,可以用函数奇偶性的定义进行判断。
【例】已知莫函数()()*232N m m xm x f ∈--=的图像关于y 轴对称,且在()+∞,0上是减函数,求满足()()3
2331m
a m a --<-
+的a的范围。
【变式】例题题干不变,(1)求函数f(x);
(2)讨论()()
x xf b x f a x F -
=)(的奇偶性
【归纳小结】解答此类问题可分为两大步:第一步,利用单调性和奇偶性(图象对称性)求出m 的值或范围;第二步,利用分类讨论的思想,结合函数的图象求出参数a 的取值范围.
三.两类基本函数的归纳比较: ① 定义
对数函数的定义:一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).
幂函数的定义:一般地,形如y x α=(x ∈R)的函数称为幂孙函数,其中x 是自变量,α是常数. ②性质
对数函数的性质:定义域:(0,+∞);值域:R ; 过点(1,0),即当x =1,y =0;
在(0,+∞)上是增函数;在(0,+∞)是上减函数
幂函数的性质:所有的幂函数在(0,+∞)都有定义,图象都过点(1,1)0>a 时,幂函数的图象都通过原点;在[0,+∞]上,y x =、2
y x =、3
y x =、1
2
y x =是增函数;在(0,+∞)上, 1y x -=是减函数。
【例题选讲】
例1.已知函数()()
2531m f x m m x --=--,当 m 为何值时,()f x :
(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数;
【变式训练】已知函数()()
22
23
m m f x m m x
--=+,当 m 为何值时,()f x 在第一象限内它
的图像是上升曲线。
小结与拓展:要牢记幂函数的定义,列出等式或不等式求解。
例2.比较大小:
(1)1122
1.5,1.7 (2)33
( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.530.5,3,log 0.5
例3.已知幂函数2
23
m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,
求m 的值.
例4、设函数f(x )=x 3
,
(1)求它的反函数;
(2)分别求出f -1
(x )=f(x ),f -1
(x )>f(x),f -1
(x )<f (x )的实数x 的范围.
点评:本题在确定x 的范围时,采用了数形结合的方法,若采用解不等式或方程则较为
麻烦.
例5、求函数y =5
2x +2x5
1+4(x≥-32)值域. 点评:这是复合函数求值域的问题,应用换元法.
【同步练习】
1. 下列函数中不是幂函数的是( )
A.y =
B.3y x = C .2y x = D.1y x -=
2. 下列函数在(),0-∞上为减函数的是( )
A.13
y x = B.2y x = C.3
y x = D.2y x -=
3. 下列幂函数中定义域为{}
0x x >的是( ) A.23y x = B.32
y x = C.23
y x -
= D.32
y x
-
=
4.函数y=(x 2
-2x )
2
1-
的定义域是( )
A .{x|x ≠0或x ≠2} B.(-∞,0) (2,+∞) C.(-∞,0)] [2,+∞] D.(0,2) 5.函数y =(1-x 2
)2
1的值域是( )
A.[0,+∞]
B.(0,1) C .(0,1) D .[0,1] 6.函数y=5
2x 的单调递减区间为( )
A .(-∞,1) B.(-∞,0) C .[0,+∞] D.(-∞,+∞) 7.若a 2
1<a
21-,则a的取值范围是( )
A .a ≥1
B .a >0 C.1>a >0 D.1≥a ≥0 8.函数y=3
2)215(x x -+的定义域是 。
9.函数y =
2
21m m x
--在第二象限内单调递增,则m的最大负整数是________.
10、讨论函数y =5
2x 的定义域、值域、奇偶性、单调性,并画出图象的示意图. 11、比较下列各组中两个数的大小: (1)5
35.1,5
37.1;(2)0.7
1.5
,0.61.5
;(3)3
2
)
2.1(--,3
2
)
25.1(--.
点评:比较幂形式的两个数的大小,一般的思路是:
(1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;
(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.
12.已知函数y =42215x x --. (1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间. 规律总结
1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;
2.对于幂函数y =α
x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型.。