新人教版九年级数学下册《二十九章 投影与视图 数学活动》教案_10

合集下载

人教版数学九年级下册第29章《投影与视图》课堂教案

人教版数学九年级下册第29章《投影与视图》课堂教案

人教版数学九年级下册第29章《投影与视图》课堂教案一. 教材分析《投影与视图》这一章主要让学生了解和掌握投影的性质和特点,以及如何通过不同的投影方式来得到物体的视图。

内容主要包括平行投影、中心投影的概念,三视图的绘制方法等。

通过这一章的学习,学生可以更好地理解和应用几何知识,提高空间想象能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对空间图形有一定的认识。

但一部分学生可能对空间图形的理解和想象能力较弱,因此在教学过程中需要注重引导学生通过实际操作来加深对知识的理解。

三. 教学目标1.了解投影的性质和特点,掌握平行投影和中心投影的概念。

2.学会通过不同的投影方式来得到物体的视图,提高空间想象能力。

3.能够运用所学知识解决实际问题。

四. 教学重难点1.投影的性质和特点2.平行投影和中心投影的概念3.三视图的绘制方法五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作来解决问题。

2.利用多媒体辅助教学,展示实物投影和视图,帮助学生直观理解。

3.采用小组合作学习,让学生在讨论和交流中提高对知识的理解。

六. 教学准备1.多媒体教学设备2.实物模型3.绘图工具七. 教学过程1.导入(5分钟)利用多媒体展示不同的实物投影和视图,让学生感受投影和视图的魅力,激发学生的学习兴趣。

2.呈现(10分钟)通过具体的实物模型,向学生展示不同的投影方式,引导学生总结投影的性质和特点。

3.操练(10分钟)学生分组讨论,每组选择一个实物,通过实际操作来绘制该实物的三视图。

教师在此过程中进行指导,帮助学生解决问题。

4.巩固(10分钟)学生独立完成教材中的相关练习题,教师进行讲解和答疑。

5.拓展(10分钟)教师提出一些实际问题,引导学生运用所学知识进行解决,提高学生的实际应用能力。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识。

7.家庭作业(5分钟)布置一些有关投影与视图的练习题,让学生在课后进行巩固和提高。

人教版九年级下册第29章投影与视图29.2三视图教案

人教版九年级下册第29章投影与视图29.2三视图教案
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。每个小组用几何模型和绘图工具,尝试绘制三视图。
3.成果展示:每个小组将向全班展示他们的讨论成果和绘制的三视图。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三视图在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-掌握三视图的绘制方法:学生需要掌握如何根据几何体在三个不同视图上的投影来绘制三视图,包括投影线、隐藏线、轮廓线等的正确表达。
-能够识别和绘制简单几何体的三视图:通过实际操作,学生应能够对常见的几何体如立方体、圆柱体、圆锥体等的三视图进行识别和绘制。
2.教学难点
-空间想象能力的培养:对于一些空间想象能力较弱的学生,理解几何体与其三视图之间的对应关系是一大难点。例如,如何从二维的视图想象出三维的形状。
3.重点难点解析:在讲授过程中,我会特别强调三视图的绘制方法和视图之间的相互关系这两个重点。对于难点部分,如隐藏线和投影线的处理,我会通过实物模型和示例图来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三视图相Байду номын сангаас的实际问题,如如何根据三视图还原一个几何体。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三视图的基本概念。三视图是指主视图、左视图和俯视图,它们分别从不同角度展示物体的形状。三视图是工程绘图和建筑设计中不可或缺的部分,它帮助我们更直观地理解物体的三维结构。
2.案例分析:接下来,我们来看一个具体的案例。通过一个简单的立方体,演示如何绘制三视图,并讲解三视图在实际中的应用。
-实际应用中的三视图理解:将三视图的知识应用到实际问题中,如解读建筑图纸或机械图纸,对于学生来说是一个挑战,需要他们将理论知识与实践相结合。

人教版数学九年级下册第29章《投影与视图》课堂教学设计

人教版数学九年级下册第29章《投影与视图》课堂教学设计

人教版数学九年级下册第29章《投影与视图》课堂教学设计一. 教材分析人教版数学九年级下册第29章《投影与视图》是本册教材中的一个重要章节,主要介绍投影的概念、分类以及投影的基本性质。

通过本章的学习,使学生了解投影在数学、物理、艺术等领域的应用,培养学生的空间想象能力和抽象思维能力。

本章内容主要包括以下几个部分:1.投影的概念和分类2.正投影和斜投影3.投影的基本性质4.平行投影5.中心投影6.投影变换二. 学情分析学生在学习本章内容前,已经掌握了平面几何、立体几何的基本知识,具备了一定的空间想象能力和抽象思维能力。

但投影概念较为抽象,学生理解起来可能存在一定的困难。

因此,在教学过程中,教师需要运用生动形象的实例,引导学生直观地理解投影的概念,并通过大量的练习,使学生熟练掌握投影的性质和变换。

三. 教学目标1.了解投影的概念、分类和基本性质。

2.掌握正投影和斜投影的特点。

3.能够运用投影性质解决实际问题。

4.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.投影的概念和分类。

2.投影的基本性质。

3.投影变换。

五. 教学方法1.采用直观演示法,通过实物模型和多媒体动画,引导学生直观地理解投影的概念和性质。

2.运用讲解法,详细讲解投影的分类、基本性质和变换规律。

3.采用练习法,让学生在实践中巩固投影知识。

4.运用小组讨论法,培养学生合作学习的能力。

六. 教学准备1.投影仪、实物模型、多媒体动画。

2.投影习题、测验题。

3.投影实验材料。

七. 教学过程1.导入(5分钟)利用实物模型和多媒体动画,引导学生直观地了解投影的概念。

例如,用一个三角形模型在灯光下投影,让学生观察投影的特点。

2.呈现(10分钟)讲解投影的分类,包括正投影和斜投影。

通过示例,使学生了解正投影和斜投影的特点。

3.操练(10分钟)让学生进行投影练习,掌握投影的基本性质。

例如,让学生根据给定的物体,画出其正投影和斜投影。

4.巩固(10分钟)讲解投影变换,包括平行投影和中心投影。

人教版九年级数学下册教案第二十九章《投影与视图》

人教版九年级数学下册教案第二十九章《投影与视图》

第二十九章投影与视图29.1投影01教学目标1.通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.3.掌握正投影的概念,了解中心投影、平行投影和正投影的关系.4.掌握线段、正方形、正方体的正投影的特征.02预习反馈阅读教材P87~91,完成下列问题.1.用光线照射物体,在某个平面(地面或墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.由平行光线形成的投影叫做平行投影,由同一点(点光源)发出的光线形成的投影叫做中心投影.3.投影线垂直于投影面产生的投影叫做正投影.4.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.5.皮影戏是利用中心投影(填“平行投影”或“中心投影”)的一种表演艺术.6.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是(D)A.AB=CDB.AB≤CDC.AB>CDD.AB≥CD03名校讲坛例1(教材补充例题)如图1,2分别是两根木杆及其影子的图形.(1)哪个图形反映了太阳光下的情形?哪个图形反映了路灯下的情形?(2)请你画出图中表示小树影长的线段.【解答】(1)图2为太阳光下的情形,图1为路灯下的情形.(2)略.【点拨】识别平行投影和中心投影的方法:作直线:分别过两物体及其影子的顶端作两条直线,若这两条直线相交于一点,则为中心投影;若这两条直线平行,则为平行投影.【跟踪训练1】(《名校课堂》29.1习题)如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置;(用点P表示)(2)画出小华此时在路灯下的影子.(用线段EF表示)解:如图所示.例2(教材P90例变式)如图,工件的底面与投影面平行,画出工件在投影面上的正投影.【解答】如图所示.【点拨】在判断一个投影是不是正投影或进行正投影作图时,应把握以下几点:(1)投影线与投影面一定要垂直(太阳光与地面不一定垂直,所以以太阳光为投影线、以地面为投影面的投影不一定是正投影).(2)当物体的某个平面平行于投影面时,这个面的正投影与这个面是全等形.(3)画图时,应先判断投影线与物体的相对位置,然后依据正投影的性质画出物体的正投影.【跟踪训练2】(《名校课堂》29.1习题)如图是一个三棱柱,它的正投影是下图中的②.(填序号)04巩固训练1.下列各种现象属于中心投影现象的是(B)A.上午10点时,走在路上的人的影子B.晚上八点时,走在路灯下的人的影子C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子2.底面与投影面垂直的圆锥体的正投影是(B)A.圆B.三角形C.矩形D.正方形3.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的面积的变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定4.画出下列立体图形投影线从上方射向下方的正投影.解:如图所示:05课堂小结1.投影线垂直于投影面的投影叫做正投影.注意,正投影是特殊的平行投影,中心投影不可能是正投影.2.几种基本图形(线段、正方形、圆、正方体)的正投影分几种情况.3.当物体的某个面平行于投影面时,这个面的正投影与这个面全等;物体正投影的形状、大小与它相对于投影面的位置有关.29.2三视图第1课时几何体的三视图01教学目标1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念.明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.02预习反馈阅读教材P94~97,完成下列问题.1.当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图,也可以看作物体在某一方向光线下的正投影.2.主视图是在正面内得到的由前向后观察物体的视图;俯视图是在水平面内得到的由上向下观察物体的视图;左视图是在侧面内得到的由左向右观察物体的视图.3.主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.4.三视图一般规定主视图要在左上边,俯视图在正下方,左视图在右边,其中主视图反映物体的长和高,左视图反映物体的高和宽,俯视图反映物体的长和宽.5.如图是一个由五个小正方体组成的立体图形,请你画出从三个不同的方向看这个立体图形所得到的平面图形.解:如图所示.6.在下列几何体中,主视图是圆的是(D)A B C D03名校讲坛例1画出图中基本几何体的三视图.圆柱正三棱柱球(1)(2)(3)【分析】画这些基本几何体的三视图时,要注意从三个方面观察它们.具体方法为:(1)确定主视图的位置,画出主视图;(2)在主视图正下方画出俯视图,注意与主视图“长对正”;(3)在主视图正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”;(4)为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线(———)表示对称轴.【解答】如图所示.圆柱正三棱柱球(1)(2)(3)【跟踪训练1】(《名校课堂》29.2第1课时习题)下列四个立体图形中,左视图为矩形的是(B)①长方体②球③圆锥④圆柱A.①③B.①④C.②③D.③④例2画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.【分析】支架的形状是由两个大小不等的长方体构成的组合体,画三视图时要注意这两个长方体的上下、前后位置关系.【解答】如是支架的三视图.【点拨】对于由几种基本几何体组合而成的组合体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置关系.【跟踪训练2】(《名校课堂》29.2第1课时习题)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图.04巩固训练1.小明从正面观察如图所示的两个物体,看到的是(C)A B C D2.左下图表示一个用于防震的L 形包装泡沫塑料,当俯视这一物体时,看到的图形形状是(B)A B C D3.如图,从不同方向看下面左图中的物体,下图中三个平面图形分别是从哪个方向看到的?正面 从上面看 从前面看 从左面看4.如图是由5个大小相同的小正方体组合成的简单几何体.请在下面方格纸中画出它的三个视图.解:如图所示.05 课堂小结1.画物体的三视图时,先确定主视图的位置,在主视图的右边画左视图,在主视图的正下方画俯视图.2.画物体的三视图时,看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.3.画简单组合体的三视图时,要把组合体分割成规则的几何图形.第2课时由三视图确定几何体01教学目标进一步明确三视图的意义,由三视图想象出实物原型.02预习反馈阅读教材P98~99,完成下列问题.1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形前面、上面、左侧面,然后再结合起来考虑整体图形.2.一个立体图形的俯视图是圆,则这个图形可能是圆柱.3.下列几何体中,其主视图、左视图与俯视图均相同的是(A)A.正方体B.三棱柱C.圆柱D.圆锥03名校讲坛例1如图,分别根据三视图(1)(2)说出立体图形的名称.【分析】由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整体图形.【解答】(1)从三个方向看立体图形,视图都是矩形,可以想象这个立体图形是长方体,如图(1)所示.(2)从正面、侧面看立体图形,视图都是等腰三角形;从上面看,视图是圆;可以想象这个立体图形是圆锥,如图(2)所示.【点拨】由三视图想象出几何体后,再回过头来考虑一下该几何体的三视图是否与题目给出的相符.【跟踪训练1】(《名校课堂》29.2第2课时习题)如图是某个几何体的三视图,则该几何体的形状是(D)A.长方体B.圆锥C.圆柱D.三棱柱例2(教材P98例4变式)如图是一个几何体的三视图,则该几何体是(C)A B C D【点拨】(1)观察三视图,看其可分解为哪些简单几何体的三视图;(2)想象出各简单几何体;(3)根据三视图反映的位置关系组合简单几何体便得物体原形;(4)可对想象出的物体作三视图检验正误.注意虚线与实线的区别.【跟踪训练2】(《名校课堂》29.2第2课时习题)一个几何体的三视图如图所示,那么这个几何体是(D)A B C D04巩固训练1.一个几何体的三视图如图所示,则这个几何体是(B)A.三棱锥B.三棱柱C.圆柱D.长方体2.如图是某个几何体的三视图,则该几何体是(A)A.长方体B.三棱柱C.圆柱D.圆台3.如图是一个几何体的三视图,则此三视图所对应的直观图是(B)A B C D4.已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,如图.05课堂小结学生试述:这节课你学到了些什么?第3课时 由三视图确定几何体的表面积或体积01 教学目标能根据几何体的三视图求几何体的侧面积、表面积、体积等,进而解决实际生活中的面积、体积方面的用料问题.02 预习反馈阅读教材P99~100,完成下列问题.1.圆锥沿它的一条母线剪开的侧面展开图是扇形.2.圆柱沿它的一条母线剪开的侧面展开图是矩形.3.正方体、长方体的六个面展开的平面图的面积等于它的表面积.(填“大于”“小于”或“等于”)4.如图是一个几何体的三视图,则这个几何体是(B)A.正方体B.长方体C.三棱柱D.三棱锥 5.如下左图是一个长方体包装盒,则它的平面展开图是(A)A B C D03 名校讲坛例 (教材P99例5变式)根据如图所示的三视图求几何体的表面积,并画出物体的展开图.【解答】 由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成.则圆锥,圆柱底面半径为r =5. 由勾股定理,得圆锥母线长R =5 2. S 圆锥侧面积=12lR =12×10π×52=252π.∴S 表面积=π×52+10π×20+252π=25π+200π+252π =225π+252π =(225+252)π.该物体的展开图如图所示.【点拨】 由物体三视图求它的表面积: (1)由三视图想象出物体的形状;(2)画出物体的展开图;(3)根据几何体的表面积计算公式求表面积. 由展开图确定三视图:(1)由表面展开图确定物体的形状; (2)画出物体的三视图;(3)图或题中所给数据的合理转化.【跟踪训练】 (《名校课堂》29.2第3课时习题)一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm. ∴菱形的边长为(32)2+(42)2=52(cm), 棱柱的侧面积为52×8×4=80(cm 2).04 巩固训练1.一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为(C)A.2πB.12π C.4π D.8π2.长方体的主视图与俯视图如图所示,则这个长方体的体积是(C)A.52B.32C.24D.93.如图是一个几何体的三视图(含有数据),则这个几何体的展开图侧面积等于(A)A.2πB.12π C.4 D.24.如图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)解:这个立体图形为圆柱,其中高是10,底面圆的半径为5,所以体积为π×52×10=250π.05课堂小结1.由三视图求几何体的表面积和体积,可首先根据三视图想象出几何体,然后进行几何体的相关计算.2.利用几何体的表面展开图可以计算几何体的表面积以确定实际生产中的用料问题,还可以解决一些最优化问题,可以起到化曲折为平直的作用;用到“空间问题平面化”的数学思想.。

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。

这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。

本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。

但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。

另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。

三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。

2.让学生掌握视图的分类,学会画一视图、二视图、三视图。

3.培养学生空间想象能力,提高他们解决实际问题的能力。

四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。

2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。

3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。

六. 教学准备1.准备投影仪、实物、模型等教学道具。

2.准备相关的练习题和测试题。

3.准备黑板和粉笔。

七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。

2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。

3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。

教师巡回指导,解答学生疑问。

4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。

九年级数学下册 第二十九章 视图与投影教案 (新版)新人教版 教案

九年级数学下册 第二十九章 视图与投影教案 (新版)新人教版 教案

视图与投影章节 第九章 课题课型复习课 教法 讲练结合 教学目标(知识、能力、教育) 1.通过实例能够判断简单物体的三视图,能根据三种视图描述基本几何或实物原型,实现简单物体与其三种视图之间的相互转化.2.通过实例了解中心投影和平行投影的含义及其简单应用,初步进行物体及其投影之间的相互转化.3.通过实例了解视点、视线、盲区的含义及其在生话中的应用教学重点 实现简单物体与其三种视图之间的相互转化.了解中心投影和平行投影的含义及其简单应用.教学难点根据三种视图描述基本几何或实物原型以及投影生话中简单应用. 教学媒体学案教学过程一:【课前预习】(一):【知识梳理】(1)主视图:从看到的图;(2)左视图:从看到的图;(3)俯视图:从看到的图;2.画三视图的原则(如图)长对正,高平齐,宽相等;在画图时,看得见部分的轮廓线通常画成实线,看不见的轮廓线通常画成虚线。

物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是;投影分投影和投影。

(1)平行投影:太阳光线可以看成光线,像这样的光线所形成的投影称为投影;物体的三视图实际上就是该物体在垂直于投影面的平行光线下的平行投影。

(2)中心投影:手电筒、路灯和台灯的光线可以看成是由一点出发的光线,像这样的光线所形成等相宽高平齐长对正左视图俯视图主视图的投影称为投影。

(3)像眼睛的位置称为,由视点出发的线称为,两条视线的夹角称为,看不到的地方称为。

(二):【课前练习】1.小明从正面观察图(1)所示的两个物体,看到的是图(2)中的()(图1)(图2)2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长; B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长; D.无法判断谁的影子长3.你在路灯下漫步时,越接近路灯,其影子成长度将()A.不变B.变短C.变长D.无法确定4.一个矩形窗框被太阳光照射后,留在地面上的影子是________5.将如图1-4-22所示放置的一个直角三角形ABC( ∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是图1-4-23四个图形中的_________(只填序号).二:【经典考题剖析】1.某物体的三视图是如图所示的3个图形,那么该物体的形状是()A.长方体B.圆锥体C.立方体D.圆柱体2.在同一时刻,身高1.6m的小强的影长是,旗杆的影长是15m,则旗杆高为()A.16m B.18m C.20m D.22m100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两X照片,那么下列说法正确的是()A.乙照片是参加100m的;B.甲照片是参加 400m的C.乙照片是参加 400m的;D.无法判断甲、乙两X照片4.已知:如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB 在阳光下的投影BC=3m .(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.5.某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6米15米处要盖一栋高20米的新楼,当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么?(2)若要使超市采光不受影响,两楼应相距多少米?(结果保留整数,参考数据:531065sin32,cos32,tan32≈≈≈)1001258三:【课后训练】1.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A B C D2.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是()。

人教版九年级数学下册第29章 视图与投影 投影 教学设计

人教版九年级数学下册第29章 视图与投影  投影 教学设计

第29章视图与投影 29、1 投影教学设计【学情分析】在学习本节课之前,学生差不多具有一定的关于平面图形与立体图形的知识,同时差不多数次接触过“从不同方向看物体”的内容,对投影和视图的知识已有初步的朦胧的了解,只是还没有明确的接触过一些基本的名词术语(投影,正投影),对有关规律还缺乏归纳总结。

教学中,要让学生能够结合具体例子说明有关概念,不需要给出这些概念的严格的抽象的定义、【教学内容】本节内容是人教版初中新教材第九册(下)第29章的第一节。

【教材分析】本节课的内容是依据《全日制义务教数学课程标准(实验稿)》第三学段(7~9年级)空间与图形领域中关于“视图与投影”的教学目标而具体设计的。

“投影原理”是绘制视图的基础,通过投影建立了立体图形和平面图形间的联系,为立体图形与平面图形的相互转化问题奠定了理论基础。

在本套教科书中,从七年级上册第三章“图形认识初步”开始,就不断的出现了有关视图的一些内容,只是在本节之前一直没有正式出现投影和视图的概念。

本节在学生已有有关投影的初步感性认识的基础之上,通过一些简单的物体的投影说明有关概念,归纳基本规律,使学生的认识水平再次提升,并结合具体问题进一步培养运用几何知识分析和解决实际问题的能力。

本节是为进一步研究视图作准备的,后面将要学习的三视图是同一物体在有特定位置关系的三个投影面上的投影,同时投影线与投影面的位置必须是垂直的。

本节的重点是让学生在已有知识的基础之上,对投影有一个最基本的认识。

1、本节的教学重点是:了解正投影的含义,能依照正投影的性质画出简单平面图形的正投影。

2、本节的教学难点是:归纳正投影的性质,正确画出简单平面图形的正投影、【教学目标】1、知识与技能⑴了解投影的有关概念,能依照光线的方向辨认物体的投影;⑵了解平行投影和中心投影的区别;⑶了解物体正投影的含义,能依照正投影的性质画出简单平面图形的正投影。

2、过程与方法⑴在探究物体与其投影关系的活动中,体会立体图形与平面图形相互转化的关系,发展学生空间观念。

人教版九年级数学下册《二十九章 投影与视图 数学活动》公开课教案_0

人教版九年级数学下册《二十九章 投影与视图  数学活动》公开课教案_0

单元复习课圆一、复习内容教科书第77页的整理和复习和练习十七。

二、复习目标1.通过归纳整理本单元所学的和圆相关的基本知识,加深对圆的特征的理解,巩固有关圆的周长和面积的计算方法,加深对扇形的认识。

2.通过回顾梳理,提升学生对本单元所学知识的掌握水平,培养学生总结、归纳的能力。

三、复习重难点自主交流整理知识的过程和方法,找到知识间的联系,自主构建知识系统,灵活运用圆的周长或面积公式解决实际问题。

五、复习设计(一)课前设计1.预习任务(1)大家回忆一下我们应该怎么进行知识的整理和复习。

(先将学过的知识呈现出来,再不断地补充完善,进而找到知识之间的联系,最后应用知识解决问题。

)(2)可围绕以下几个方面进行整理复习:①这一单元的主要内容有哪些?重难点是什么?②你觉得有哪些地方需要提醒大家的?(二)课堂设计1.汇报课前任务,梳理基础知识(1)整理基本知识点引导学生有层次的汇报课前整理的本单元的知识点,汇报时注重生生之间的互动和评价。

①圆的认识师:本单元我们先认识了圆,请大家用圆规画一个半径是2cm的圆,并用字母O、r、d 标出它的圆心、半径和直径。

思考1:圆有哪些特征?先独立完成,交流汇报。

小结:圆有无数条半径和无数条直径。

同一圆内所有的半径都相等,所有的直径都相等,直径长度是半径的2倍。

把圆沿任何一条直径对折,两边可以重合。

圆心确定了圆的位置……②圆的周长师:我们认识了圆的特征之后,学习了圆的周长,知道了一个圆的周长总是它的直径的3倍多一些,明白了C=πd或C=2πr思考2:π的意义是什么?它是怎样得出来?讨论交流。

归纳小结:π是一个固定不变的数,任意圆的周长都是其直径的π倍,不会因为圆的大小而改变。

它是经过多次实验和计算得出的结论。

典型题目:李老师骑自行车上班,自行车的车轮直径是0.6米,如果平均每分钟转100周,照这样的速度,李老师从家到单位的路程是9000米, 50分钟能骑到单位吗?3.14×0.6×100×50=9420(米) 9420米>9000米可以到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题三视图(三)
一、教学目标:
1、学会根据物体的三视图描述出几何体的基本形状或实物原型;
2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。

教学重点与难点:根据物体的三视图描述出几何体的基本形状或实物原型
二、教学过程:
(一)复习引入
前面我们讨论了由立体图形(实物)画出三视图,那么由三视图能否也想象出立体图形(实物)呢?引导学生结合例例例的三视图想象一下构造还原过程(发展空间想象能力)
(二)新课学习
.
例4根据下面的三视图说出立体图形的名称
分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形,
解:(1)从三个方向看立体图形,图象都是矩形,可以想象出:整体是长方体,如图(1)所示;
(2)从正面、侧面看立体图形,图象都是等腰三角形;从上面看,图象是圆;可以想象出:整体是圆锥,如图(2)所示.
例5根据物体的三视图(如下图)描述物体的形状.
分析.由主视图可知,物体正面是正五边形
,由俯视图可知,由上向下看物体是矩形
的,且有一条棱(中间的实线)可见到。


条棱(虚线)被遮挡,由左视图知,物体的侧
面是矩形的.且有一条棱〔中间的实线)可
见到,综合各视图可知,物体是五棱柱形状的.
解:物体是五棱柱形状的,如下图所示.
(三)巩固再现
1、P121 练习
2、如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称。

俯视图
左视图
主视图
三、小结:
1、一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看。

2、一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。

例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等。

3、对于较复杂的物体,有三视图形象出物体的原型,应搞清三个视图之间的前后、左右、上下的对应关系。

四、作业。

相关文档
最新文档