七年级数学下册第六章频率初步热点专练练习课件(新版)北师大版

合集下载

北师大版七年级数学下册第六章概率初步同步训练练习题(含详解)

北师大版七年级数学下册第六章概率初步同步训练练习题(含详解)

北师大版七年级数学下册第六章概率初步同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明的袋子中装有4个黑球,1个白球,每个球除颜色外都相同,从中任意摸出1个球则下列叙述正确的是()A.摸到黑球是必然事件B.摸到白球是不可能事件C.模到黑球与摸到白球的可能性相等D.摸到黑球比摸到白球的可能性大2、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是().A.15B.25C.35D.453、将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是().A.1216B.172C.136D.1124、下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近5、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为()A.14B.13C.12D.496、抛掷一枚质地均匀的硬币2021次,正面朝上最有可能接近的次数为()A.800 B.1000 C.1200 D.14007、某班数学兴趣小组内有3名男生和2名女生,若随机选择一名同学去参加数学竞赛,则选中男生的概率是()A.12B.35C.25D.138、下列事件为随机事件的是()A.太阳从东方升起B.度量四边形内角和,结果是720°C.某射运动员射击一次,命中靶心D.四个人分成三组,这三组中有一组必有2人9、如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.13B.23C.16D.5610、下列事件是必然事件的是()A.任意选择某电视频道,它正在播新闻联播B.温州今年元旦当天的最高气温为15℃C.在装有白色和黑色的袋中摸球,摸出红球D.不在同一直线上的三点确定一个圆第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.2、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是_____.3、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.85,活到25岁概率为0.55,现年20岁的这种动物活到25岁的概率是____________.4、不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有3个,黄球1个,现从中任意摸出一个球是白球的概率是13,那么袋中蓝球有_______个.5、口袋中有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1球,摸出黑球的概率为_______.三、解答题(5小题,每小题10分,共计50分)1、五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?2、不透明袋子中装有5个红球、3个绿球,这些球除了颜色外无其他差别.从袋子中随杋摸出1个球,“摸出红球”和“摸出绿球”的可能性相等吗?它们的概率分别为多少?3、一只不透明的袋子中有2个红球、3个绿球和5个白球,这些球除颜色外都相同,将球搅匀,从中任意摸出1个球.(1)会出现哪些可能的结果?(2)能够事先确定摸到的一定是红球吗?(3)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(4)怎样改变袋子中红球、绿球、白球的个数,使摸到这三种颜色的球的概率相同?4、同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.5、在一个口袋中装有4个红球和8个白球,它们除颜色外完全相同.(1)求从口袋中随机摸出一个球是红球的概率;(2)现从口袋中取走若干个白球,并放入相同数量的红球,充分摇匀后,要使从口袋中随机摸出一个球是红球的概率是56,问取走了多少个白球?-参考答案-一、单选题1、D【分析】先求出总球的个数,再根据概率公式分别求出摸到黑球和白球的概率,然后进行比较即可得出答案.【详解】解:∵一个不透明的袋子中装有4个黑球,1个白球,每个球除颜色外都相同,摸到黑球和摸到白球都是随机事件,故A、B不符合题意;∵共有4+1=5个球,∴摸到黑球的概率是45,摸到白球的概率是15,∴摸到黑球的可能性比白球大;故选:D.【点睛】此题考查了可能性的大小,解题关键是明确可能性等于所求情况数与总情况数之比.2、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案.【详解】解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是25;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.3、C【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,找出勾股数的情况,因而得出是直角三角形三边长的概率即可.【详解】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,因而a,b,c正好是直角三角形三边长的概率是61= 21636.故选:C.【点睛】本题主要考查了等可能事件的概率,属于基础题,用到的知识点为:概率等于所求情况数与总情况数之比;3,4,5为三角形三边的三角形是直角三角形.4、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,∴A说法错误;∵抛一枚硬币正面朝上的概率为12”表示正面向上的可能性是12,∴B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,∴C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近,∴D说法正确;故选D.【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.5、D【分析】在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【详解】解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,∴红球有:9324--=个,则随机摸出一个红球的概率是:49.故选:D.【点睛】本题主要考查了概率公式的应用,解题的关键是掌握:概率=所求情况数与总情况数之比.6、B【分析】由抛掷一枚硬币正面向上的可能性约为0.5求解可得.【详解】解:抛掷一枚质地均匀的硬币2021次,正面朝上的次数最有可能为1000次,故选B.【点睛】本题主要考查了事件的可能性,解题的关键在于能够理解抛掷一枚硬币正面向上的可能性约为0.5.7、B【分析】根据题意可知共有5名同学,随机从其中选一名同学,共有5中情况,其中恰好是男生的情况有3种,利用概率公式即可求解.【详解】解:由题意可知,一共有5名同学,其中男生有3名,因此选到男生的概率为35.故选:B.【点睛】本题考察了概率公式,用到的知识点为:所求情况数与总情况数之比.8、C【分析】根据随机事件的定义(指在一定条件下,可能发生也可能不发生的事件),判断选项中各事件发生的可能性的大小即可.【详解】解:A、太阳从东方升起,是必然事件,故A不符合题意;B、度量四边形内角和,结果是720 ,是不可能事件,故B不符合题意;C、某射击运动员射击一次,命中靶心,是随机事件,故C符合题意;D、四个人分成三组,这三组中有一组必有2人,是必然事件,故D不符合题意;故选:C.【点睛】本题考查了随机事件,准确理解必然事件、不可能事件、随机事件的概念,判断各个事件发生的可能性是解题关键.9、B【分析】根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案.【详解】解:如图所示:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,只有4种是轴对称图形,分别标有1,2,3,4;使黑色部分的图形仍然构成一个轴对称图形的概率是:42 63 =.故选:B.【点睛】本题考查几何概率的求法,解题的关键是掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =.10、D【分析】由题意依据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】解:A. 任意选择某电视频道,它正在播新闻联播,是随机事件,选项不符合;B. 温州今年元旦当天的最高气温为15℃,是随机事件,选项不符合;C. 在装有白色和黑色的袋中摸球,摸出红球,是不可能事件,选项不符合;D. 不在同一直线上的三点确定一个圆,是必然事件,选项符合.故选:D.【点睛】本题考查确定事件和不确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题1、35##【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是35,故答案为:35.【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.2、12##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是12.故答案为:12.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.3、11 17【分析】设这种动物出生时的数量为a,则活到20岁的数量为0.85a,活到25岁的数量为0.55a,求出活到25岁的数量与活到20岁的数量的比值,即可求解.【详解】解:设这种动物出生时的数量为a,则活到20岁的数量为0.85a,活到25岁的数量为0.55a,∴现年20岁的这种动物活到25岁的概率是0.55110.8517aa.故答案为:11 17【点睛】本题主要考查了计算概率,熟练掌握概率的计算方法是解题的关键.4、5 【分析】根据题意易知不透明的口袋中球的总数为1393÷=个,然后问题可求解.【详解】解:由题意得:不透明的口袋中球的总数为1393÷=个,∴袋中蓝球有9315--=(个);故答案为5.【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.5、2 3【分析】直接利用概率公式求解即可求得答案.【详解】解:∵一个不透明的袋子中只装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,∴随机从袋中摸出1个球,则摸出黑球的概率是:42 423=+.故答案为:23.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题1、(1)5;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【分析】(1)一共有1-5五个数字,每个数字都有可能被抽到,所以有五种可能的结果;(2)数字1,2,3,4,5都小于6,所以抽到的数字一定小于6;(3)数字1,2,3,4,5都大于0,所以抽到的数字一定大于0;(4)一共有1-5五个数字,每个数字都有可能被抽到,所以抽到的数字可能是1,可能不是1.【详解】通过简单的推理或试验,可以发现:(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【点睛】题目主要考查随机事件的概率,结合实际、理解题意是解题关键.2、“摸出红球”与“摸出绿球”的可能性不相等,它们的概率分别为58和38.【分析】根据概率=某种颜色的球的个数÷球的总数进行求解即可.【详解】解:“摸出红球”与“摸出绿球”的可能性不相等,它们的概率分别为55=538+和33=538+.【点睛】本题主要考查了简单的概率计算,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)从中任意摸出1个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可.【分析】(1)根据事情发生的可能性,即可进行判断;(2)根据红球的多少判断,只能确定有可能出现;(3)根据白球的数量最多,摸出的可能性就最大,红球的数量最少,摸出的可能性就最小;(4)根据概率相等就是出现的可能性一样大,可让数量相等即可.【详解】解:(1)从中任意摸出1个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可.【点睛】此题主要考查了事件发生的可能性,关键是根据事件发生的可能大小和概率判断即可,比较简单的中考常考题.4、(1)两枚骰子的点数相同是16;(2)两枚骰子点数的和是9的是19;(3)至少有一枚骰子的点数为2的是11 36.【分析】(1)列举出所有情况,看两个骰子的点数相同的情况占总情况的多少即可;(2)看两个骰子的点数的和为9的情况数占总情况的多少即可解答;(3)看至少有一个骰子点数为2的情况占总情况的多少即可.【详解】两枚骰子分别记为第1枚和第2枚,可以用下表列举出所有可能出现的结果.由表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子的点数相同(记为事件A )的结果有6种,即()1,1,()2,2,()3,3,()4,4,()5,5,()6,6,所以()61366P A ==. (2)两枚骰子的点数和是9(记为事件B )的结果有4种,即()3,6,()4,5,()5,4,()6,3,所以()41369P B ==. (3)至少有一枚骰子的点数为2(记为事件C )的结果有11种,所以()1136P C =. 【点睛】本题考查了利用列表法与树状图法求概念的方法:先利用列表法或树状图法展示所有等可能的结果数n ,再找出其中某事件可能发生的可能的结果m ,然后根据概率的定义计算出这个事件的概率=m n.注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为2还有两个骰子的点数的和为9的情况数是关键.5、(1)从口袋中随机摸出一个球是红球的概率是13;(2)取走了6个白球.【分析】(1)用红球的个数除以总球的个数即可;(2)设取走了x 个白球,根据概率公式列出方程,求出x 的值即可得出答案.【详解】解:(1)∵口袋中装有4红球和8个白球,共有12个球,从口袋中随机摸出一个球是红球只有4种情况 ∴从口袋中随机摸出一个球是红球的概率是41123=; (2)设取走了x 个白球,根据题意得:45126x +=, 解得:x =6,答:取走了6个白球.【点睛】本题考查了概率的知识,解方程,掌握概率的知识,概率=所求情况数与总情况数之比,解方程是解题关键.。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(4)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(4)

一、选择题(共10题)1.随机掷一枚质地均匀的硬币一次,正面朝上的概率是( )A.1B.12C.14D.02.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A.23B.13C.12D.253.不透明袋子中有1个红球和2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,恰好是红球的概率为( )A.13B.12C.23D.14.一个口袋中装有3个绿球,2个黄球,每个球除颜色外其它都相同,搅匀后随机地从中摸出两个球都是绿球的概率是( )A.47B.310C.35D.235.在一个不透明的袋子里有8个黑球和4个白球,除颜色外全部相同,任意摸一个球,摸到黑球的概率是( )A.13B.12C.23D.16.某区响应国家提出的垃圾分类的号召,将生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为了解居民生活垃圾分类的情况,随机对该区四类垃圾箱中总计1000吨生活垃圾进行分拣后,统计数据如表:下列三种说法:(1)厨余垃圾投放错误的有400t;(2)估计可回收物投放正确的概率约为710.(3)数据显示四类垃圾箱中都存在各类垃圾混放的现象,因此应该继续对居民进行生活垃圾分类的科普.其中正确的个数是( )A.0B.1C.2D.37.下列事件中,属于必然事件的是( )A.任意掷一枚硬币,落地后正面朝上B.小明妈妈申请北京小客车购买指标,申请后第一次摇号时就中签C.随机打开电视机,正在播报新闻D.地球绕着太阳转8.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( )A.1颗B.2颗C.3颗D.4颗9.下列说法正确的是( )A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是任意数,a2≥0”是不可能事件10.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( )A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于6二、填空题(共7题)11.一个袋子中装有10个球,从中摸一个球,在下列情况中,摸到红球的可能性从大到小排列为:.① 10个白球;② 2个红球,8个白球;③ 10个红球;④ 9个红球,1个白球;⑤ 5个红球,5个白球.12.一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色不同外其余都相同),其中有2个白球,1个黄球.若从中任意摸出一个球,这个球是白球的概率是1,则口袋中红球有个.313.小明用0∼9中的数字给手机设置了六位开机密码,但他把最后一位数字忘记了,小明只输入一次密码就能打开手机的概率是.14.已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在=.⊙O内的概率为P2,则P1P215.不透明袋子中装有17个球,其中有6个红球、7个绿球,4个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为它是黄球概率的1,则n=.217.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是.三、解答题(共8题)18.2017年全国两会民生话题成为社会焦点.徐州市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了徐州市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1) 填空:m = ,n = .扇形统计图中 E 组所占的百分比为 %; (2) 徐州市市区人口现有 170 万人,请你估计其中关注 D 组话题的市民人数; (3) 若在这次接受调查的市民中,随机抽查一人,则此人关注 C 组话题的概率是多少?19. 为了解某校八年级全体女生“仰卧起坐”项目的成绩,随机抽取了部分女生进行测试,并将测试成绩分为 A ,B ,C ,D 四个等级,绘制成如下不完整的统计图、表. 成绩等级人数分布表成绩等级人数A aB 24C 4D 2合计b根据以上信息解答下列问题:(1) a = ,b = ,表示 A 等级扇形的圆心角的度数为 度.(2) A 等级中有八年级(5)班两名学生,如果要从 A 等级学生中随机选取一名介绍“仰卧起坐”锻炼经验,求抽到八年级(5)班学生的可能性大小.20. 假如一只小猫正在如图所示的地板上自由地走来走去,它最终停留在黑色方砖上的概率是多少?小樱认为这个概率等于“袋中有 12 个红球和 4 个黄球,这些球除颜色外都相同,从袋中任意摸出一个球是黄球”的概率,你同意他的观点吗?为什么?21. 一幅 52 张的扑克牌(无大、小王),从中任意取出一张,共有 52 种可能的结果.(1) 说出抽到A 的所有可能的结果; (2) 求抽到梅花A 的可能性的大小; (3) 求抽到A 的可能性大小;(4) 求抽到梅花的可能性大小.22.如图,天虹商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客消费88元(含88元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准打折区域,顾客就可以获得相应的优惠.(1) 某顾客消费78元,能否获得转动转盘的机会?(填“能”或“不能”)(2) 某顾客消费120元,他可以转一次转盘,获得打折优惠的概率是.(3) 在(2)的条件下,该顾客获得五折优惠的概率是.23.任意抛掷一枚骰子两次,骰子停止转动后,计算朝上的点数的和.(1) 和最小的是多少,和最大的是多少?(2) 下列事件:①点数的和为7;②点数的和为1;③点数的和为15.哪些是不可能事件?哪些是不确定事件?(3) 点数的和为7与点数的和为2的可能性哪个大?请说明理由.24.在袋中装有大小、形状、质量完全相同的3个白球和3个红球,甲、乙两人从中进行摸球游戏,在游戏之前两人就各有10分,然后从中轮番摸球,每次摸三个球,然后放回袋中搅匀,再由另一个人摸球,得分规则如下:所摸球的颜色甲得分乙得分3个全红1002红1白−101红2白0−13个全白010最后以得分高者为胜者,请问这个游戏对甲、乙双方公平吗?如果不公平,谁更有利;如果公平,请说明理由.25.有两个能自由转动的转盘(每个转盘都是等分的),同时转动两个转盘,问两个指针同时停在白色区域的可能性为多少?(用分数表示)答案一、选择题(共10题)1. 【答案】B【解析】拋掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=12.【知识点】公式求概率2. 【答案】A【解析】因为盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球,所以摸到黄球的概率是46=23.【知识点】公式求概率3. 【答案】A【解析】∵袋子中共有3个小球,其中红球有1个,∴摸出一个球是红球概率是13.【知识点】公式求概率4. 【答案】B【知识点】公式求概率5. 【答案】C【解析】∵袋子里装有8个黑球和4个白球,共12个球,∴任意摸一个球,摸到黑球的概率是812=23.【知识点】公式求概率6. 【答案】C【知识点】统计表、公式求概率7. 【答案】D【知识点】事件的分类、必然事件8. 【答案】B【解析】由题意得{xx+y=25,xx+y+3=14,解得 {x =2,y =3,故选:B .【知识点】公式求概率、方程9. 【答案】C【知识点】概率的概念及意义、事件的分类10. 【答案】B【解析】从两个口袋中各摸一个球,其标号之和最大为 6,最小为 2, 选项A :“两个小球的标号之和等于 1”为不可能事件,故选项A 错误; 选项B :“两个小球的标号之和等于 6”为随机事件,故选项B 正确; 选项C :“两个小球的标号之和大于 1”为必然事件,故选项C 错误; 选项D :“两个小球的标号之和大于 6”为不可能事件,故选项D 错误. 故选:B .【知识点】事件的分类二、填空题(共7题) 11. 【答案】③④⑤②①【知识点】可能性的大小12. 【答案】 3【解析】设口袋里有红球 m 个,则口袋里共有 (2+1+m ) 个球, 由题意得:22+1+m =13, 解得 m =3,经检验,m =3 是方程的解且符合题意, ∴ 口袋中有红球 3 个. 【知识点】公式求概率13. 【答案】 110【知识点】公式求概率14. 【答案】 2π【解析】设 ⊙O 的半径为 1,则 AD =√2,S ⊙O =π, 易知阴影部分的面积为π(√22)2×2+√2×√2−π=2,故 P 1=2π,P 2=1,故 P1P 2=2π.【知识点】公式求概率15. 【答案】717【解析】∵袋子中共有17个小球,其中绿球有7个,∴摸出一个球是绿球的概率是717.【知识点】公式求概率16. 【答案】4【解析】根据题意得:2n+2=nn+2×12,解得:n=4.【知识点】公式求概率17. 【答案】13【知识点】公式求概率三、解答题(共8题)18. 【答案】(1) 40;100;15(2) 由题意可得,关注D组话题的市民有:170×120400=51(万人).答:关注D组话题的市民有51万人.(3) 由题意可得,在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是:100400=14.答:在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是14.【解析】(1) 由题意可得,本次调查的市民有:80÷20%=400(人),m=400×10%=40,n=400−80−40−120−60=100,扇形统计图中E组所占的百分比为:60÷400=0.15=15%.【知识点】公式求概率、扇形统计图、用样本估算总体19. 【答案】(1) 10;40;90(2) ∵在A等级的10名学生中,八年级(5)班有2名学生,∴抽到八年级(5)班学生的可能性为210=15.【解析】(1) ∵被调查的人数b=4÷10%=40(人),∴a=40−(24+4+2)=10,则表示A等级扇形的圆心角的度数为360∘×1040=90∘.【知识点】扇形统计图、公式求概率20. 【答案】P(停留在黑色方砖)=416=14.同意,因为P(摸出黄球)=44+12=14.【知识点】公式求概率21. 【答案】(1) 红桃A、方块A、梅花A、黑桃A.(2) 152.(3) 113.(4) 14.【知识点】公式求概率22. 【答案】(1) 不能(2) 59(3) 536【解析】(1) ∵顾客消费88元(含88元)以上,就能获得一次转盘的机会,∴某顾客消费78元,不能获得转动转盘的机会.(2) ∵共有6种可能的结果,获得打折待遇部分扇形圆心角的度数为:50∘+60∘+90∘=200∘,∴某顾客消费120元,他可以转一次转盘,获得打折优惠的概率是:200360=59.(3) ∵获得五折优惠部分扇形圆心角的度数为:50∘,∴在(2)的条件下,该顾客获得五折优惠的概率是:50360=536.【知识点】公式求概率、不可能事件23. 【答案】(1) 和最小的是:1+1=2;和最大的是:6+6=12.(2) 由(1)得出:②点数的和为1;③点数的和为15是不可能事件,①点数的和为7是随机事件,故不可能事件是②③,不确定事件是①.(3) ∵点数之和为7的有6种可能,分别为1和6,2和5,3和4,4和3,5和2,6和1,点数之和为2的有1种可能,为1和1,故和为7的可能性要大.【知识点】事件的分类、公式求概率、有理数加法的应用24. 【答案】这个游戏对双方公平.理由:在三红三白六个球中,任意摸出三个球,是三红的概率为36×25×14=120,同理三个球都为白球的概率也为120,若摸出的球是二红一白,则有三种情况:红,红,白;红,白,红;白,红,红,摸出球为二红一白概率为36×25×34+36×35×24+36×35×24=920,同理二白一红的概率也为920,所以x甲=10×120+(−1)×920+0×920+0×120=120(分),x 乙=0×120+0×920+(−1)×920+10×120=120(分),所以x甲=x乙,所以摸一次球甲、乙两人所得的平均分相等,因此这个游戏公平.【知识点】简单的计数、公式求概率25. 【答案】14.【知识点】公式求概率。

第六章第01讲 感受可能性、频率的稳定性(5类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第六章第01讲 感受可能性、频率的稳定性(5类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第01讲感受可能性、频率的稳定性(5类热点题型讲练)1.通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)2.知道事件发生的可能性是有大小的.(难点)3.理解频率和概率的意义;4.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点)知识点01确定事件(必然事件、不可能事件)与不确定事件在一定条件下一定发生的事件,叫做必然事件;在一定条件下一定不会发生的事件,叫做不可能事件;必然事件和不可能事件统称为确定事件。

有些事情事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件。

知识点02确定事件与随机事件(1)确定事件:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.知识点03利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.题型01必然事件【例题】(2024·贵州·模拟预测)下列诗句所描述的事件中,属于必然事件的是()A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直【变式训练】1.(2023·广西贵港·模拟预测)下列事件中,是必然事件的是()A.任意画一个三角形,其内角和为180B.打开电视机,正在播放“天宫课堂”C.疫情期间,对从疫情高风险区归来的人员进行核酸检测,检测结果为阳性D.某校开展“喜迎二十大,筑梦向未来”主题学习活动中,抽到甲同学分享发言2.(2024九年级·全国·竞赛)下列事件是必然事件的是()A.同时抛掷两颗骰子,朝上的面上的点数之和不等于1B.日出时,正在玩倒立的人看到的太阳不是从东方升起的C.含有钢铁的东西放在江面上一定会沉入江底D.滚动一枚硬币,硬币不倒题型02随机事件【例题】(23-24九年级上·内蒙古鄂尔多斯·期末)下列事件是随机事件的是()A.一匹马奔跑的速度是700米/秒B.射击运动员射击一次,命中10环C.两个负数的和是负数D.在只装有白球的袋子中摸出黑球【变式训练】1.(23-24九年级上·贵州黔东南·期末)下列事件中,是随机事件的是()A.在一副扑克牌中抽出一张,抽出的牌是黑桃6;B.在一个只装了红球的袋子里,摸出一个白球;C.明天太阳从东方升起;D.画一个三角形,其内角和是180 .2.(22-23九年级上·浙江台州·期末)下列事件中,属于随机事件的是()A.掷一次骰子,朝上一面的点数大于0B.从装有6个白球的袋中摸出一个红球C.奥运射击冠军杨倩射击一次,命中靶心D.明天太阳从西方升起题型03事件发生的可能性大小【例题】(23-24八年级下·江苏泰州·期中)从一副扑克牌中任意抽取1张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“黑色的”,将这些事件的序号按发生的可能性从小到大的顺序排列为.【变式训练】1.(22-23八年级下·江苏徐州·期中)抛掷一枚质地均匀的正方体骰子一次,下列3个事件:①向上一面的点数是奇数;②向上一面的点数是3的倍数;③向上一面的点数不小于3.其中发生的可能性最大的事件是.(填写你认为正确的序号即可)2.(23-24八年级下·江苏宿迁·期中)箱子中有5个白球、7个黑球及m个红球.它们仅有颜色不同,若从中随机摸出一球,结果是红球的可能性比黑球的可能性小,同时又比白球的可能性大,则m的值是.题型04概率的意义理解【例题】(23-24九年级上·浙江舟山·期中)以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23 B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是1 2D.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12【变式训练】1.(23-24九年级上·贵州黔东南·期中)“从江县明天降水概率是30%”,对此消息下列说法中正确的是()A.从江县明天将有30%的地区降水B.从江县明天将有30%的时间降水C.从江县明天降水的可能性较小D.从江县明天肯定不降水2.(23-24九年级上·山西临汾·阶段练习)下列说法正确的是()A.抛掷一枚质地均匀的硬币,抛掷10次,一定有5次出现正面.B.“从布袋中取出1个黑球的概率是0”,意思是取出1个黑球的可能性很小.C.抛掷一枚质地均匀的硬币,抛掷次数很多时,出现正面的频率会稳定在0.5附近.D.“明天降雨的概率为70%”意思是明天有70%的时间在降雨.题型05关于频率与概率关系说法正误【例题】(22-23九年级上·广东潮州·期末)下列说法正确的是().A.不可能事件发生的概率为1B.随机事件发生的概率为13C.概率很小的事件不可能发生D.随着试验次数的增加,频率一般会越来越接近概率【变式训练】1.(22-23七年级下·山东烟台·期末)下列说法中正确的是()A.小明在装有红绿灯的十字路口,“遇到红灯”是随机事件B.确定事件发生的概率是1C.抛掷一枚质地均匀的正方体骰子600次,点数为1与点数为6的频率相同D.从某校1000名男生中随机抽取2名进行引体向上测试,其中有一名成绩不及格,说明该校50%的男生引体向上成绩不及格2.(2023·北京丰台·二模)掷一枚质地均匀的硬币m次,正面向上n次,则nm的值()A.一定是12B.一定不是12C.随着m的增大,越来越接近12D.随着m的增大,在12附近摆动,呈现一定的稳定性一、单选题1.下列事件为确定事件的是()A.在一张纸上任意画两条线段,这两条线段相交B.抛掷1枚质地均匀的硬币反面朝上C.某人投篮一次,命中篮筐D.长度分别是2cm、4cm、5cm的三条线段能围成一个三角形2.下列说法正确的是()A.一枚质地均匀的硬币,任意掷一次,正、反两面朝上的可能性相同B.任意买一张电影票,座位号一定是偶数C.篮球运动员在三分线罚球,球一定被投入篮球框D.掷一枚质地均匀的骰子,朝上的点数一定大于33.校篮球队员小亮训练定点投篮以提高命中率.下表是小亮一次训练时的进球情况:投篮数(次)50100150200…·进球数(次)4081118160…则下列说法正确的是()A.小亮每投10个球,一定有8个球进B.小亮投球前8个进,第9,10个一定不进C.小亮比赛中的投球命中率一定为80%D.小亮比赛中投球命中率可能超过80%4.图,有两个大小不一的转盘甲、乙,分别被分为6个面积相等的扇形,并标有不同的数字,小颖和小瑞分别转动转盘甲、乙,若规定转到“3”所在的扇形区域获胜,则获胜概率较大的是()A.小颖B.小瑞C.一样大D.无法确定5.数学课上老师带领学生做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”.B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花.C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球.D.掷一枚质地均匀的硬币,硬币落下后朝上的是正面.二、填空题6.“购买一张彩票,中奖”这一事件是(填“必然事件”“不可能事件”“随机事件”)7.请指出在下列事件中,是随机事件的有.(填序号)①通常温度降到0℃以下,纯净的水结冰;②随意翻到一本书的某页,这页的页码是奇数;③购买1张彩票,中奖;④明天太阳从东方升起.8.袋子里有3个红球,4个黄球和2个白球,除颜色外其他均相同.从袋子中任意取出一个球,取到黄球的可能性大小是.9.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在白色区域的概率是.10.抽奖啦!现有3个不透明箱子,箱子内放有若干小球(除颜色外其余均相同).规定:每次只能摸一个小球,摸出红球奖励一杯奶茶,摸出黄球奖励一支雪糕,若小丽想得到一杯奶茶,应选择从号箱子里摸球,如愿的可能性最大.三、解答题11.下列事件中哪些事件是必然事件,哪些事件是不可能事件,哪些事件是不确定事件?(1)在一个装只有白球和黑球的袋中摸球,摸出红球.(2)任意抛掷一枚图钉,结果钉尖着地.(3)在标准大气压下,气温为2摄氏度时,冰能熔化成水.(4)在一张纸上任意画两条线段,这两条线段相交.(5)某运动员跳高最好成绩是10.1米.(6)从车间刚生产的产品中任意抽一个,是次品.必然事件有______,不可能事件有______,不确定事件有______(填序号)12.甲袋中放着22个红球和7个黑球,乙袋中放着42个白球和16个黑球,三种球除颜色外没有任何区别,将两袋中的球搅匀,从两个袋中各任取一个球,哪个袋中取出黑球的可能性大?13.将牌面数字分别是5,6,7,8的四张扑克牌背面朝上,洗匀后放在桌面上,甲、乙两人每次同时从桌面上抽出一张牌,并计算摸出的这两个牌面上的数字之和,记录后将牌放回并背面朝上,洗匀后进行重复试验,在试验中出现“和为13”的试验数据如下表:试验总次数306090120180240330450“和为13”出现的次数132430375882110150“和为13”出现的频率0.430.400.310.340.33(1)请将表中的数据补充完整;(2)如果试验维续进行下去,根据上表数据,出现“和为13”的频率可能稳定在左右.(上述结果均保留两位小数)14.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下表:朝上的点数123456出现的次数79682010(1)计算出现“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据试验得出,出现‘5点朝上’的机会最大.”小红说:“如果投掷600次,那么出现‘6点朝上’的次数正好是100次.”小颖和小红的说法正确吗?为什么?15.下列五个事件中,哪些是必然事件.哪些是不可能事件.哪些是随机事件.根据你的判断,把这些事件的序号按发生的可能性从小到大的顺序排列.(1)13人中至少有2人的生日在同一个月;(2)手机号码的末位数字为偶数;(3)2 的绝对值小于0;(4)从装有1个黄球和8个红球的袋子中摸出1个球是红球;(5)从装有3个白球和6个红球的袋子中摸出1个球是红球.16.以下四个事件:事件A:抛掷一个硬币时,得到一个正面;事件B:在一小时内你步行可以走80千米;事件C:在一个装有2个红球,3个黄球,5个蓝球的袋子中,球的质量、大小完全相同,从中摸出一个黄球;事件D:两数之和是负数,则其中必有一个是负数.(1)可能事件的是______,必然事件的是_________.(2)请你把相应事件发生的机会用对应的字母A、B、C、D表示在数轴的对应点上.。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(43)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(43)

一、选择题(共10题)1.一个布袋里装有3个红球,2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是白球的概率是( )A.15B.25C.35D.232.下列成语描述的事件为随机事件的是( )A.守株待兔B.水中捞月C.瓮中捉鳖D.水涨船高3.下列事件中,不可能事件是( )A.投掷一枚均匀硬币,正面朝上B.明天是阴天C.任意选择某个电视频道,正在播放动画片D.两负数的和为正数4.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.235.下列事件中,属于必然事件的是( )A.经过路口,恰好遇到红灯B.抛一枚硬币,正面朝上C.打开电视,正在播放动画片D.四个人分成三组,这三组中有一组必有2人6.下列事件是随机事件的是( )A.随意掷一块质地均匀的骰子,掷出的点数是奇数B.在一个标准大气压下,把水加热到100∘C,水就会沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球7.如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称图形的概率是( )A.23B.12C.13D.148.如图所示的圆面图案是用相同半径的圆与圆弧构成的.若随意向圆面投掷一次飞镖,则飞镖击中黑色区域的概率是( )A.13B.14C.16D.299.下列事件中,是必然事件的是( )A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨10.以下说法正确的是( )A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是35二、填空题(共7题)11.从一副有52张的扑克牌(无大小王)中任意抽取一张,抽到梅花的可能性大小是.12.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除了颜色外都相同,若从中随机摸出一个球是白球的概率是13,则黄球的个数为个.13.一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是.14.不透明袋子中装有12个球,其中有3个红球、4个黄球和5个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.15.如果一个自然数右边的数字比左边的数字大,那么我们把它叫做“上升数”(如34,569,1269等都是上升数),现在任取一个两位数,是“上升数”的概率是.16.一个不透明的盒子内装有大小、形状相同的六个球.其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是.17.如果抛掷一枚普通的正方体骰子(每个面分别标有1,2,3,4,5,6),掷得的数是6的事件是;掷得的数小于7的事件是;掷得的数大于6的事件是.(填“必然事件”、“不可能事件”或“随机事件”)三、解答题(共8题)18.有六张牌,牌面数字分别为2,3,4,5,6,7.从中任意摸一张牌,摸到的牌面数字有几种不同的可能?摸到的牌面数字小于8属于什么事件?19.某超市为吸引顾客,进行“满88元可以参加抽奖”有奖销售活动.设定了两个一等奖,四个二等奖,十个三等奖,将奖项写在乒乓球上并与其他无标识、手感完全相同的乒乓球混在一起,一共50个,放在抽奖箱内.顾客消费满额后可获得一次抽奖机会,问顾客恰好抽到一等奖、二等奖、三等奖的可能性大小分别是多少?20.甲、乙两人玩一种游戏:共20张牌,牌面上分别与有−10,−9,−8,⋯,−1,1,2,⋯,10,洗好牌后,将背面朝上,每人从中任意抽取3张,然后将牌面上的三个数相乘,结果较大者为胜.(1) 你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会赢?(2) 你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会输?(3) 结果等于6的可能性有几种?把每一种都写出来.21.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1) 先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值 (2) 先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.22.有一张明星演唱会的门票,小明和小亮都想获得这张门票,亲自体验明星演唱会的热烈气氛,小红为他们出了一个主意,方法就是:从印有1,2,3,4,5,4,6,7的8张扑克牌中任取一张,抽到比4大的牌,小明去;否则,小亮去.(1) 求小明抽到4的概率.(2) 你认为这种方法对小明和小亮公平吗,请说明理由;若不公平,请你修改游戏规则,使游戏对双方都公平.23.一个盒子内有120个弹珠,一些是红色的,一些是蓝色的,一些是白色的.从盒子内任取一个,拿出蓝色弹珠的概率是25%,拿出红色弹珠的概率是45%,盒子内每种颜色的弹珠各有多少个?24.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如图两幅不完整的统计图.根据以上信息,解答下列问题:(1) 被调查的学生共有人,并补全条形统计图;(2) 在扇形统计图中,m=,n=,表示区域C的圆心角是;(3) 小明是被问卷调查的同学,那么他参加了哪项活动的可能性最大?25.一枚均匀骰子的每个面上分别标着数字1,2,3,4,5,6.任意抛掷这枚骰子一次.(1) 朝上一面的点数是奇数的有多少种不同的可能?(2) 朝上一面的点数是奇数的概率是多少?(3) 朝上一面的点数出现以下情况的概率最小的是( )(A)偶数(B)奇数(C)3的倍数(D)比2小的数答案一、选择题(共10题)1. 【答案】B【解析】∵布袋里装有3个红球,2个白球,每个球除颜色外均相同,∴从中任意摸出一个球,则摸出的球是白球的概率=23+2=25.【知识点】公式求概率2. 【答案】A【解析】A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意.【知识点】事件的分类3. 【答案】D【知识点】事件的分类4. 【答案】D【解析】设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:46=23.【知识点】公式求概率5. 【答案】D【解析】A、经过路口,恰好遇到红灯,是随机事件,不合题意;B、抛一枚硬币,正面朝上,是随机事件,不合题意;C、打开电视,正在播放动画片,是随机事件,不合题意;D、四个人分成三组,这三组中有一组必有2人,是必然事件,符合题意.故选:D.【知识点】事件的分类6. 【答案】A【知识点】事件的分类7. 【答案】C【解析】如图所示:使图形中的四枚棋子成为轴对称图形的概率是:26=13.【知识点】公式求概率8. 【答案】A【知识点】公式求概率9. 【答案】B【知识点】事件的分类10. 【答案】A【解析】A.一年中有365天,因而在同一年出生的400人中至少有两人的生日相同,故A选项正确;B.一个游戏的中奖率是1%,买100张奖券,不一定会中奖,故B选项错误;C.一副扑克牌中,随意抽取一张是红桃K,这是随机事件,故C选项错误;D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是38,故D选项错误.【知识点】事件的分类、公式求概率二、填空题(共7题)11. 【答案】14【知识点】公式求概率12. 【答案】24【解析】设黄球的个数是x个,根据题意得:1212+x =13,解得:x=24,经检验:x=24是原分式方程的解,∴黄球的个数为24.故答案为:24.【知识点】公式求概率13. 【答案】12【知识点】公式求概率14. 【答案】 14【知识点】公式求概率15. 【答案】 25【解析】两位数共有 90 个.10−19 这 10 个数中,“上升数”有 12,13,14,15,16,17,18,19 一共 8 个; 20−29 这 10 个数中,“上升数”有 23,24,25,26,27,28,29 一共 7 个; 30−39 这 10 个数中,“上升数”有 34,35,36,37,38,39 一共 6 个; 40−49 这 10 个数中,“上升数”有 45,46,47,48,49 一共 5 个; 50−59 这 10 个数中,“上升数”有 56,57,58,59 一共 4 个; 60−69 这 10 个数中,“上升数”有 67,68,69 一共 3 个; 70−79 这 10 个数中,“上升数”有 78,79 一共 2 个; 80−89 这 10 个数中,“上升数”有 89 一共 1 个; 90−99 这 10 个数中,“上升数”有 0 个;∴ 在两位数中共有 1+2+3+4+5+6+7+8=36, ∴ 任取一个两位数,是“上升数”的概率 =3690=25. 【知识点】公式求概率16. 【答案】 13【知识点】公式求概率17. 【答案】随机事件;必然事件;不可能事件【知识点】事件的分类三、解答题(共8题)18. 【答案】 6 种,必然事件.【知识点】事件的分类19. 【答案】一等奖:125,二等奖:225,三等奖:15.【知识点】公式求概率20. 【答案】(1) 当抽到 −10,−9,10 时,乘积为 900,不管对方抽到其他怎样的三张,都会赢. (2) 当抽到 10,9,−10 时,乘积为 −900,不管对方抽到其他怎样的三张,都会输. (3) 结果等于 6 的可能性有 5 种:1×2×3;−1×(−2)×3;−1×2×(−3);1×(−2)×(−3);1×(−1)×(−6). 【知识点】公式求概率21. 【答案】(1) 4;2,3 (2) 根据题意得:6+m 10=45,解得:m =2, 所以 m 的值为 2. 【解析】(1) 当袋子中全为黑球,即摸出 4 个红球时,摸到黑球是必然事件;当摸出 2 个或 3 个时,摸到黑球为随机事件.【知识点】公式求概率、必然事件22. 【答案】(1) 从 8 张扑克牌中任取一张,所有可能出现的结果一共有 8 种,每种结果出现的概率都相等,其中抽到 4 的结果有 2 种.所以,P(抽到4)=28=14.答:小明抽到 4 的概率为 14. (2) 不公平.理由如下:从 8 张扑克牌中任取一张,所有可能出现的结果一共有 8 种,每种结果出现的概率都相等,其中抽到比 4 大的结果有 3 种.所以,P(抽到比4大)=38. 所以小明去看演唱会的概率为 38,则小亮去看演唱会的概率为:1−38=58.因为 38<58,所以,游戏不公平.修改游戏规则如下:(答案不唯一)从印有 1,2,3,4,5,4,6,7 的 8 张扑克牌中任取一张,抽到比 4 大的牌,小明去;抽到比 4 小的牌,小亮去,抽到 4 重新抽,游戏对双方都公平. 【知识点】公式求概率23. 【答案】蓝色弹珠 30 个,红色弹珠 54 个,白色弹珠 36 个.【知识点】公式求概率24. 【答案】(1) 100;条形统计图为:(2) 30;10;144∘(3) 根据踢毽子的概率为310,喜欢乒乓球的概率为15,喜欢跳绳的概率为25,喜欢篮球的概率为110,故喜欢跳绳的可能性大.【解析】(1) 观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100−30−20−10=40人.(2) 因为A组有30人,D组有10人,共有100人,所以A组所占的百分比为:30%,D组所占的百分比为10%,所以m=30,n=10;表示区域C的圆心角为40100×360∘=144∘.【知识点】公式求概率、条形统计图、扇形统计图25. 【答案】(1) 3种.(2) 12.(3) D【知识点】公式求概率。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(12)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(12)

一、选择题(共10题)1.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件是必然事件的是( )A.掷一次骰子,朝上的一面的点数大于0B.掷一次骰子,朝上的一面的点数为7C.掷一次骰子,朝上的一面的点数为4D.掷两次骰子,朝上的一面的点数都是32.下列事件中必然事件的是A.任意买一张电影票,座位号是偶数B.正常情况下,将水加热到100∘C时水会沸腾C.三角形的内角和是360∘D.打开电视机,正在播动画片3.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( )A.45B.35C.25D.154.下列调查工作中,需采用普查方式的是( )A.军工厂对该厂生产的一批炮弹爆炸范围的调查B.环保部门对淮河某段水域的水污染情况的调查C.质检部门对各厂家生产的电池使用寿命的调查D.企业在给职工做工作服前进行尺寸大小的调查5.从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是A.标号小于6B.标号大于6C.标号是奇数D.标号是36.下列成语描述的事件为随机事件的是( )A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼7.有一个质地均匀的骰子,6个面上分别标有1∼6这6个整数,投掷这个骰子一次,朝上一面的数字出现“3”的概率是( )A.16B.14C.13D.128.一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是( )A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件9.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是( )A.12B.13C.14D.1610.掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数为奇数的概率是( )A.16B.13C.12D.23二、填空题(共7题)11.一个不透明的袋子中装有8个大小、形状、都一样的小球,其中有3个红球与5个黄球,从这8个球中任取一个球是红球的概率是.12.小莉家附近有一公共汽车站,大约每隔30分钟准有一趟车经过.那么“小莉在到达该车站后10分钟内可坐上车”这一事件的概率是.13.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1到6的点数,掷得面朝上的点数为偶数的概率为.16.不透明袋子中装有6个球,其中有1个红球,2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.17.一个不透明的袋子中装有4个红球,3个白球,2个黄球,这些小球除颜色不同外,其它都相同,从袋子中随机摸出1个小球,则摸出红球的概率是.三、解答题(共8题)18.如图,有一个转盘被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题.(1) ④事件发生的可能性大小是.(2) 多次实验,指针指向绿色的频率的估计值是.(3) 将这些事件的序号按发生的可能性从小到大的排序排列为:<<<.19.一袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出一球,请问:(1) “摸出的球是白球”是什么事件?它的概率是多少?(2) “摸出的球是黄球”是什么事件?它的概率是多少?(3) “摸出的球是红球或黄球”是什么事件?它的概率是多少?20.某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可以随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元,小明购买了100元的商品,他看到商场公布前10000张奖奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张)500100020006500(1) 求“紫气东来”奖券出现的频率.(2) 请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?说明理由.21.某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1) 他遇到红灯的概率大还是遇到绿灯的概率大?(2) 他遇到绿灯的概率是多少?22.在一个不透明的布袋中装有2个红球和若干个白球,它们除颜色外,其余都相同,若从中随意摸出一个球,摸到白球的机会是4,求布袋中白球的个数.523.小明和小杰想观看篮球比赛,但只有一张门票,小杰提议用如下方法决定到底谁去看比赛:小杰拿来三张扑克牌:黑桃2,,黑桃3,黑桃4,背面朝上洗匀后,任意抽出两张,若两张牌数字之和为偶数,小杰去;若两张牌数字之和为奇数,小明去.你认为这个游戏公平吗?如果你是小明,请你设计一个公平的游戏.24.小亮和小芳都想参加学校杜团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘.(1) 转盘转到2的倍数的概率是多少?(2) 你认为这个游戏公平吗?请说明理由.25.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1) 转动转盘中奖的概率是多少?(2) 元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?答案一、选择题(共10题)1. 【答案】A【知识点】事件的分类2. 【答案】B【解析】A、是随机事件,可能发生也可能不发生,故选项错误;B、必然事件,故选项正确;C、是不可能发生的事件,故选项错误;D、是随机事件,可能发生也可能不发生,故选项错误.【知识点】事件的分类3. 【答案】C【知识点】公式求概率4. 【答案】D【知识点】事件的分类5. 【答案】A【知识点】事件的分类6. 【答案】B【知识点】事件的分类7. 【答案】A【解析】∵在1∼6这6个整数中,“3”这个数字只有1个,∴朝上一面的数字出现“3”的概率是:1.6【知识点】公式求概率8. 【答案】C【解析】∵一个不透明的盒子中装有9个白球和1个黑球,∴从中任意摸出一球,可能摸到白球也可能摸到黑球,∴“摸到白球”和“摸到黑球”都是随机事件.故选:C.【知识点】事件的分类9. 【答案】C【解析】由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E,F,G,H四个,所以小球从E出口落出的概率是:14;故选:C.【知识点】公式求概率10. 【答案】C【解析】由题意可得,点数为奇数的概率是:36=12.【知识点】公式求概率二、填空题(共7题)11. 【答案】38【解析】在口袋中放有3个红球与5个黄球,共8个,这两种球除颜色外完全相同,随机从口袋中任取一个球,从这8个球中任取一个球是红球的概率是38.【知识点】公式求概率12. 【答案】13【知识点】公式求概率13. 【答案】49【解析】盒子中共有4+3+2=9个球,摸到白球概率为49.【知识点】公式求概率14. 【答案】25【知识点】公式求概率15. 【答案】12【知识点】公式求概率16. 【答案】13【解析】摸出的球是绿球的概率P=26=13.【知识点】公式求概率17. 【答案】49【解析】∵不透明的袋子中装有4个红球,3个白球,2个黄球,共有9个球,∴摸出红球的概率是49.【知识点】公式求概率三、解答题(共8题)18. 【答案】(1) 23(2) 16(3) ②;③;①;④【解析】(1) 由题意得P(指向黄色)=26=13,∴P(不指向黄色)=1−13=23.(2) 由题意得P(指向绿色)=16,∴指向绿色的频率估计值是16.(3) P(①)=36=12,P(②)=16,P(③)=26=13,P(④)=46=23.∴② <③ <① <④.【知识点】公式求概率19. 【答案】(1) 不可能事件,P(摸出的球是白球)=0.(2) 随机事件,P(摸出的球是黄球)=25.(3) 必然事件,P(摸出的球是红球或黄球)=1.【知识点】随机事件、公式求概率、必然事件、不可能事件20. 【答案】(1) 120(2) 抽奖合算.【知识点】公式求概率21. 【答案】(1) ∵红灯40s、绿灯60s、黄灯3s,∴他遇到绿灯的概率大.(2) 遇到绿灯的概率6040+60+3=60103,故遇到绿灯的概率是60103.【知识点】公式求概率、概率的概念及意义22. 【答案】设布袋中有n个白球,根据题意,得n2+n =45,解得n=8.经检验,n=8是所列方程的解,并且符合实际问题的意义.所以布袋中有8个白球.【知识点】公式求概率23. 【答案】不公平(p奇=23,p偶=13);设计方法不唯一,合理均可.【知识点】公式求概率24. 【答案】(1) ∵共有9种等可能的结果,其中2的倍数有4个,∴P(转到2的倍数)=49.(2) 游戏不公平.理由如下:∵共有9种等可能的结果,其中3的倍数有3个,∴P(转到3的倍数)=39=13.∵49>13,∴游戏不公平.【知识点】公式求概率25. 【答案】(1) 指针指向1,2,3,5,6,8都获奖,∴获奖概率P=68=34.(2) 获得一等奖的概率为18,1000×18=125(人),∴获得一等奖的人数可能是125人.【知识点】用样本估算总体、公式求概率。

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。

七年级数学下册 第六章 单元复习课课件 (新版)北师大

七年级数学下册 第六章 单元复习课课件 (新版)北师大

【例3】小红与小刚姐弟俩做掷硬币游戏,他们两人同时各掷 一枚壹元硬币. (1)若游戏规则为:当两枚硬币落地后正面都朝上时,小红赢, 否则小刚赢.求小刚赢的概率. (2)小红认为上面的游戏规则不公平,于是把规则改为:当两 枚硬币正面都朝上时,小红得8分,否则小刚得4分.那么,修 改后的游戏规则公平吗?请说明理由;若不公平,请你帮他们 再修改游戏规则,使游戏规则公平(不必说明理由).
2.小明和小亮做游戏,先是各自背着对方在纸上写一个正整
数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或
都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一
2.事件发生可能性大小的判断 一般地,不确定事件发生的可能性是有大小的.不确定事件发生 的可能性的大小通常与部分的量占总体的量的大小有关,部分 的量越多,则发生这部分的事件的可能性越大,反之越小.
三、概率的计算 1.一般地,不确定事件发生的可能性(概率)的计算方法和步骤 是 (1)列出所有可能发生的结果,并判定每个结果发生的可能性都 相等. (2)确定所有可能发生的结果个数n和其中满足所求事件的结果 个数m. (3)计算所求事件发生的可能性:P(所求事件)= m .
n
2.必然事件的概率是:P(必然事件)=1 不可能事件的概率是:P(不可能事件)=0. 3.在求不确定事件的概率时,要注意事件的等可能性,不是等 可能事件的概率问题,可以转化为等可能事件的概率问题.
事件的分类 【相关链接】
1.生活中一定发生的事件称为必然事件,一定不发生的事件称 为不可能事件,必然事件和不可能事件是确定的,所以都是确 定事件.生活中有些事件我们无法肯定它会不会发生,这些事 件称为不确定事件. 2.必然事件用“一定”“肯定”等词来描述;不可能事件用 “不可能”“一定不会”等词来描述;不确定事件根据发生的 可能程度不同用“很可能”“可能”“不太可能”等词来描述.2.事 Nhomakorabea的分类:

新北师大版七年级数学下册第六章《概率初步》同步分层练习含答案

新北师大版七年级数学下册第六章《概率初步》同步分层练习含答案

1感受可能性1.下列事件是必然事件的是(D)A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形的内角和等于180°2.(2019·湖北武汉江岸区月考)下列事件中,是随机事件的是(C)A.通常温度降到0 ℃以下,纯净的水结冰B.明天太阳从东方升起C.购买1张彩票,中奖D.任意画一个三角形,其内角和是360°3.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为随机事件(填“必然”“不可能”或“随机”).4.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为4,这个事件是不可能事件 (填“必然事件”“不可能事件”或“随机事件”).5.从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情(D)A.可能发生B.不可能发生C.很可能发生D.必然发生6.小明的书包里装有大小、形状完全一样的6本作业本,其中语文作业本3本,数学作业本2本,英语作业本1本,那么他从书包中随机抽出1本作业本,可能性最大的是抽出语文作业本.7.下列第一排表示各盒中球的情况,第二排的语言描述了摸到蓝球的可能性大小,请你用线把第一排盒子与第二排的描述连接起来,使之相符.解:如图所示.8.(2018·福建中考)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是(D)A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于129.(教材P139,习题6.1,T5改编)如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列事件发生的可能性的大小,并将这些事件的序号按发生的可能性从小到大的顺序排成一列: (2)(1)(4)(3) .(填序号)(1)指针落在标有3的区域内;(2)指针落在标有9的区域内;(3)指针落在标有数字的区域内;(4)指针落在标有奇数的区域内.10.在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:布袋编号12 3布袋中玻璃球的颜色、数量2个绿球、2个黄球、5个红球1个绿球、4个黄球、4个红球6个绿球、3个黄球(1)随机地从1号布袋中摸出1个玻璃球,该球是黄色、绿色或红色的;(2)随机地从2号布袋中摸出2个玻璃球,2个球中至少有1个不是绿色的;(3)随机地从3号布袋中摸出1个玻璃球,该球是红色的;(4)随机地从1号和2号布袋中分别摸出1个玻璃球,2个球的颜色一致.解:(1)(2)是必然事件,(3)是不可能事件,(4)是随机事件.2 频率的稳定性1.在中考体育跳绳项目测试中,1 min 跳160次为达标.小敏在预测时1 min 跳的次数分别为165,155,140,162,164,则她在预测中达标的次数是 3 ,达标的频率是 0.6 . 2.某自行车厂在一次质量检查中,从5 000辆自行车中随机抽查了100辆,查得合格率为96%,估计这5 000辆自行车中大约有 200 辆车不合格.3.做重复试验:抛掷一枚啤酒瓶盖1 000次.经过统计得“凸面向上”的次数为420,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( B ) A .0.22 B .0.42 C .0.50 D .0.584.(2019·江苏泰州中考)小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:抛掷次数 100 200 300 400 500 正面朝上的频数5398156202244A .20B .300C .500D .8005.在一个不透明的布袋中装有黄、白两种颜色的球(除颜色外其他都相同)共40个.小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( B ) A .12个 B .14个 C .18个 D .28个6.(2019·江西南昌一模)元旦那天,某超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买的活动,顾客购买物品就能获得一次转动转盘的机会,当转盘停止时,就可以获得指针所在区域相对应的奖品.下表是该活动的一组统计数据.假如你去转动一次转盘,获得铅笔的概率大约是 0.70 .(结果精确到0.01)转动转盘的次数n 100 150 200 500 800 1 000 落在“铅笔”区域的次数m 68 108 140 355 560 690 落在“铅笔”区域的频率mn0.680.720.700.710.700.69下面是小明和同学做“抛掷图钉试验”获得的数据: 抛掷次数n 100 200 300 400 500 600 700 800 900 1 000 钉尖不着地的频数m63120 186 252 310 360 434 488 549 610 钉尖不着地的频率m n0.630.600.620.630.620.600.620.610.610.61(1)填写表中的空格;(2)画出该试验中,钉尖不着地的频率的折线统计图;(3)观察折线统计图,你发现了什么?(4)根据“抛掷图钉试验”的结果,估计“钉尖着地”的概率为 0.39 .解:(3)观察折线图可以发现:随着抛掷次数的增加,钉尖不着地的频率逐渐稳定在0.61附近.易错点 不能正确理解频率的稳定性的含义8.小明在抛啤酒瓶盖(规定凹面为正)时,共抛了10次,结果有7次正面朝上,于是他说:“在抛掷啤酒瓶盖时正面朝上的概率是0.7.”你认为他的说法正确吗?为什么? 解:不正确.因为他的试验次数太少,不能用该频率估计事件发生的概率,只有试验次数较多时,其频率才与概率相近.9.(2019·北京朝阳区一模)某班同学随机抛掷一枚硬币的试验结果如下表所示:①表中没有出现“正面向上”的概率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这次试验抛掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③抛掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生.其中合理的是(C)A.①② B.①③C.③ D.②③10.在不透明的袋子中有黑棋子10枚和白棋子若干枚(它们除颜色外其他都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:A.60枚B.50枚C.40枚D.30枚11.(2019·浙江绍兴中考)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:(D) A.0.85 B.0.57C.0.42 D.0.1512.(2019·河南模拟)一个不透明的袋子中装有若干个大小相同的白球,现取8个与白球除颜色外完全相同的黑球放入袋子中,摇匀之后,随机摸出一个球,记下颜色并放回.经过大量重复试验后,发现摸出黑球的频率稳定在0.1附近,则估计袋子中原有白球约 72 个.13.(2019·河北唐山路南区一模)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调査结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了多少名学生?(2)通过计算,补全条形统计图;(3)若该校爱好运动的学生共有600名,求该校共有学生大约多少名;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,求选出的恰好是爱好阅读的学生的概率.解:(1)40÷40%=100(名).(2)爱好上网的人数为100×10%=10,爱好阅读的人数为100-40-20-10=30.补全条形统计图,如图所示.(3)600÷40%=1 500(名).(4)因为爱好阅读的学生人数所占的百分比为30%,所以用频率估计概率,则选出的恰好是爱好阅读的学生的概率为310.3 等可能事件的概率第1课时 简单概率的计算1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,该球是黄球的概率为( C ) A.12 B.15 C.310 D.7102.小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是( C )A.16B.13C.12D.233.某市电视台在举办的《开心就唱》歌手大赛活动中,号召观众发短信为参赛者投支持票,投票短信每1万条为1组,每组抽出1个一等奖,3个二等奖,6个三等奖.张艺同学发了1条短信,她获奖的概率是( B ) A.110 000 B.11 000 C.1100 D.1104.(2019·湖南娄底涟源模拟)从“绿水青山就是金山银山”中任选一个字,选出“山”的概率是( A )A.310B.110C.19D.185.某校七(1)班有男生25人,女生24人,从中任选一人,是男生的概率是 2549 .6.从一副扑克牌(去掉“大王”和“小王”)中任意抽出1张. (1)抽到红桃的概率是多少? (2)抽到“2”的概率是多少? (3)抽到红桃“2”的概率是多少?解:一副扑克牌中共有54张,去掉“大王”和“小王”后还剩52张,其中红桃有13张,“2”有4张,红桃“2”有1张.(1)P (抽到红桃)=1352=14.(2)P (抽到“2”)=452=113.(3)P (抽到红桃“2”)=152.7.某口袋中有20个球,其中白球x 个,绿球2x 个,其余为黑球.甲从口袋中任意摸出一个球,若为绿球则甲获胜;甲摸出的球放回口袋中,乙再从口袋中任意摸出一个球,若为黑球则乙获胜.当x 等于多少时,游戏对甲、乙双方都公平( B ) A .3 B .4 C .5 D .68.有编号为1~10的10张卡片,甲从中任意抽取一张,若其号码数能被3整除,则甲获胜;将甲抽取的卡片放回后,乙也从中任意抽取一张,若其号码数能被4整除,则乙获胜.这项游戏对甲、乙两人公平吗?若不公平,应如何添加卡片?(添加的卡片上的编号与原来卡片上的编号不同)解:不公平.在1~10中能被3整除的数字是3,6,9,共3个;能被4整除的数字是4,8,共2个.所以P (甲获胜)=310,P (乙获胜)=210=15.因为310≠15,所以这项游戏对甲、乙两人不公平.若要使这项游戏对甲、乙两人公平,则可以添加编号为“16”或“20”的卡片(答案不唯一,能被4整除,不能被3整除即可). 9.设计摸球游戏:(1)用12个除颜色外其他都相同的球,设计一个摸球游戏,使摸到红球的概率为12,摸到黄球的概率为13;(2)如果要使摸到红球的概率为23,摸到黄球的概率为16,那么摸球游戏至少要设置几个球?解:(1)红球:12×12=6(个);黄球:12×13=4(个).设计游戏如下:在一个不透明的口袋中装有除颜色外其他都相同的12个球,其中红球有6个,黄球有4个,白(其他颜色也可以)球有2个.从中任意摸出一个球,则摸到红球的概率为12,摸到黄球的概率为13. (2)设有x 个球,则23x +16x =56x .因为x 是6的倍数,所以x 的最小值为6. 故摸球游戏至少设置6个球.易错点 摸球问题中仅从颜色来划分结果10.甲袋中放有17个黄球、4个白球,乙袋中放有300个黄球、100个白球、20个红球,这几种球除了颜色以外没有任何区别,两袋中的球都已经各自搅匀,从袋中任意摸1个球,如果想摸出1个白球,选哪个袋摸球成功的机会大? 解:因为在甲袋中P (摸出1个白球)=417+4=421,在乙袋中P (摸出1个白球)=100300+100+20=521>421,所以选乙袋摸球成功的机会大.11.(2019·黑龙江齐齐哈尔中考)在一个不透明的口袋中,装有一些除颜色外其他完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出1个红球的概率是110,则袋中黑球的个数为( C )A .27B .23C .22D .1812.(2019·江苏徐州铜山区二模)一个两位数,它的十位数字是5,个位数字是抛掷一枚质地均匀的骰子(六个面分别为1~6点)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是4的整数倍的概率等于( A )A.13B.16C.23D.1213.在x 2□2xy □y 2的□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( A )A.12B.34 C .1 D.1414.有5张卡片,上面分别画有圆、等边三角形、正方形、平行四边形、直角梯形,将卡片画有图形的一面朝下随意放在桌上,任取一张,那么取到卡片对应图形是轴对称图形的概率是( C )A.15B.25C.35D.4515.甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为7”则甲赢,掷出“和为8”则乙赢,这个游戏是否公平( B ) A .公平 B .对甲有利 C .对乙有利D .不能判断16.(2019·四川成都锦江区期末)电影《流浪地球》上映,小玲准备买票观看,在选择座位时,她发现理想的位置只剩了第六排的4个座位和第七排的3个座位.她从这7个座位中随机选择1个座位,是第六排座位的概率为 47.17.一枚质地均匀的骰子,骰子的六个面上分别刻有1~6的点数,投掷这枚骰子一次,向上一面的点数是2或3的概率是a6,则a 的值是 2 .18.如图,在3×3的方格中,A ,B ,C ,D ,E ,F 分别位于格点上,从C ,D ,E ,F 四个点中任取一点,与点A ,B 构成三角形,则所构成的三角形为等腰三角形的概率是 34.19.请将下列事件发生的概率标在图中(用字母表示):(1)记为点A :随意掷两枚质地均匀的骰子,朝上一面的点数之和为1; (2)记为点B :抛出的篮球会落下;(3)记为点C :从装有3个红球、7个白球的口袋中任取1个球,恰好是白球(这些球除颜色外其他完全相同).解:(1)是不可能事件,其概率为0; (2)是必然事件,其概率为1; (3)是随机事件,其概率为73+7=0.7.20.有四张形状、大小、颜色、质地都相同的卡片,正面分别写有数字-2,-1,1,2,将这四张卡片背面向上洗匀,从中任取1张卡片,记卡片上的数字为A ;放回洗匀后再任取1张,记卡片上的数字为B .于是得到有理数A B.(1)第1张卡片上可能出现的结果: -2,-1,1,2 ; 第2张卡片上可能出现的结果: -2,-1,1,2 . (2)求有理数A B恰好是整数的概率.解:(2)根据抽取结果,得到的A B 有16种不同的结果,分别是1,2,-2,-1,12,1,-1,-12,-12,-1,1,12,-1,-2,2,1.其中结果是整数的有12种,所以P ⎝ ⎛⎭⎪⎫有理数A B 恰好是整数=1216=34.21.(2019·山东东营期末)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成27个大小相同的小正方体,从这些小正方体中任意取出一个,求取出的小正方体出现以下情况的概率.(1)只有一面涂有颜色; (2)至少有两面涂有颜色; (3)各个面都没有涂颜色.解:(1)因为只有一面涂有颜色的小正方体有6个, 所以P (只有一面涂有颜色)=627=29.(2)因为至少有两面涂有颜色的小正方体有12+8=20(个), 所以P (至少有两面涂有颜色)=2027.(3)因为各个面都没有涂颜色的小正方体只有1个, 所以P (各个面都没有涂颜色)=127.第2课时 求简单的几何概率1.(2019·江苏南京鼓楼区一模)如图所示的12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( B )A.56B.512C.59D.7122.(2019·江苏苏州二模)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( A )A.12B.13C.14D.163.如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是( C )A.12B.34C.38D.7164.(2019·四川绵阳涪城区自主招生)一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒.当某人到达路口时,看见的是红灯的概率是( B )A.15B.25C.35D.455.一只蚂蚁在如图所示的长方形地砖上爬行,蚂蚁停在阴影部分的概率是 12.6.一张写有密码的纸片被随意埋在如图所示的长方形区域内(每个方格大小一样). (1)写有密码的纸片埋在哪个区域的可能性较大? (2)分别计算写有密码的纸片埋在三个区域内的概率; (3)写有密码的纸片埋在哪两个区域的概率相同?1区2区3区解:(1)埋在2区的可能性较大.(2)P (埋在1区)=14,P (埋在2区)=12,P (埋在3区)=14.(3)埋在1区与3区的概率相同.7.(2019·广西桂林中考)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( D )A.12B.13C.14D.168.如图,转动质量均匀的转盘,当转盘停止时,指针落在白色区域的概率是( A )A.34B.12C.13D.149.(2019·辽宁沈阳和平区模拟)如图,把一个圆形转盘按1∶2∶3∶4的比例分成A ,B ,C ,D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为( C )A.35B.25C.15D.11010.(2019·山东济南商河一模)如图所示,用扇形统计图反映地球上陆地面积与海洋面积所占比例.若宇宙中一块陨石落在地球上,且落在陆地上的概率是0.3,则陆地面积对应的圆心角的度数是 108 度.11.某商人制作了一个如图所示的转盘游戏,取名为“开心大转盘”,游戏规定:参与者自由转动转盘.若指针指向字母“A ”,则收费2元;若指针指向字母“B ”,则奖3元;若指针指向字母“C ”,则奖1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?解:商人盈利的可能性大.理由如下:指针指向“A ”的次数是80×48=40;指针指向“B ”的次数是80×18=10;指针指向“C ”的次数是80×38=30.所以商人收入:40×2=80(元);商人支出:10×3+30×1=60(元). 因为80>60,所以商人盈利的可能性大.易错点 认为概率大小与转盘大小有关而致错12.用力旋转如图所示的转盘甲和转盘乙的指针,如果想让指针停在蓝色区域内,则下列说法中正确的是( C )A .转盘乙大,蓝色区域的面积也大,所以选转盘乙成功的可能性较大B .每个转盘只有两种颜色,指针不是停在蓝色区域内就是停在红色区域内,成功的可能性都是50%C .转盘甲和转盘乙蓝色区域的面积各占转盘面积的25%,所以停在蓝色区域内的机会都是25%D .指针转的速度越快,停在蓝色区域内的可能性就越大13.(2019·湖北武汉江汉区模拟)如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板内随机投掷一枚飞镖,击中黑色区域的概率是( B ) A.59 B.13 C.518 D.23 14.(2019·山东枣庄峄城区期末)转动下列各个转盘,指针指向红色区域的概率最大的是( D )15.(2018·江苏苏州中考)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( C )A.12B.13C.49D.5916.(2019·北京顺义区二模)某公司的班车在7:30,8:00,8:30从某地发车,小李在7:50至8:30之间到达车站乘坐班车,如果他到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B )A.13B.12C.23D.3417.(2019·河南信阳二模)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15°就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是 18.18.(2019·贵州贵阳模拟)欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超.如图所示,若铜钱的直径为4 cm ,中间有边长为1 cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是 14π.19.(2019·陕西铜川岐山期末)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB 为转盘的直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠.(1)某顾客消费40元,是否可以获得转转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?解:(1)因为规定消费50元(含50元)以上才能获得一次转转盘的机会,40<50,所以某顾客消费40元,不能获得转盘的机会.(2)由题意,得P (获得9折优惠)=90360=14;P (获得8折优惠)=60360=16;P (获得7折优惠)=30360=112.第六章概率初步1.下列事件中,是不可能事件的是(D)A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°2.“368人中一定有2人的生日是相同的”是(B)A.随机事件B.必然事件C.不可能事件D.以上都不对3.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的点数是2.其中是随机事件的是①③ .(填序号)4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D)A.3个B.不足3个C.4个D.5个或5个以上5.七年级(6)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大 (填“大”或“小”).6.给出以下四个事件:①电灯通电时“发热”;②某人射击一次“中靶”;③掷一枚硬币“出现正面”;④在常温下“铁熔化”.你认为可能性最大的是① ,最小的是④ .7.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是(C) 投篮次数1050100150200250300500投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.490.510.508.某人在做掷硬币试验时,抛掷m 次,正面朝上有n 次⎝⎛⎭⎪⎫即正面朝上的频率是P =n m ,则下列说法中正确的是( D ) A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .随着抛掷次数逐渐增加,P 稳定在12附近9.在一个不透明的布袋中有除颜色外其他都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红球和蓝球的频率分别稳定在35%和55%,则口袋中可能有黄球 20 个.10.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在 0.9 ,成活的概率估计值为 0.9 . (2)该地区已经移植这种树苗5万棵. ①估计这种树苗成活 4.5 万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:(2)②18÷0.9-5=15(万棵). 答:该地区还需移植这种树苗约15万棵.11.一个不透明的盒子里装有只有颜色不同的黑、白两种颜色的球共40个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,活动进行中的一组统计数据如下所示:摸球的次数n 200 300 400 500 800 1 000 摸到白球的次数m 116 192 232 295 484 601 摸到白球的频率m n0.580.640.580.590.6050.601(1)当摸球的次数很大时,请估计摸到白球的频率将会接近多少; (2)如果你从盒子中任意摸出一球,那么摸到白球的概率约是多少? (3)试估算盒子中黑、白两种颜色的球各有多少个?(4)请你应用上面频率与概率的关系的思想解决下面的问题:一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计口袋中白球的个数(可以借助其他工具及用品)?请写出解决这个问题的主要步骤及估算方法. 解:(1)0.60. (2)0.60.(3)盒子中白球的个数约为40×0.60=24(个), 则黑球的个数为40-24=16(个).(4)①添加:向口袋中添加一定数目的黑球,并充分搅匀;②试验:进行次数很多的摸球试验(有放回),记录摸到黑球和白球的次数,分别计算频率,由频率估计概率;③估算:黑球个数摸到黑球的概率=球的总个数,球的总个数×摸到白球的概率=白球的个数(答案不唯一).12.小军旅行箱的密码是一个六位数,但他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.15 13.如图,某农民在A ,B ,C ,D 四块田里插秧时,不慎将手表丢入田里,直到收工时才发现,则手表丢在哪一块田里的可能性大些( D )A .AB .BC .CD .D14.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于( C )A.16B.14C.38D.5815.5张分别写有-1,2,0,-4,5的卡片(除数字不同以外其余都相同),现从中任意取出1张卡片,则该卡片上的数字是负数的概率是 25.16.小兰和小青两人做游戏,有一个质量分布均匀的正六面体骰子,骰子的六面分别标有1,2,3,4,5,6.如果掷出的骰子的点数是质数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢.该游戏规则对 小兰 有利.17.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5.解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种情况,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6, 所以P (点数为偶数)=36=12.(2)点数大于2且小于5有2种可能,即点数为3,4, 所以P (点数大于2且小于5)=26=13.18.如图,小明家里的阳台地面铺设着黑、白两种颜色的18块方砖(除颜色不同外其余都相同),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖的颜色?怎样改变?解:(1)由图可知,阳台地面共铺有18块方砖,其中白色方砖8块,黑色方砖10块,故小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档