2020全国中考数学试卷分类汇编--专题22 等腰三角形;专题23 直角三角形与勾股定理

合集下载

2020年中考数学人教版专题复习:等腰三角形

2020年中考数学人教版专题复习:等腰三角形

2020年中考数学人教版专题复习:等腰三角形一、学习目标:1. 了解等腰三角形和等边三角形的概念,并能判定等腰三角形和等边三角形;2. 正确理解等腰三角形和等边三角形的性质,能运用它们的性质解决相关的问题;3. 借助轴对称图形的性质,得出等腰三角形、等边三角形、有一个角是30o的直角三角形的性质。

二、重点、难点:重点:等腰三角形和等边三角形的性质和判定,及有一个角是30o的直角三角形的性质。

难点:综合运用等腰三角形的性质解决问题。

三、考点分析:本节知识内容是初中数学的基础,考试题型多,方法灵活。

对这部分知识的命题方向是考查等腰三角形及等边三角形的性质和判定,即边角的相互转化。

这部分内容在中考中多以填空题、选择题的形式出现。

在综合题中,对等腰三角形的性质和判定知识的考查较为常见,中考中还经常出现与本节知识有关的探究性问题,如函数中的动点,考查动点在何处时形成的图形是等腰三角形、等边三角形等。

知识梳理典例精析知识点一:等腰三角形的有关概念例1.如图,D在AC上,AB=AC,AD=DB,请指出图中的等腰三角形,以及它们的腰、底边、顶角及底角。

思路分析:这里要求根据条件说明图形的名称,而不是凭直观和想象。

相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,另外的两个角叫做底角。

解答过程:图中的等腰三角形有ABC∆和ADB∆。

其中∠;∠和C ABC∠,底角是CBA∆的腰是AB和AC,底边是BC,顶角是BAC∠。

∠,底角是∠A和ABD ADB∆的腰是DA和DB,底边是AB,顶角是BDA解题后的思考:解决此类题目应先找到两腰,然后根据其他元素与两腰的相对位置关系来进行识别。

例2.已知等腰三角形的周长为13,其一边长为3,则其他两边长分别为___________;思路分析:长为3的边是否是腰并不清楚,故应分类讨论。

解答过程:当3为底边时,其他两边均为(133)25-÷=;当3为腰长时,其他两边为3和13337+=<,所以不能构成三角形,--=。

2020年中考等腰三角形专题---解答题

2020年中考等腰三角形专题---解答题

2020年中考等腰三角形专题---解答题1.(2020▪衡阳)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;的度数.(2)若∠BDE=400,求BAC2.(9分)(2020▪荆门)如图,△ABC中,AB=AC,∠B的平分线交AC于D,AE∥BC交BD的延长线于点E,AF⊥AB交BE于点F.(1)若∠BAC=40°,求∠AFE的度数;(2)若AD=DC=2,求AF的长.3.(6分)(2020•广东)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.4.(2020•潍坊)如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.5.(8分)(2020•哈尔滨)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.6.(8分)(2020•牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=.7.(2020▪台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.8.(2020▪绍兴)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=900,∠B=450,求∠DAC的度数.答案:∠DAC=450.思考:(1)如果把以上“问题”中的条件“∠B=450”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=450”去掉,再将“∠BAE=900”改为“∠BAE=n0”,其余条件不变,求∠DAC的度数.参考答案1、【答案】(1)证明见解析;(2)BAC ∠=80°【解析】:(1)证明:∵点D 为BC 的中点,∴BD=CD ,∵DE AB ⊥,DF AC ⊥,∴∠DEB=∠DFC=90°在△BDE 和△CDF 中,DEB DFCB C BD CD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BDE CDF AAS ≅,∴DE DF =.(2)∵40BDE ∠=︒∴∠B=180°-(∠BDE+∠BED )=50°,∴∠C=50°,在△ABC 中,BAC ∠=180°-(∠B+∠C )=80°,故BAC ∠=80°.2、【解答】解:(1)∵AB =AC ,∠BAC =40°,∴∠ABC =(180°﹣40°)=×140°=70°,∵BD 平分∠ABC ,∴∠ABD =∠DBC =∠ABC =×70°=35°,∵AF ⊥AB ,∴∠BAF =90°,∴∠AFE =∠ABD +∠BAF =35°+90°=125°;(2)∵AE ∥BC ,∴∠E =∠DBC ,在△ADE 和△CDB 中,,∴△ADE ≌△CDB (AAS ),∴AE =BC ,∵∠E=∠DBC,∠ABD=∠DBC,∴∠E=∠ABD,∴AB=AE,∴AB=BC,∵AB=AC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABF=30°,∵AD=DC=2,∴AB=AC=4,在Rt△ABF中,AF=AB•tan∠ABF=4×tan30°=4×=.3、【分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.4、【解答】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EFB=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.5、【解答】(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FDB=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.6、【解答】解:(1)如图①,延长CD,FE交于点M.∵AB=BC,EF∥BC,∴∠A=∠BCA=∠EF A,∴AE=EF,∴MF∥BC,∴∠MED=∠B,∠M=∠BCD,又∵∠FCM=∠BCM,∴∠M=∠FCM,∴CF=MF,又∵BD=DE,∴△MED≌△CBD(AAS),∴ME=BC,∴CF=MF=ME+EF=BC+AE,即AE+BC=CF;(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,BC=AE+CF,如图②,延长CD,EF交于点M.由①同理可证△MED≌△CBD(AAS),∴ME=BC,由①证明过程同理可得出MF=CF,AE=EF,∴BC=ME=EF+MF=AE+CF;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,AE =CF+BC.如图③,延长CD交EF于点M,由上述证明过程易得△MED≌△CBD(AAS),BC=EM,CF=FM,又∵AB=BC,∴∠ACB=∠CAB=∠F AE,∵EF∥BC,∴∠F=∠FCB,∴EF=AE,∴AE=FE=FM+ME=CF+BC;(3)CF=18或6,当DE=2AE=6时,图①中,由(1)得:AE=3,BC=AB=BD+DE+AE=15,∴CF=AE+BC=3+15=18;图②中,由(2)得:AE=AD=3,BC=AB=BD+AD=9,∴CF=BC﹣AE=9﹣3=6;图③中,DE小于AE,故不存在.故答案为18或6.7、【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC-∠ABD=∠ACB-∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.8、解:(1)的度数不会改变;,,①,,,②由①,②得,;(2)设,则,,,,,.。

中考数学复习考点知识与题型专题讲解23 等腰三角形

中考数学复习考点知识与题型专题讲解23 等腰三角形

中考数学复习考点知识与题型专题讲解专题22等腰三角形【知识要点】等腰三角形概念:有两边相等的三角形角等腰三角形。

等腰三角形性质:1:等腰三角形的两个底角相等(简写成“等边对等角”)2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 等边三角形概念:三条边都相等的三角形,叫等边三角形。

它是特殊的等腰三角形。

等边三角形性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60º。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60º的等腰三角形是等边三角形。

(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。

(补充:(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。

(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。

(3)常用辅助线:①三线合一;②过中点做平行线【考查题型】考查题型一等腰三角形的定义【解题思路】考查等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.典例1.(2021·贵州黔南布依族苗族自治州·中考真题)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22变式1-1.(2021·广西玉林市·中考真题)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形变式1-2.(2021·青海中考真题)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°变式1-3.(2021·湖南张家界市·中考真题)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为()A .2B .4C .8D .2或4考查题型二 根据等边对等角求角度典例2.(2021·广西中考真题)如图,AB 是⊙O 的弦,AC 与⊙O 相切于点A ,连接OA ,OB ,若∠O =130°,则∠BAC 的度数是( )A .60°B .65°C .70°D .75°变式2-1.(2021·甘肃兰州市·中考真题)如图,//AB CD ,AD CD =,165∠=︒,则2∠的度数是()A .50︒B .60︒C .65︒D .70︒变式2-2.(2021·山东临沂市·中考真题)如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒变式2-3.(2021·浙江温州市·中考真题)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°考查题型三根据三线合一求解典例3.(2021·广东深圳市·中考真题)如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A.2B.3C.4D.5变式3-1.(2021·铜仁市·中考真题)已知等边三角形一边上的高为)A.2B.3C.4D.变式3-2.(2021·四川中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P 为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.﹣2C.+2D.考查题型四格点中画等腰三角形典例4在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4B.6C.8D.10变式4-1.(2021·山东枣庄市一模)如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个变式4-2.如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A.1个B.2个C.3个D.4个考查题型五根据等角对等边证明等腰三角形典例5.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+12∠B=90°变式5-1.(2021·无锡市模拟)下列能断定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=2∠B=70°C.∠A=40°,∠B=70°D.AB=3,BC=6,周长为14变式5-2.如图,在△ABC 中,AB=AC,BO、CO 分别平分∠ABC、∠ACB,DE 经过点O,且DE∥BC,DE 分别交AB、AC 于D、E,则图中等腰三角形的个数为( )A .2B .3C .4D .5考查题型六 根据等角对等边求边长典例6.(2021·山东青岛市·中考真题)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点.O 若5AE =,3BF =,则AO 的长为()A C ..变式6-1.(2021·山东济宁市·中考真题)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是()A .15海里B .20海里C .30海里D .60海里变式6-2.(2021·河北九年级其他模拟)如图,在▱ABCD 中,AB =8,BC =5,以点A 为圆心,以任意长为半径作弧,分别交AD 、AB 于点P 、Q ,再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠DAB 内交于点M ,连接AM 并延长交CD 于点E ,则CE 的长为( )A .3B .5C .2D .6.5考查题型七 等腰三角形性质与判定的综合典例7.(2021·浙江绍兴市·中考真题)问题:如图,在△ABD 中,BA =BD .在BD 的延长线上取点E ,C ,作△AEC ,使EA =EC ,若∠BAE =90°,∠B =45°,求∠DAC 的度数.答案:∠DAC =45°思考:(1)如果把以上“问题”中的条件“∠B =45°”去掉,其余条件不变,那么∠DAC 的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B =45°”去掉,再将“∠BAE =90°”改为“∠BAE =n °”,其余条件不变,求∠DAC 的度数.变式7-1.(2021·江苏淮安市·中考真题)如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得30CAB ∠=︒,45ABC ∠=︒,8AC =千米,求A 、B 两点间的距离.(参考数据: 1.4≈,1.7≈,结果精确到1千米).变式7-2.(2021·辽宁鞍山市·中考真题)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40cm AC =,求支架BC 的长.(结果精确到1cm ,参考1.414≈ 1.732≈2.449≈)考查题型八 等边三角形的性质典例8.(2021·福建中考真题)如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF ∆的面积是()A .1B .12C .13D .14变式8-1.(2021·山西中考真题)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为4cm ,圆心角为60︒,则图中摆盘的面积是()A .280cm πB .240cm πC .224cm πD .22cm π变式8-2.(2021·甘肃天水市·中考真题)如图,等边OAB 的边长为2,则点B 的坐标为()1,1B.C.D.A.()考查题型九等边三角形的性质与判定的综合典例9.(2021·内蒙古中考真题)如图,一个人骑自行车由A地到C地途经B地当他由A地出发时,发现他的北偏东45︒方向有一电视塔P,他由A地向正北方向骑行了到达B地,发现电视塔P在他北偏东75︒方向,然后他由B地向北偏东15︒方向骑行了6km到达C地.(1)求A地与电视塔P的距离;(2)求C地与电视塔P的距离.变式9-1.(2021·内蒙古鄂尔多斯市·中考真题)(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,ABC的三个顶点均在格点上.①请按要求画图:将ABC绕点A顺时针方向旋转90°,点B的对应点为点B',点C的对应点为点C'.连接BB';∠AB B=°.②在①中所画图形中,'(2)(问题解决)如图2,在Rt ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE ,连接DE ,求∠ADE 的度数.(3)(拓展延伸)如图3,在四边形ABCD 中,AE ⊥BC ,垂足为E ,∠BAE =∠ADC ,BE =CE =1,CD =3,AD =kAB (k 为常数),求BD 的长(用含k 的式子表示).考查题型十 含30°角的直角三角形典例10.(2021·海南中考真题)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .变式10-1.(2021·湖北中考真题)如图,点,,,A B C D 在O 上,OA BC ⊥,垂足为E .若30ADC ∠=︒,1AE =,则BC =( )A .2B .4C .11 / 11 变式10-2.(2021·山东枣庄市·中考真题)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是()A.(1,2-+ B.() C.(2+D.(-。

2020中考数学压轴题之动点之等腰三角形

2020中考数学压轴题之动点之等腰三角形

动点之等腰三角形编者语:动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题(不考);全等三角形存在问题;相似三角形存在问题;其它存在问题等在中考压轴题中,线动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类。

※解决方法:解直角三角形,相似辅助的做法:✍作等腰三角形的高✍向其余边作垂线构成全等。

1.勾股定理。

(辅助线✍)2.锐角三角函数。

(辅助线✍)3.两个角的相似比较常见。

(辅助线✍)典型例题:1.如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.(1)当x= ▲s时,DE⊥AB;(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;(3)当△BEF为等腰三角形时,求x的值.2.如图,抛物线2323y x x 63-=与x 轴交于点A ,将线段OA 绕点O 逆时针旋转1200至OB 的位置. (1)证明:点B 在抛物线上;(2)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.典型例题答案:1.解:(1)232 (2分) (2 )(3)2.解:(2)等腰三角形练习题2.如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.⑴求点D的坐标(用含m的代数式表示)⑵当△APD是等腰三角形时,求m的值。

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

等腰三角形与直角三角形(共26道)一、单选题1(2023·江苏徐州·统考中考真题)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且ADAB=DEBC,则AE的长为()A.1B.2C.1或32D.1或22(2023·甘肃兰州·统考中考真题)如图,在矩形ABCD中,点E为BA延长线上一点,F为CE的中点,以B为圆心,BF长为半径的圆弧过AD与CE的交点G,连接BG.若AB=4,CE=10,则AG= ()A.2B.2.5C.3D.3.53(2023·北京·统考中考真题)如图,点A、B、C在同一条线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE,设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>a2+b2;③2a+b>c;上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③4(2023·江苏无锡·统考中考真题)如图△ABC中,∠ACB=90°,AB=4,AC=x,∠BAC=α,O为AB中点,若点D为直线BC下方一点,且△BCD与△ABC相似,则下列结论:①若α=45°,BC与OD相交于E,则点E不一定是△ABD的重心;②若α=60°,则AD的最大值为27;③若α=60°,△ABC∽△CBD,则OD的长为23;④若△ABC∽△BCD,则当x=2时,AC+CD取得最大值.其中正确的为()A.①④B.②③C.①②④D.①③④5(2023·浙江·统考中考真题)如图,在四边形ABCD中,AD∥BC,∠C=45°,以AB为腰作等腰直角三角形BAE,顶点E恰好落在CD边上,若AD=1,则CE的长是()A.2B.2C.2D.126(2023·四川眉山·统考中考真题)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK⋅HD=2HE2.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题7(2023·湖南·统考中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为dm3.8(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.9(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.10(2023·湖北·统考中考真题)如图,△BAC ,△DEB 和△AEF 都是等腰直角三角形,∠BAC =∠DEB =∠AEF =90°,点E 在△ABC 内,BE >AE ,连接DF 交AE 于点G ,DE 交AB 于点H ,连接CF .给出下面四个结论:①∠DBA =∠EBC ;②∠BHE =∠EGF ;③AB =DF ;④AD =CF .其中所有正确结论的序号是.11(2023·山东·统考中考真题)如图,△ABC 是边长为6的等边三角形,点D ,E 在边BC 上,若∠DAE =30°,tan ∠EAC =13,则BD =.12(2023·山东日照·统考中考真题)如图,矩形ABCD 中,AB =6,AD =8,点P 在对角线BD 上,过点P 作MN ⊥BD ,交边AD ,BC 于点M ,N ,过点M 作ME ⊥AD 交BD 于点E ,连接EN ,BM ,DN .下列结论:①EM =EN ;②四边形MBND 的面积不变;③当AM :MD =1:2时,S △MPE =9625;④BM +MN+ND 的最小值是20.其中所有正确结论的序号是.13(2023·四川遂宁·统考中考真题)如图,以△ABC的边AB、AC为腰分别向外作等腰直角△ABE、△ACD,连结ED、BD、EC,过点A的直线l分别交线段DF、BC于点M、N,以下说法:①当AB=AC= BC时,∠AED=30°;②EC=BD;③若AB=3,AC=4,BC=6,则DE=23;④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)14(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B 分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为15(2023·江苏苏州·统考中考真题)如图,∠BAC=90°,AB=AC=32.过点C作CD⊥BC,延长CD,连接AE,ED.若ED=2AE,则BE=.(结果保留根号)CB到E,使BE=1316(2023·山西·统考中考真题)如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为.17(2023·湖北十堰·统考中考真题)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC∠A=90°硬纸片剪切成如图所示的四块(其中D,E,F分别为AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为,最大值为.三、解答题18(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.19(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.20(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.21(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).22(2023·吉林长春·统考中考真题)如图①.在矩形ABCD.AB=3,AD=5,点E在边BC上,且BE=2.动点P从点E出发,沿折线EB-BA-AD以每秒1个单位长度的速度运动,作∠PEQ=90°,EQ交边AD或边DC于点Q,连续PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t 秒.(t>0)(1)当点P和点B重合时,线段PQ的长为;(2)当点Q和点D重合时,求tan∠PQE;(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.23(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.24(2023·重庆·统考中考真题)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB =4,直接写出PQ+QF的最小值.25(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.。

2020年数学中考分类编汇含分析点评- 等腰三角形(45页)

2020年数学中考分类编汇含分析点评- 等腰三角形(45页)

D.50°
考 旋转的性质. 点: 分 根据旋转的性质可得AC=AC′,∠BAC=∠B′AC′,再根据两直线平行,内错角相等 析: 求出∠ACC′=∠CAB,然后利用等腰三角形两底角相等求出∠CAC′,再求出
∠BAB′=∠CAC′,从而得解. 解 解:∵△ABC绕点A旋转到△AB′C′的位置, 答: ∴AC=AC′,∠BAC=∠B′AC′,
7、(2020•广安)等腰三角形的一条边长为6,另一边长为13,则它的周长为( )
A.25
B.25或32
C.32
D.19
考 等腰三角形的性质;三角形三边关系. 点: 分 因为已知长度为6和13两边,没有明确是底边还是腰,所以有两种情况,需要分类讨 析: 论. 解 解:①当6为底时,其它两边都为13, 答: 6、13、13可以构成三角形,
析: 角相等可得∠DAF=∠AFB,然后求出∠BAF=∠AFB,再根据等角对等边求出AB=BF,然 后求出FC,根据两组对边平行的四边形是平行四边形得到四边形AFCD是平行四边 形,然后根据平行四边形的对边相等解答.
解 解:延长AE交BC于F, 答: ∵AE是∠BAD的平分线,
∴∠BAF=∠DAF, ∵AE∥CD, ∴∠DAF=∠AFB, ∴∠BAF=∠AFB, ∴AB=BF, ∵AB=,BC=4, ∴CF=4﹣=, ∵AD∥BC,AE∥CD, ∴四边形AFCD是平行四边形, ∴AD=CF=. 故选B.
答案:D 解析: 形,能作4 故概率为:
以A1A2B1B2其中的任意两点与点O为顶点作三角 个,其中A1B1O,A2B2O为等腰三角形,共2个,
A
3、(2020年武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC 边上的高,则∠DBC的度数是( )

2020年数学中考试题分类汇编(解直角三角形).doc

2020年数学中考试题分类汇编(解直角三角形).doc

河北 周建杰 分类(2020年泰州市)7.如左下图,现有一扇形纸片,圆心角∠AOB 为120°,弦AB的长为23cm ,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为A .32cm B .π32cm C .23cm D .π23cm(2020年泰州市)21.计算:01)41.12(45tan 32)31(-++---ο.(2020年南京市)23.(6分)如图,山顶建有一座铁塔,塔高30m CD =,某人在点A 处测得塔底C 的仰角为20o,塔顶D 的仰角为23o,求此人距CD 的水平距离AB . (参考数据:sin 200.342o≈,cos 200.940o≈,tan 200.364o≈,sin 230.391o≈,cos 230.921o ≈,tan 230.424o ≈)以下是河南省高建国分类:(2020年巴中市)又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话: 甲:我站在此处看塔顶仰角为60o乙:我站在此处看塔顶仰角为30o 甲:我们的身高都是1.5m 乙:我们相距20m请你根据两位同学的对话,计算白塔的高度(精确到1米).(2020年自贡市)已知α为锐角,且cot (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75°(2020年自贡市)如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,BC=1,则BB ’的长为( )(第23题) A B C D20o23oA .4 B .33C .332D .334(2020年自贡市)我市准备在相距2千米的A 、B 两工厂间修一条笔直的公路,但在B 地北偏东60°方向、A 地北偏西45°方向的C 处,有一个半径为0.6千米的住宅小区(见下图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:41.12≈ 73.13≈) (2020年贵阳市)19.(本题满分10分)如图7,某拦河坝截面的原设计方案为:AH BC ∥,坡角74ABC ∠=o,坝顶到坝脚的距离6m AB =.为了提高拦河坝的安全性,现将坡角改为55o,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1m ).(2020年遵义市)24.(10分)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC AD ∥,斜坡40AB =米,坡角60BAD ∠=o,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45o时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)?以下是江西康海芯的分类: 1. (2020年郴州市)计算: 201()2sin 3032--+︒+-2. (2020年郴州市)汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在(24题图)(24题图)(图7)A BD H 55oCF E (图7)ABCD H 55o距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(.如图7).求A 、B 两个村庄间的距离.1.414 1.732==)辽宁省 岳伟 分类2020年桂林市1、如图,在Rt △ABC中,∠C=900,∠A=300,E为AB上一点且AE:EB=4:1 , EF⊥AC于F,连结FB,则tan ∠CFB 的值等于( )A 333、 B、 C、2020年桂林市2、计算:012008453+--1()()3、汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(.如图7).求A 、B 两个村庄间的距离.1.414 1.732==) 答:10.(2020年湖州市)如图,已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=o,则直角边BC 的长是( B ) A .sin 40m oB .cos 40m oC .tan 40m oD .tan 40moQB CP A45060︒30︒图7ADBE图6i =1:3C1:3i =以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(2020年·东莞市)(本题满分7分)如图6,梯形ABCD 是拦水坝的横断面图,(图中3:1=i 是指坡面的铅直高度DE 与水平宽度CE 的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字.参考数据:3≈1.732,2≈1.414)答案:过点A 作AF ⊥BC ,垂足为点F.解析:这是利用三角形函数解直角三角形解决实际问题,拦水坝的横断面是梯形,求其面积可通过作高巧妙地将梯形面积问题转化为两个直角三角形和一个矩形的问题,有关四边形的许多问题都可以通过添加适当地辅助线将其转化三角形的问题,这正体现了数学中的转化思想。

2020届中考数学总复习全等三角形 等腰三角形试题讲解

2020届中考数学总复习全等三角形 等腰三角形试题讲解

第19讲:全等三角形一、复习目标1、理解全等形、全等三角形的定义,掌握全等三角形的性质与判定方法。

2、能正确、恰当选用三角形全等的条件推证三角形全等、角相等、线段相等的问题。

3、理解角平线的性质定理和判定定理。

二、课时安排1课时三、复习重难点1、全等三角形的性质与判定全套资料联系QQ/微信:14032256582、综合运用全等三角形的性质与判定证题四、教学过程(一)知识梳理全等图形及全等三角形能够完全重合的两个图形就是______全等图形全等图形的形状和_______完全相同全等三角形能够完全重合的两个三角形就是全等三角形完全重合有两层含义:说明(1)图形的形状相同;(2)图形的大小相等全等三角形的性质性质1 全等三角形的对应边________性质2 全等三角形的对应角________性质3 全等三角形的对应边上的高________性质4 全等三角形的对应边上的中线________性质5 全等三角形的对应角平分线________全等三角形的判定基本判定方法1.三条边对应相等的两个三角形全等(简记为SSS)2.两个角和它们的夹边对应相等的两个三角形全等(简记为____ )3.两个角和其中一个角的对边对应相等的两个三角形全等(简记为____ )4.两条边和它们的夹角对应相等的两个三角形全等(简记为____ )5.斜边和一条直角边对应相等的两个直角三角形全等(简记为____ )拓展延伸满足下列条件的三角形是全等三角形:(1)有两边和其中一边上的中线对应相等的两个三角形全等;(2)有两边和第三边上的中线对应相等的两个三角形全等;(3)有两角和其中一角的平分线对应相等的两个三角形全等;(4)有两角和第三个角的平分线对应相等的两个三角形全等;(5)有两边和其中一边上的高对应相等的锐角(或钝角)三角形全等;(6)有两边和第三边上的高对应相等的锐角(或钝角)三角形全等总结判定三角形全等,无论哪种方法,都要有三组元素对应相等,且其中最少要有一组对应边相等利用“尺规”作三角形的类型1 已知三角形的三边,求作三角形2 已知三角形的两边及其夹角,求作三角形3 已知三角形的两角及其夹边,求作三角形4 已知三角形的两角及其其中一角的对边,求作三角形5 已知直角三角形一条直角边和斜边,求作三角形角平分线的性质与判定性质角平分线上的点到角两边的______相等判定角的内部到角两边的距离相等的点在这个角的______上(二)题型、技巧归纳考点1全等三角形性质与判定的综合应用 技巧归纳:1.解决全等三角形问题的一般思路:①先用全等三角形的性质及其他知识,寻求判定一对三角形全等的条件;②再用已判定的全等三角形的性质去解决其他问题.即由已知条件(包含全等三角形)判定新三角形全等、相应的线段或角的关系;全套资料联系QQ/微信:14032256582.轴对称、平移、旋转前后的两个图形全等;3.利用全等三角形性质求角的度数时注意挖掘条件,例如对顶角相等、互余、互补等. 考点2全等三角形开放性问题 技巧归纳:由于判定全等三角形的方法很多,所以题目中常给出(有些是推出)两个条件,让同学们再添加一个条件,得出全等,再去解决其他问题.这种题型可充分考查学生对全等三角形的掌握的牢固与灵活程度.(三)典例精讲例1 已知:AB =AE ,∠1=∠2,∠B =∠E ,求证:BC =ED.[解析] 由∠1=∠2可得:∠EAD =∠BAC ,再有条件AB =AE ,∠B =∠E 可利用ASA 证明△ABC ≌△AED ,再根据全等三角形对应边相等可得BC =ED .证明:∵∠1=∠2,∴∠1+∠BAD =∠2+∠BAD ,即∠BAC =∠EAD. ∴在△BAC 与△EAD 中, ⎩⎪⎨⎪⎧∠B =∠E ,AB =AE ,∠BAC =∠EAD.∴△BAC ≌△EAD ,∴BC =ED.全套资料联系QQ/微信:1403225658例2 如图在△ABC 中,点D 是BC 的中点,作射线AD ,在线段AD 及其延长线上分别取点E 、F ,连接CE 、BF.添加一个条件,使得△BDF ≌△CDE ,并加以证明.你添加的条件是________.(不添加辅助线)[解析] 由已知可证∠EDC =∠BDF ,又DC =DB ,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE =DF 或(CE ∥BF 或∠ECD =∠DBF 或∠DEC =∠DFB );解:(1)添加的条件是:DE =DF(或CE ∥BF 或∠ECD =∠DBF 或∠DEC =∠DFB 等). (2)证明:在△BDF 和△CDE 中, ∵⎩⎪⎨⎪⎧BD =CD ,∠EDC =∠FDB ,DE =DF , ∴△BDF ≌△CDE (四)归纳小结本部分内容要求熟练掌握全等形、全等三角形的定义,掌握全等三角形的性质与判定方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020全国中考数学试卷分类汇编——等腰三角形一.选择题1.(3分2020年辽宁省辽阳市)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是()A.15°B.20°C.25°D.40°【分析】根据平行线的性质和等腰三角形的性质即可得到结论.【解答】解:∵AB∥CD,∴∠3=∠1=20°,∵三角形是等腰直角三角形,∴∠2=45°﹣∠3=25°,故选:C.【点评】本题考查了等腰直角三角形的性质,平行线的性质,熟练掌握平行线的性质是解题的关键.2. . 2020年青海省等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55°,55°B. 70°,40°或70°,55°C. 70°,40°D. 55°,55°或70°,40°【答案】D【解析】分析】先根据等腰三角形的定义,分70︒的内角为顶角和70︒的内角为底角两种情况,再分别根据三角形的内角和定理即可得.【详解】(1)当70︒的内角为这个等腰三角形的顶角则另外两个内角均为底角,它们的度数为18070552︒-︒=︒ (2)当70︒的内角为这个等腰三角形的底角则另两个内角一个为底角,一个为顶角底角为70︒,顶角为180707040︒-︒-︒=︒综上,另外两个内角的度数分别是55,55︒︒或70,40︒︒故选:D .【点睛】本题考查了等腰三角形的定义、三角形的内角和定理,根据等腰三角形的定义,正确分两种情况讨论是解题关键.3. (2020•四川省甘孜州•3分)如图,等腰△ABC 中,点D ,E 分别在腰AB ,AC 上,添加下列条件,不能判定ABE △≌ACD 的是( )A. AD AE =B. BE CD =C. ADC AEB ∠=∠D. DCB EBC ∠=∠【答案】B【解析】【分析】根据全等三角形的判定方法逐项判断即得答案.【详解】解: A.若添加AD AE =,由于AB =AC ,∠A 是公共角,则可根据SAS 判定ABE △≌ACD ,故本选项不符合题意;B.若添加BE CD =,不能判定ABE △≌ACD ,故本选项符合题意; C.若添加ADC AEB ∠=∠,由于AB =AC ,∠A 是公共角,则可根据AAS 判定ABE △≌ACD ,故本选项不符合题意;D.若添加DCB EBC ∠=∠,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABE =∠ACD ,由于∠A 是公共角,则可根据ASA 判定ABE △≌ACD ,故本选项不符合题意. 故选:B .【点睛】本题考查了全等三角形的判定和等腰三角形的性质,属于基本题型,熟练掌握全等三角形的判定方法是解题的关键.4. (2020•山东济宁市•3分)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A. 15海里B. 20海里C. 30海里D. 60海里【答案】C【解析】【分析】根据题意画出图形,根据三角形外角性质求出∠C=∠CAB=42°,根据等角对等边得出BC=AB,求出AB即可.【详解】解:∵根据题意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD-∠CAB=42°=∠CAB,∴BC=AB,∵AB=15海里/时×2时=30海里,∴BC=30海里,即海岛B到灯塔C的距离是30海里.故选C.【点睛】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出∠C=∠CAB,题目比较典型,难度不大.5.(2020•山东聊城市•3分)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【分析】由等腰三角形的性质得出∠B=∠C=65°,由平行线的性质得出∠CDE=∠B=65°,再由三角形的外角性质即可得出答案.【解答】解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.【点评】本题考查了等腰三角形的性质、平行线的性质以及三角形的外角性质;熟练掌握等腰三角形的性质和平行线的性质是解题的关键.6.(2020•山东临沂市•3分)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BC D.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD ∥AB ,∴∠ACD =180°﹣∠A =140°,∴∠BCD =∠ACD ﹣∠ACB =70°.故选:D .【点评】考查了等腰三角形的性质,平行线的性质,关键是求出∠ACB 和∠7. (2020•福建省•4分)如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A .10B .5C .4D .3【分析】根据等腰三角形三线合一的性质即可求解.【解答】解:∵AD 是等腰三角形ABC 的顶角平分线,BD =5,∴CD =5.故选:B .【点评】考查了等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.8. (2020•四川省南充市•4分)如图,在等腰三角形ABC 中,BD 为∠ABC 的平分线,∠A =36°,AB =AC =a ,BC =b ,则CD =( )A. 2a b +B. 2a b -C. a -bD. b -a【答案】C【分析】根据等腰三角形的性质和判定得出BD =BC =AD ,进而解答即可.【详解】解:∵在等腰△ABC 中,BD 为∠ABC 的平分线,∠A =36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC-AD=a-b,故选:C.【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质和判定得出BD=BC=AD 解答.二.填空题1. (2020年山东省滨州市5分)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为80°.【分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.【解答】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.2、(2020•贵州省安顺市•4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【解答】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4【点评】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.三.解答题1.(2020•广东省•6分)如题20图,在△ABC中,点D.E分别是A B.AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【答案】证明:∵BD=CE,∠ABE=∠ACD,∠DFB=∠CFE∴△BFDF≌△CFE(AAS)∴∠DBF=∠ECF∵∠DBF+∠ABE=∠ECF+∠ACD∴∠ABC=∠ACB∴AB=AC∴△ABC是等腰三角形【解析】等式的性质、等角对等边【考点】全等三角形的判定方法、等腰三角形的判定方法2.(2020•贵州省安顺市•10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠AB D.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC 便可.【解答】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;。

相关文档
最新文档