2012年张家口十一中九年级数学第一次模拟考试试卷

合集下载

2012年九年级第一次质量检测数学试题

2012年九年级第一次质量检测数学试题

2012年九年级第一次质量检测数学试题(时间:120分钟 满分:120分)一、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.2-等于( ▲ )A.2ﻩB . ﻩC .12ﻩD.12- 2.2010年我国总人口约为l 370 000 000人,该人口数用科学记数法表示为( ▲ ) A.110.13710⨯ﻩB .91.3710⨯ﻩC.813.710⨯D.713710⨯3.下列计算正确的是( ▲ )A.3a ﹣a=3ﻩﻩB.2a•a3=a6ﻩC.(3a)2=2a 6ﻩD.2a÷a=24.如图,CD∥AB ,∠1=120°,∠2=80°,则∠E 的度数是(▲ ) A.40°ﻩ B.60°ﻩC .80°ﻩ D.120°第4题5.甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ▲ )A.2℃~3℃ B .3℃~6℃ C .6℃~8℃ D.2℃~8℃6.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线C D向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( ▲ )A. B.C. D.第6题7.甲、乙两人沿相同的路线由A 地到B地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (k m),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( ▲ )A .甲的速度是4k m/hB .乙的速度是10km/h C.乙比甲晚出发1h D.甲比乙晚到B 地3h第7题Ots 甲乙1 2 3 4 20 108.如图,空心圆柱的主视图是(▲)第8题9.四边形ABCD的4个内角之比为A∠∶B∠∶C∠∶D∠=1∶5∶5∶1,则该四边形是( ▲)A.直角梯形B.等腰梯形 C.平行四边形D.矩形10.如图,在平面直角坐标系中,点P在第一象限,⊙p与x轴相切于Q点,与y轴交于M(0,2),N(0,8) 两点,则点P的坐标是(▲)A.(5,3) B.(3,5)ﻩC.(5,4)ﻩD.(4,5)第10题二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11. 因式分解2a2-8=▲12.函数1y x=-中,自变量x的取值范围是▲13.反比例函数xmy1-=的图象在第一、三象限,则m的取值范围是▲14.若方程290x kx++=有两个相等的实数根,则k=▲15.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为▲.第15题第16题16.如图,小明在A时测得某树的影长为2m,在B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为▲m17.如图,已知⊙O的半径为2,弦BC的长为23,点A为弦BC所对优弧上任意一点(B,C两点除外).则∠BAC=▲度.A B C DAB CO第17题 第18题18.如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点从点开始沿边AB 向以2mm/s 的速度移动(不与点重合),动点从点开始沿边BC 向以4mm/s 的速度移动(不与点重合).如果、分别从、同时出发,那么 经过▲秒,四边形APQC 的面积最小.三、解答题(本大题共有10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题8分)计算:(1)12)2()21(02+---π;(2)221(2).1a a a a -+---20.(本题6分)如图,□AB CD的对角线交于点O ,E、F 分别为OB 、OD 的中点,线段AE 与C F的大小和位置有什么关系?请说明理由.21.(本题6分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22.(本题6分)如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1. (1)画出⊙P 1,并直接判断⊙P与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A,B ,求劣弧A B与弦AB 围成的图形的面积(结果保留π).23.(本题6分)已知抛物线y =-x2+2x +2.(1)该抛物线的对称轴是,顶点坐标;yx-3 O 12312 3 -3-2 -1-1 -2 -4 -5 -6 第22题(2)(3)若该抛物线上两点A (1,y 1),B(x 2,y 2)的横坐标满足x 1>2>1,试比较1与y 2的大小.第23题24.(本题8分)(注意:乙组得6分改为1人,图中有误)一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格, 成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:/分(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组。

最新河北省张家口市中考数学一模试卷含答案 (3)

最新河北省张家口市中考数学一模试卷含答案 (3)

河北省张家口市中考数学一模试卷一、选择题(共16小题,1-10小题每小题3分,11-16每小题3分,满分42分)1.的相反数是()A.﹣B.C.﹣2 D.22.河北省普通高考报名工作已经结束,报名人数为42.31万人.42.31万用科学记数法表示为()A.42.31×106 B.4.231×105 C.42.31×108 D.42.31×1073.下列计算正确的是()A.3a﹣2a=1 B.a4•a6=a24C.a2÷a=a D.(a+b)2=a2+b24.如图,下列水平放置的几何体中,俯视图是长方形的是()A.B.C.D.5.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()A.20°B.50°C.70°D.110°6.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A.6cm B.12cm C.18cm D.36cm7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°8.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④9.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx 的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣410.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.12.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥ D.m≤13.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤214.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.15.如图,在平面直角坐标系中,正方形OACB的顶点O、C的坐标分别是(0,0),(2,0),则顶点B的坐标是()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)16.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)17.分解因式:2a3b﹣8ab=.18.在菱形ABCD中,对角线AC、BD长分别为8cm、6cm,则菱形的面积为.19.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为.20.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是.三、解答题(共6小题,满分66分)21.先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.22.如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP:PO的值.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.24.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.25.某公园的门票每张10元,为了吸引更多的游客,该公园管理除保留原来的售票方法外,还推出了一种“购买年卡”的优惠方法,年卡分为A、B、C三种:A卡每张120元,持卡进入不用再买门票;B卡每张60元,持卡进入公园需要再买门票,每张2元;C卡每张30元,持票进入公园时,购买每张4元的门票.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用100元花在去该公园玩的门票上,请问哪种购票方式可使你进入该公园的次数最多?(2)求一年中进入该公园至少多少次,购买A类年票比较合算.26.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:①求证:△ABN≌△ADN;②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.河北省张家口市中考数学一模试卷参考答案与试题解析一、选择题(共16小题,1-10小题每小题3分,11-16每小题3分,满分42分)1.的相反数是()A.﹣B.C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:的相反数是﹣.故选A.2.河北省普通高考报名工作已经结束,报名人数为42.31万人.42.31万用科学记数法表示为()A.42.31×106 B.4.231×105 C.42.31×108 D.42.31×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42.31万=423100,用科学记数法表示为:4.231×105.故选:B.3.下列计算正确的是()A.3a﹣2a=1 B.a4•a6=a24C.a2÷a=a D.(a+b)2=a2+b2【考点】完全平方公式;合并同类项;同底数幂的乘法;同底数幂的除法.【分析】利用合并同类项、同底数幂的乘法、同底数幂的除法以及完全平方公式的知识求解,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、3a﹣2a=a,故本选项错误;B、a4•a6=a10,故本选项错误;C、a2÷a=a,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.4.如图,下列水平放置的几何体中,俯视图是长方形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆,故A选项错误;B、圆锥的俯视图是带圆心的圆,故B选项错误;C、三棱柱的俯视图是三角形,故C选项错误;D、长方体的俯视图是长方形,故D选项正确;故选:D.5.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()A.20°B.50°C.70°D.110°【考点】平行线的性质;对顶角、邻补角.【分析】首先根据对顶角相等可得∠1=∠3,进而得到∠3=70°,然后根据两直线平行,同位角相等可得∠2=∠3=70°.【解答】解:∵∠1=70°,∴∠3=70°,∵a∥b,∴∠2=∠3=70°,故选:C.6.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A.6cm B.12cm C.18cm D.36cm【考点】三角形中位线定理.【分析】由三角形的中位线定理可知,以三角形三边中点为顶点的三角形的周长是原三角形周长的一半.【解答】解:如图,点D、E、F分别是AB、AC、BC的中点,∴DE=BC,DF=AC,EF=AB,∵原三角形的周长为36cm,则新三角形的周长为=18(cm).故选C.7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【考点】圆内接四边形的性质;平行四边形的性质;圆周角定理.【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选C.8.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④【考点】全面调查与抽样调查;方差;随机事件;概率的意义.【分析】了解一批灯泡的使用寿命,应采用抽样调查的方式,普查破坏性较强,不合适;根据概率的意义可得②错误;根据方差的意义可得③正确;根据必然事件可得④错误.【解答】解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式,故①错误;②若一个游戏的中奖率是1%,则做100次这样的游戏不一定会中奖,故②错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定,故③正确;④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件,故④错误.故选:C.9.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx 的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4【考点】二次函数的性质;一次函数图象上点的坐标特征.【分析】先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.【解答】解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣=﹣1.故选:C.10.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+25=90%x﹣20,解得x=300.故选C.11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.12.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥ D.m≤【考点】反比例函数图象上点的坐标特征.【分析】首先根据当x1<0<x2时,有y1<y2则判断函数图象所在象限,再根据所在象限判断1﹣3m的取值范围.【解答】解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选B.13.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤2【考点】不等式的解集.【分析】根据x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,∴(2﹣5)(2a﹣3a+2)≤0,解得:a≤2,∵x=1不是这个不等式的解,∴(1﹣5)(a﹣3a+2)>0,解得:a>1,∴1<a≤2,故选:C.14.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.【考点】算术平方根.【分析】根据乘方运算,可得被开方数,根据相邻偶数间的关系,可得被开方数,根据开方运算,可得答案.【解答】解:由题意,得正偶数是a2,下一个偶数是(a2+2),与这个正偶数相邻的下一个正偶数的算术平方根是,故选:C.15.如图,在平面直角坐标系中,正方形OACB的顶点O、C的坐标分别是(0,0),(2,0),则顶点B的坐标是()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)【考点】坐标与图形性质;正方形的性质.【分析】此题根据坐标符号即可解答.【解答】解:由图中可知,点B在第四象限.各选项中在第四象限的只有C.故选C.16.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.【考点】一元二次方程的应用.【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),而a=1,代入即可得到关于b的方程,解方程即可求出b.【解答】解:依题意得(a+b)2=b(b+a+b),而a=1,∴b 2﹣b ﹣1=0,∴b=,而b 不能为负, ∴b=.故选B .二、填空题(共4小题,每小题3分,满分12分)17.分解因式:2a 3b ﹣8ab= 2ab (a+2)(a ﹣2) .【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2ab (a 2﹣4)=2ab (a+2)(a ﹣2),故答案为:2ab (a+2)(a ﹣2).18.在菱形ABCD 中,对角线AC 、BD 长分别为8cm 、6cm ,则菱形的面积为 24cm 2 .【考点】菱形的性质.【分析】根据菱形的对角线的长度即可直接计算菱形ABCD 的面积.【解答】解:∵菱形的对角线长AC 、BD 的长度分别为8cm 、6cm∴菱形ABCD 的面积S=BD •AC=×6×8=24cm 2.故答案为:24cm 2.19.如图,点E 在正方形ABCD 的边CD 上,若△ABE 的面积为18,CE=4,则线段BE 的长为 2 .【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形面积是△ABE 面积的2倍,求出边长,再在RT △BCE 中利用勾股定理即可.【解答】解:设正方形边长为a ,∵S △ABE =18,∴S 正方形ABCD =2S △ABE =36,∴a 2=36,∵a >0,∴a=6,在RT △BCE 中,∵BC=6,CE=4,∠C=90°,∴BE===2. 故答案为2.20.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是﹣2<b<2.【考点】反比例函数与一次函数的交点问题.【分析】根据双曲线的性质、结合图象解答即可.【解答】解:如图,∵直线y=﹣x+2与反比例函数y=的图象有唯一公点,双曲线是中心对称图形,∴直线y=﹣x﹣2与反比例函数y=的图象有唯一公点,∴﹣2<b<2时,直线y=﹣x+b与反比例函数y=的图象没有公共点,故答案为:﹣2<b<2.三、解答题(共6小题,满分66分)21.先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.【考点】分式的化简求值;解一元二次方程-因式分解法;特殊角的三角函数值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,求出m的值代入计算即可求出值.【解答】解:原式=﹣÷=﹣•=﹣==,方程m2+(5tan30°)m﹣12cos60°=0,化简得:m2+5m﹣6=0,解得:m=1(舍去)或m=﹣6,当m=﹣6时,原式=﹣.22.如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP:PO的值.【考点】切线的性质;全等三角形的判定;等腰三角形的判定;圆周角定理.【分析】(1)在Rt△ABC中,∠BAC=60°,所以∠ABC=30°,而OB=OC,则有∠OCB=30°,再结合CD时切线,可求∠BCD=60°,那么∠DCQ可求,即可得出△CDQ是等腰三角形;(2)可以假设AB=2,则OB=OA=OC=1,利用勾股定理可得BC=;由于△CDQ≌△COB,那么有CB=CQ,即可求出AQ的长;在直角三角形APQ中,利用30°所对的边等于斜边的一半,又可求AP,而OP=AP﹣OA,即可求OP,BP也就可求,从而得出BP:PO的值.【解答】(1)证明:由已知得∠ACB=90°,∠ABC=30°,∴∠Q=30°,∠BCO=∠ABC=30°;∵CD是⊙O的切线,CO是半径,∴CD⊥CO,∴∠DCQ=∠BCO=30°,∴∠DCQ=∠Q,故△CDQ是等腰三角形.(2)解:设⊙O的半径为1,则AB=2,OC=1,BC=.∵等腰三角形CDQ与等腰三角形COB全等,∴CQ=BC=.∴AQ=AC+CQ=1+,∴AP=AQ=,∴BP=AB﹣AP=,∴PO=AP﹣AO=,∴BP:PO=.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【分析】(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,当CD分为一组时,其实也表明AB在同一组;则小宇与小强两名男同学分在同一组的概率是.24.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.【考点】反比例函数与一次函数的交点问题;平移的性质.【分析】(1)根据题意得出:A′点的坐标为:(4,2),B′点的坐标为:(8,0),进而利用待定系数法求一次函数解析式即可;(2)首先得出A′B′的中点M的坐标为:(,1)则2m=m+2,求出m的值即可.【解答】解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△AOB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(,1),∵反比例函数y=的图象经过点A′及M,∴m×2=×1,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.25.某公园的门票每张10元,为了吸引更多的游客,该公园管理除保留原来的售票方法外,还推出了一种“购买年卡”的优惠方法,年卡分为A、B、C三种:A卡每张120元,持卡进入不用再买门票;B卡每张60元,持卡进入公园需要再买门票,每张2元;C卡每张30元,持票进入公园时,购买每张4元的门票.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用100元花在去该公园玩的门票上,请问哪种购票方式可使你进入该公园的次数最多?(2)求一年中进入该公园至少多少次,购买A类年票比较合算.【考点】一元一次不等式的应用.【分析】(1)由题意可知:若直接买票可以买到100÷10=10张;若买A类票,则100<120,买不到;若买B类票,则剩余100﹣60=40元,可以买到40÷2=20张票;若买C类票,则剩余100﹣30=70元,可以买到70÷4≈17张;所以用100元花在公园门票上,买B类票次数最多;(2)设一年中进入该公园至少x次时,购买A类票比较合算,根据购买A类年票才比较合算说明购B和C票花的钱多余购A票花的钱,购B票花的钱为60+2x,购C票花的钱为30+4x,列出不等式组,求出x的取值范围,即可得出答案.【解答】解:(1)①直接买票:100÷10=10张;②A类不够买120>100;③B类÷2=20(张);④C类÷4=,即可买17张.综上所述,用100元购买B类票使你进入该公园的次数最多;(2)设一年中进入该公园至少x次时,购买A类票比较合算,根据题意得:,解得:x>30.答:一年中进入该公园至少31次,购买A类年票比较合算.26.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:①求证:△ABN≌△ADN;②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.【考点】菱形的性质;全等三角形的判定;等腰三角形的判定;解直角三角形.【分析】(1)①△ABN和△ADN中,不难得出AB=AD,∠DAC=∠CAB,AN是公共边,根据SAS即可判定两三角形全等.②通过构建直角三角形来求解.作MH⊥DA交DA的延长线于点H.由①可得∠MDA=∠ABN,那么M到AD的距离和∠α就转化到直角三角形MDH和MAH中,然后根据已知条件进行求解即可.(2)本题要分三种情况即:ND=NA,DN=DA,AN=AD进行讨论.【解答】解:(1)①证明:∵四边形ABCD是菱形,∴AB=AD,∠1=∠2.又∵AN=AN,∴△ABN≌△ADN(SAS).②作MH⊥DA交DA的延长线于点H.由AD∥BC,得∠MAH=∠ABC=60°.在Rt△AMH中,MH=AM•sin60°=4×sin60°=2.∴点M到AD的距离为2.∴AH=2.∴DH=6+2=8.在Rt△DMH中,tan∠MDH=,由①知,∠MDH=∠ABN=α,∴tanα=;(2)∵∠ABC=90°,∴菱形ABCD是正方形.∴∠CAD=45°.下面分三种情形:(Ⅰ)若ND=NA,则∠ADN=∠NAD=45°.此时,点M恰好与点B重合,得x=6;(Ⅱ)若DN=DA,则∠DNA=∠DAN=45°.此时,点M恰好与点C重合,得x=12;(Ⅲ)若AN=AD=6,则∠1=∠2.∵AD∥BC,∴∠1=∠4,又∠2=∠3,∴∠3=∠4.∴CM=CN.∵AC=6.∴CM=CN=AC﹣AN=6﹣6.故x=12﹣CM=12﹣(6﹣6)=18﹣6.综上所述:当x=6或12或18﹣6时,△ADN是等腰三角形.6月6日。

2012年河北省初中学业考试模拟试题(一)

2012年河北省初中学业考试模拟试题(一)

二○一二年河北省初中学业考试模拟试题(一)数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚.3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分. 一、选择题:(本题12小题,1-6每小题2分,7-12每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、()2--表示 ( )A .2的相反数B .21 的相反数C .2-的相反数D .21-的相反数2、下列图形中,既是轴对称图形,又是中心对称图形的是3、如图,一个小圆沿着一个五边形的边滚动, 如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( )A B CDA.4B.6C.10D.54、如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD 分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A. m B.4 m C. m D.8 m5、函数的自变量的取值范围是()A.B. C.D.6、在下图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点C C.点B D.点D7、如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()8、在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ). A .2(1)2y x =-++ B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++9、若关于x 的不等式⎩⎨⎧x -m <0,5-2x ≤1整数解共有2个,则m 的取值范围是( )A .3≤m <4B .3<m <4C .3<m ≤4D .3≤m ≤410、某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加1分钟加收1元(不足1分钟按1分钟收费),则表示电话费y (元)与通话时间x (分)之间的函数关系的图像如下图所示,正确的是( )11、圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ).A .B .C .D .12、如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A 6在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的 长为( ).A . 43a +B . 83a +C . 43aD . 46a +二、填空题(本大题共6个小题,每小题3分,共18分,把答案写在很横线上)13、使x-2有意义的x的取值范围是14、我市在临桂新区正在建设的广西桂林图书馆、桂林博物馆、桂林大剧院及文化广场,建成后总面积达163500平方米,将成为我市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为平方米.15、如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.16、动手操作:在矩形纸片中,.如图所示,折叠纸片,使点落在边上的处,折痕为.当点在边上移动时,折痕的端点也随之移动.若限定点分别在边上移动,则点在边上距B点可移动的最短距离为.17、在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:则m 、n 的大小关系为 . 18、观察下列顺序排列的等式:,….试猜想第个等式(为正整数):.三、解答题(本大题共8个小题,共72分,解答要写出详细的过程) 19、(本小题满分8分)若关于x 的一元二次方程0342=-+-k x x 的两个实数根为1x 、2x ,且满足213x x =,试求出方程的两个实数根及k 的值.20、(本小题满分8分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张. ⑴先后两次抽得的数字分别记为s 和t ,则︱s -t ︱≥1的概率.⑵甲、乙两人做游戏,现有两种方案.A 方案:若两次抽得相同花色则甲胜,否则乙胜.B 方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?21、(本题满分8分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A B 、两工程队先后接力....完成.A 工作队每天整治12米,B 工程队每天整治8米,共用时20天. (1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲: 128x y x y +=⎧⎨+=⎩ 乙:128x y x y +=⎧⎪⎨+=⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x y 、表示的意义,然后在方框中补全甲、乙两名同学所列的方程组: 甲:x 表示________________,y 表示_______________; 乙:x 表示________________,y 表示_______________.(2)求A B 、两工程队分别整治河道多少米.(写出完整..的解答过程)22、(本小题满分8分)已知,延长BC到D,使.取的中点,连结交于点.(1). 求的值;(2).若,求的长.23、(本小题满分9分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示________槽中水的深度与注水时间的关系,线段DE表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是________________________________;(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)24、(本小题满分9分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少? ⑶根据⑴、⑵,该方案是否具有实施价值?甲槽乙槽图125、(本小题满分10分)两个大小相同且含 30角的三角板ABC和DEC如图①摆放,使直角顶点重合. 将图①中△DEC绕点C逆时针旋转 30得到图②,点F、G分别是CD、DE与AB的交点,点H是DE与AC的交点.(1)不添加辅助线,写出图②中所有与△BCF全等的三角形;(2)将图②中的△DEC绕点C逆时针旋转45得△D1E1C,点F、G、H的对应点分别为F1、G1、H1,如图③.探究线段D1F1与AH1之间的数量关系,并写出推理过程;(3)在(2)的条件下,若D1E1与CE交于点I,求证:G1I=CI.DBC 图①DA图②DAD1BCFGHBCEFG1H图③H11IGF126、(本小题满分12分)如图,抛物线()与轴相交于两点,点是抛物线的顶点,以为直径作圆交轴于两点,.(1). 用含的代数式表示圆的半径的长;(2). 连结,求线段的长;(3). (4分)点是抛物线对称轴正半轴上的一点,且满足以点为圆心的圆与直线和圆都相切,求点的坐标.20 18018020二○一二年河北省初中学业考试模拟试题(一)数 学 试 题答案一、选择题:C BD B B C D B A A C A 二、填空题13、X 大于或等于2 14、51.63510⨯ 15、48 16、1 17、m >n 18、 或三、解答题19、解:由根与系数的关系得:421=+x x ① ,=⋅21x x 3-k ②…………………2分又∵213x x =③,联立①、③,解方程组得⎩⎨⎧==1321x x ……………………… 4分∴6313321=+⨯=+=x x k ……………………………………………… 6分 答:方程两根为12=3,=1;=6x x k .……………………………………… 8分 20、⑴23⑵A 方案P (甲胜)=59,B 方案P (甲胜)=49故选择A方案甲的胜率更高.21、1)甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数; 乙:x 表示A 工程队整治河道的米数,y 表示B 工程队整治河道的米数. 甲: 128x y x y +=⎧⎨+=⎩ 乙:128x y x y +=⎧⎪⎨+=⎪⎩(2)解:设A B 、两工程队分别整治河道x 米和y 米,由题意得:18020128x y x y+=⎧⎪⎨+=⎪⎩解方程组得:60120x y =⎧⎨=⎩答:A B 、两工程队分别整治了60米和120米. 22、解:(1)过点F 作,交于点.为的中点为的中点,.…………………………1分由,得,……3分…………………4分………………………5分(2)解:又 ……………………7分.……………………8分23、解:(1)乙,甲,铁块的高度为14cm (或乙槽中水的深度达到14cm 时刚好淹没铁块,说出大意即可)(2)设线段DE 的函数关系式为11y k x b =+,则1116012k b b ⎧+=⎪⎨=⎪⎩,,∴11212k b ⎧=-⎪⎨=⎪⎩,. DE ∴的函数关系式为212y x =-+.设线段AB 的函数关系式为22y k x b =+,则22241412k b b ⎧+=⎪⎨=⎪⎩,,∴2232k b ⎧=⎪⎨=⎪⎩,.∴AB 的函数关系式为32y x =+.由题意得21232y x y x =-+⎧⎨=+⎩,解得28x y =⎧⎨=⎩.∴注水2分钟时,甲、乙两水槽中水的深度相同.(3) 水由甲槽匀速注入乙槽,∴乙槽前4分钟注入水的体积是后2分钟的2倍.设乙槽底面积与铁块底面积之差为S ,则()()1422361914S -=⨯⨯-,解得230cm S =. ∴铁块底面积为236306cm -=.∴铁块的体积为361484cm ⨯=. (4)甲槽底面积为260cm .铁块的体积为3112cm ,∴铁块底面积为2112148cm ÷=.设甲槽底面积为2cm s ,则注水的速度为3122c ‎m /min 6ss =‍. 由题意得()2642481914142s s ⨯-⨯-=--,解得60s =.∴甲槽底面积为260cm . 24、解:⑴当x =60时,P 最大且为41,故五年获利最大值是41×5=205万元.⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元. 后三年:设每年获利为y ,设当地投资额为x ,则外地投资额为100-x ,所以y =P +Q=()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x =30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值. 25、.解:(1)图②中与△BCF 全等的有△GDF 、 △GAH 、△ECH .…………… 3分(2)11F D =1AH …………………………………………………………… 4分证明:∵⎪⎩⎪⎨⎧∠==∠=∠公共111130CH F CD CA D A∴△AF 1C ≌△D 1H 1C . ………………… 5分 ∴ F 1C = H 1C , 又CD 1=CA ,∴CD 1- F 1C =CA - H 1C .即111AH F D =………………………………… 6分 (3)连结CG 1.在△D 1G 1F 1和△AG 1H 1中, ∵111111111H AHF D AG F G D A D ⎪⎩⎪⎨⎧=∠=∠∠=∠,∴△D 1G 1F 1 ≌△AG 1H 1. ∴G 1F 1=G 1H 1 ……………………………………7分又∵H 1C =F 1C ,G 1C=G 1C ,∴△CG 1F 1 ≌△CG 1H 1. ∴∠1=∠2. ……………………………………8分 ∵∠B =60°,∠BCF =30° ,∴∠BFC =90°.又∵∠DCE =90°,∴∠BFC =∠DCE ,∴B A ∥CE , ∴∠1=∠3, ∴∠2=∠3,∴G 1I=CI …………………………………………………………………… 10分26、解:(1),……………(1分)…(2分)…(3分)(2)解:,AB 是直径,, 连结GE ,…(4分)解,得…(5分),,…(6分)设⊙P 的半径为,P 点的坐标为,…………………(7分)由题意可知,当时,不符合题意,所以.因为⊙P 与直线AH 相切,过点P 作,垂足为点M ,C 1,…………………(8分)①当⊙P与⊙G内切时,∴………(10分)②当⊙P与⊙G外切,所以满足条件的P点有:,.…………………(12分)。

中考数学一模试题及谜底河北张家口

中考数学一模试题及谜底河北张家口

2012年河北省张家口市第十一中学中考数学一模试卷一、选择题(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内,每小题3分,共24分)1.数轴上点A到原点的距离为2.5,则点A所表示的数是()A.2.5 B.﹣2.5 C.2.5或﹣2.5 D.02.(2009•大连)下列各式运算正确的是()A.x3+x2=x5B.x3﹣x2=x C.x3•x2=x6D.x3÷x2=x3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.)4.(2010•枣庄)如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是(5.(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()6.(2009•云南)反比例函数y=﹣的图象位于()A.第一、三象限B.第二、四象限C.第一、四象限D.第二、三象限7.(2006•双柏县)一个扇形的圆心角是120°,它的面积为3πcm2,那么这个扇形的半径是()A.cm B.3cm C.6cm D.9cm8.已知:直线(n为正整数)与两坐标轴围成的三角形面积为S n,则S1+S2+S3+…+S2011=()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分,请把答案填在题中横线上)9.(2009•铁岭)因式分解:a3﹣4a= _________ .10.全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是_________ .11.(2010•常德)函数中,自变量x的取值范围是_________ .12.不等式组:的解集是_________ .13.小明左边口袋中放有三张卡片,上面分别写着1、2、3,他右边口袋中也放有三张卡片,上面分别写着4、5、6,他任意地从两个口袋中各取出一张卡片,则所得两张卡片上写的数之和为偶数的概率是_________ .14.(2009•滨州)数据:1,5,6,5,6,5,6,6的众数是_________ ,中位数是_________ ,方差是_________ .15.如图,AB与CD相交于点O,AD∥BC,AD:BC=1:3,AB=10,则AO的长是_________ .16.如图,AB为⊙O的直径,CD为⊙O的弦,∠BCD=34°,则∠ABD=_________ .三、解答题:(本大题共9个题,满分102分,解答时应写出文字说明或演算步骤)17.计算:(1)+(﹣1)2011+(π﹣2)0;(2)请你先化简,再从﹣2,2,中选择一个合适的数代入求值.18.在一堂数学课中,数学老师给出了如下问题“已知:如图1,在四边形ABCD中,AB=AD,∠B=∠D.求证:CB=CD”.文文和彬彬都想到了利用辅助线把四边形的问题转化为三角形来解决.(1)文文同学证明过程如下:连接AC(如图2)∵∠B=∠D,AB=AD,AC=AC∴△ABC≌△ADC,∴CB=CD你认为文文的证法是_________ 的.(在横线上填写“正确”或“错误”)(2)彬彬同学的辅助线作法是“连接BD”(如图3),请完成彬彬同学的证明过程.19.日本在地震后,核电站出现严重的核泄漏事故,为了防止民众受到更多的核辐射,我国某医疗公司主动承担了为日本福田地区生产2万套防辐射衣服的任务,计划10天完成,在生产2天后,日本的核辐射危机加重了,所以需公司提前完成任务,于是公司从其他部门抽调了50名工人参加生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产防辐射衣服?20.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你根据图表中的信息回答下列问题:(1)求选择长跑训练的人数占全班人数的百分比及该班学生的总人数;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.请求出参加训练之前的人均进球数.21.如图,梯形ABCD中,AD∥BC,BC=2AD,F、G分别为边BC、CD的中点,连接AF,FG,过D作DE∥GF交AF于点E.(1)证明△AED≌△CGF;(2)若梯形ABCD为直角梯形,判断四边形DEFG是什么特殊四边形?并证明你的结论.22.2011年3月10日,云南盈江县发生里氏5.8级地震.萧山金利浦地震救援队接到上级命令后立即赶赴震区进行救援.救援队利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B 相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:)23.如图,面积为8的矩形ABOC的边OB、OC分别在x轴、y轴的正半轴上,点A在双曲线的图象上,且AC=2.(1)求k值;(2)将矩形ABOC以B旋转中心,顺时针旋转90°后得到矩形FBDE,双曲线交DE于M点,交EF于N点,求△MEN 的面积.24.(1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太阳光去测量旗杆的高度.参考示意图1,他的测量方案如下:第一步,测量数据.测出CD=1.6米,CF=1.2米,AE=9米.第二步,计算.请你依据小明的测量方案计算出旗杆的高度.(2)如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案,以求出旗杆顶端到地面的距离.要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N对完成测量任务的影响,不需计算)你选择出的必须工具是_________ ;需要测量的数据是_________ .25.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.2012年河北省张家口市第十一中学中考数学一模试卷参考答案与试题解析一、选择题(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内,每小题3分,共24分)1.数轴上点A到原点的距离为2.5,则点A所表示的数是()A.2.5 B.﹣2.5 C.2.5或﹣2.5 D.0考点:数轴。

河北省张家口市九年级数学中考模拟试卷(一)

河北省张家口市九年级数学中考模拟试卷(一)

中考数学模拟练习试卷(一)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷10小题,共30分,第Ⅱ卷90分,共120分.考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)1、下列各式中正确的是 ( ) A 、242-=- B 、()33325= C 、1)1-21)(2(=+ D 、x x x 842÷=2、如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是 ( ) A 、102cm B 、102πcm C 、202cm D 、202πcm 3、10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( ) A 、284+x B 、542010+x C 、158410+x D 、1542010+ 4、为了判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,通常需要知道两组成绩的( ) A 、平均数 B 、方差 C 、众数 D 、频率分布5、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。

游客爬山所用时间t 与山高h 间的函数关系用图形表示是()A B C D6、如图,已知四边形ABCD 是⊙O 的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题错误的是( ) A 、△AED ∽△BEC B 、∠AEB=90ºC 、∠BDA=45ºD 、图中全等的三角形共有2对 7、一个等腰梯形的高恰好等于这个梯形的中位线,若分别以这个 梯形的上底和下底为直径作圆,则这两个圆的位置关系是 ( ) A 、相离 B 、相交 C 、外切 D 、内切8、已知一元二次方程2x 2-3x -6=0有两个实数根x 1、x 2,直线l 经过点A (x 1+x 2,0)、B (0,x 1·x 2),则直线l 的解析式为 ( ) A 、y=2x -3 B 、y= 2x +3C 、y= -2x -3D 、y= -2x +3 9、将图形(1)按顺时针方向旋转900后的图形是 ( )图形(1) A B C D 10、在一列数1,2,3,4,…,1000中,数字“0”出现的次数一共是 ( ) A 、182 B 、189 C 、192 D 、194第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)11.随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2005年海外学习汉语的学生人数已达38 200 000人),用科学记数法表示为 人(保留3个有效数字).12.从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是 . 13.要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值... 是 .14.右图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形 的边长是a ,则六边形的周长是 .15.党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。

河北省张家口市九年级中考数学一模试卷

河北省张家口市九年级中考数学一模试卷

河北省张家口市九年级中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 54的倒数是()A . -54B . 54C .D . 452. (2分) (2018八上·浦江期中) 下列图形中是轴对称图形的是()A .B .C .D .3. (2分)海南省2010年第六次人口普查数据显示,2010年11月1日零时.全省总人口为8671518人.数据8671518用科学记数法(保留三个有效数字)表示应是()A . 8.7×106B . 8.7×107C . 8.67×106D . 8.67×1074. (2分)(2017·三台模拟) 下列运算中,正确的是()A .B . (a2)3=a6C . 3a•2a=6aD . 3﹣2=﹣65. (2分)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的读数为()A . 30°B . 60°C . 90°D . 45°6. (2分) (2018八上·伍家岗期末) 下列各式中不能用完全平方公式分解因式的是()A . x2+2x+1B . x2﹣2xy+y2C . ﹣x2﹣2x+1D . x2﹣x+0.257. (2分)(2018·灌南模拟) 如图,四边形ABCD内接于⊙O,∠A=100°,则劣弧的度数是()A . 80°B . 100°C . 130°D . 160°8. (2分) (2017八下·莒县期中) 如果一个四边形的两条对角线互相平分且相等,那么它一定是()A . 矩形B . 菱形C . 正方形D . 梯形9. (2分) (2019九上·深圳期末) 今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是()年龄(岁)1213141516人数14375A . 15,14B . 15,15C . 16,14D . 16,1510. (2分)在二次函数y=-x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A . x>1B . x<1C . x>-1D . x<-1二、填空题 (共6题;共6分)11. (1分)如图,在四边形ABCD中,∠α,∠β分别是∠BAD、∠BCD相邻的补角,且∠B+∠CDA=140°,则∠α+∠β等于________.12. (1分)(2017·新疆) 如图,它是反比例函数y= 图象的一支,根据图象可知常数m的取值范围是________.13. (1分)(2019·本溪) 如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;按照这个规律进行下去,点的横坐标为________(结果用含正整数的代数式表示)14. (1分)关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是________.15. (1分) (2017九上·鸡西期末) 由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是________.16. (1分)(2017·达州) 如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3 ,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE= CE;④S阴影= .其中正确结论的序号是________.三、解答题 (共9题;共84分)17. (5分)综合题。

【最新】】河北省张家口市中考数学模拟试卷(含答案)

【最新】】河北省张家口市中考数学模拟试卷(含答案)

河北省张家口市中考数学模拟试卷(含答案)(时间120分钟 满分:120分)一、选择题(共42分)1.计算:(-1)+(+2)=( )A .-1B .-2C .1D .22.计算正确的是( )A .a a a 632=+B .()22b ab a =C .623a a a =D .2121-=3.点(2,3)关于y 轴的对称点坐标是( )A .(-2,-3)B .(-2,3 )C .(2,-3)D .(3,-2)4.计算1a -1 – aa -1=( )A . -1B . -a a -1C . 1+aa -1D .1-a5. 已知三角形的两边分别为3和5,这个三角形的周长可能是( )A .7B .8C .15D .166. 如图1是一个几何体的实物图,则其主视图是( )A .B .C .D .7.估计16+的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间图18. 如图2,a ∥b ,则∠1的度数是( )A .50°B .130°C .100°D .120°9. 如图3,△ABC 的外接圆上,AB 、BC 、CA 三弧的度数比为12:13:11.自BC 上取一点D ,过D 分别作直线AC 、直线AB 的平行线,且交BC 于E 、F 两点,则∠EDF=( )A . 55B . 60C . 65D . 7010.如图4,小嘉在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是...( ) A .矩形 B .等腰梯形 C .正方形 D .菱形11.如图5,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,AB =BC ,如果|a |>|c |>|b |,那么该数轴的原点O 的位置应该在( )ABCD图4 图3图5图2a b50°1A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边12. 已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ).A .2B . 0C . -1D .-213.如图6,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值是( ).A .15°B .30°C .45°D .60°14. 关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )A . k 为任何实数,方程都有两个不相等的实数根B . k 为任何实数,方程都有两个相等的实数根C . k 为任何实数,方程都没有实数根D . 不能确定15. 如图7,在△ABC 中,∠C =90°,BC =6,D ,E 分别在 AB 、AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A 、21 B 、2 C 、3 D 、416. 如图8,是由10个点组成的三角形图案,相邻各点之间的距离均为一个长度单位,那么,图案中等边三角形的个数是( )ABCD图6图7A . 10个B . 11个C . 13个D . 15个二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上) 17. 计算:123--= .18. 若m ,n 互为倒数,则()21mn n ---的值为 . 19. 如图9,正△ABC 的边长为2,顶点B 、C 在半径为2的圆上,顶点A 在圆内,将正△ABC 绕点B 逆时针旋转,当点A 第一次落在圆上时,则点C 运动的路线长为 .(结果保留π) 若A 点落在圆上记做第1次旋转,将△ABC 绕点A 逆时针旋转,当点C 第一次落在圆上记做第2次旋转,再绕C 将△ABC 逆时针旋转,当点B 第一次落在圆上,记做第3次旋转……,若此旋转下去,当△ABC 完成第2017次旋转时,BC 边共回到原来位置 次.三、解答题(本大题有7小题,共68分.解答应写出文字说明、证明过程或演算步骤)图8图920. (本小题满分9分)(1)已知2=+b a ,求代数式b b a 422+-的值;(2)()421-2-0++21.(本小题满分9分) 小嘉同学遇到如下问题:(红色部分请在排版时采用与正文不同且稍小字号)如图10,点B 、D 、C 、F 在一条直线上,且BC = FD ,AB = EF .(1)请你只添加一个条件(不再加辅助线),使△ABC ≌△EFD ,你添加的条件是 ; (2)添加了条件后,证明△ABC ≌△EFD .(1)小嘉对于第一问给出了两个不同的正确答案,请你替她补充完FABCDE 图10整:条件一:条件二:(2)请你选择你补充的一个条件证明△ABC≌△EFD.22.(本小题满分9分)某企业计划生产一种新产品,需要测试三条流水线的工作效率。

河北省张家口市中考数学一模试卷

河北省张家口市中考数学一模试卷

河北省张家口市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在实数0,-, 2,-中最小的实数为()A . -2B . -C . 0D . -2. (2分) (2017七下·长春期末) 下列标志中,可以看作是轴对称图形的是()A .B .C .D .3. (2分)(2019·南宁模拟) 2019年中国电影票房收入再次突破百亿,达到约1310000万元,用科学记数法表示1310000为()A . 1.31×106B . 0.131×107C . 1.31×107D . 131×1064. (2分)如图,从边长为cm的正方形纸片中剪去一个边长为cm的正方形,剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为()A . .B . .C . .D . .5. (2分)已知点M(2m-1,m-1)在第四象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .6. (2分)在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是()A . 平均数是82B . 中位数是82C . 极差是30D . 众数是827. (2分) (2019九上·椒江期末) 如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=3 cm;③扇形OCAB的面积为12π;④四边形ABOC 是菱形.其中正确结论的序号是()A . ①③B . ①②③④C . ②③④D . ①③④8. (2分) (2018九下·绍兴模拟) 如图,已知直线与x轴、y轴分别交于A, B两点,将△AOB 沿直线AB翻折,使点O落在点C处, 点P,Q分别在AB , AC上,当PC+PQ取最小值时,直线OP的解析式为()A . y=-B . y=-C . y=-D .9. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A . a>0B . 当-1<x<3时,y>0C . c<0D . 当x≥1时,y随x的增大而增大10. (2分)若ab<0,则正比例函数y=ax与反比例函数y= 在同一坐标系中的大致图象可能是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年张家口十一中九年级数学第一次模拟考试试卷注意事项:本试卷共150分,考试时间为120分钟.一、选择题(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内,每小题3分,共24分)1. 数轴上点A 到原点的距离为2.5,则点A 所表示的数是( ).(A )2.5(B )-2.5 (C )2.5或-2.5 (D )02. 下列运算正确的是 () (A) 523x x x =+ (B) x x x =-23 (C)623x xx =⋅ (D)x xx =÷23 3. 在下列图形中,既是轴对称图形又是中心对称图形的是 ( )4.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )5.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o,那么∠2的度数是( )A. 32oB. 58oC. 68oD. 60o6、反比例函数1y x=-的图象位于( )(A )第一、三象限(B )第二、四象限 (C )第一、四象限(D )第二、三象限 7、一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是( ) (A )3cm (B )3cm (C )6cm (D )9cm 8.已知:直线11n y x n n =-+++(n 为正整数)与两坐标轴围成的三角形面积为n S ,则=++++2011321S S S S ( )A .20111005B.20122011C.20112010D.40242011A .B . C. D .B二、填空题(本大题共8个小题,每小题3分,共24分,请把答案填在题中横线上)9.分解因式:34a a-= 。

10.全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是.11.在函数62-=xy中自变量x的取值范围是。

12.不等式组:⎪⎩⎪⎨⎧≤-+<-xxxx132)1(315的解集是_________________________。

13. 小明左边口袋中放有三张卡片,上面分别写着1、2、3,他右边口袋中也放有三张卡片,上面分别写着4、5、6,他任意地从两个口袋中各取出一张卡片,则所得两张卡片上写的数之和为偶数的概率是_______________.14.数据1、5、6、5、6、5、6、6的众数是,中位数是,方差是.AB与CD相交于点O,AD∥BC,AD∶BC=1∶3,AB=10,则AO的长是___________.AB为O⊙的直径,CD为O⊙的弦,,∠BCD=34°,则∠ABD= .第15题图三、解答题:(本大题共9个题,满分102分,解答时应写出文字说明或演算步骤)17、计算:(每小题6分,共12分)(1)21()4sin302-︒-+(-1)2011+0(2)π-;(2)请你先化简224(2)24a aaa a-+÷+-,再从-2 , 2.18、(本题10分)第16题图在一堂数学课中,数学老师给出了如下问题“已知:如图①,在四边形ABCD 中,AB=AD ,∠B =∠D .求证:CB=CD ”.文文和彬彬都想到了利用辅助线把四边形的问题转化为三角形来解决.(1)文文同学证明过程如下:连结AC (如图②)∵∠B =∠D ,AB=AD ,AC=AC ∴△ABC ≌△ADC ,∴CB=CD你认为文文的证法是 的.(在横线上填写“正确”或“错误”) (2)彬彬同学的辅助线作法是“连结BD ”(如图③),请完成彬彬同学的证明过程.19、(本题10分)日本在地震后,核电站出现严重的核泄漏事故,为了防止民众受到更多的核辐射,我国某医疗公司主动承担了为日本福田地区生产2万套防辐射衣服的任务,计划10天完成,在生产2天后,日本的核辐射危机加重了,所以需公司提前完成任务,于是公司从其他部门抽调了50名工人参加生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务。

求该公司原计划安排多少名工人生产防辐射衣服? 20、(本题10分)某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你根据图表中的信息回答下列问题:图②图③图① CDACDACDA21. (本题10分)如图,梯形ABCD 中,AD ∥BC ,BC=2AD ,F 、G 分别为边BC 、CD 的中点,连接AF ,FG ,过D 作DE ∥GF 交AF于点E 。

(1)证明△AED ≌△CGF(2)若梯形ABCD 为直角梯形,判断四边形DEFG 是什么特殊四边形?并证明你的结论。

22、(本题12分)2011年3月10日,云南盈江县发生里氏5.8级地震。

萧山金利浦地震救援队接到上级命令后立即赶赴震区进行救援。

救援队利用生命探测仪在某建筑物废墟下方探测到点 C 处有生命迹象,已知废墟一侧地面上两探测点A 、B 相距3米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度。

(结果精确到0.1米,参考数据:1.41 1.73≈≈)AFDCBGE23、(本题12分)如图,面积为8的矩形ABOC 的边OB 、OC 分别在x 轴、y 轴的正半轴上,点A 在双曲线k y x的 图象上,且AC=2.(1)求k 值;(2)将矩形ABOC 以B 旋转中心,顺时针旋转90°后得到矩形FBDE ,双曲线交DE 于M 点,交EF 于N 点,求△MEN 的面积. 24、(本题12分)(1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太阳光去测量旗杆的高度.参考示意图1,他的测量方案如下:第一步,测量数据.测出CD =1.6米,CF =1.2米, AE =9米.第二步,计算.请你依据小明的测量方案计算出旗杆的高度.(2) 如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、 标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案以求出旗杆顶端到地面的距离.要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N 对完成测量任务的影响,不需计算)你选择出的必须工具是 ;需要测量的数据是 .25、(本题14分)如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为D (m ,0),并与直线OA 交于点C .⑴ 求出二次函数的解析式;⑵ 当点P 在直线OA 的上方时,求线段PC 的最大值.⑶ 当0m 时,探索是否存在点P ,使得PCO △为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.(第25题)一.CDCDBBDB二、9、a (a+2)(a-2) 10、3.6×10711、x ≥3 12、-3≤x <2 13、9414、6 5.5 2.5 15、2.5 16、56° 17 18 略19、解:设公司原计划安排x 名工人生产防核辐射衣服,则每个工人每天生产2000x件,由题意得 ............................................................... 1分20002000022000(125%)(50)(1022)x x -⨯+=+-- .............................. 6分 15(x+50) = 16x ....................................................7分 解得750x =....................................................... 8分 经检验750x =是方程的解,也符合题意。

.............................. 9分 答:公司原计划安排750名工人生产防核辐射衣服 ........................10分 20、 解:(1)选择长跑训练的人数占全班人数的百分比=1-60%-10%-20%=10%;训练篮球的人数=2+1+4+7+8+2=24人,∴全班人数=22÷60%=40; ……………4分 (2)人均进球数=; …………7分(3)设参加训练前的人均进球数为x 个,由题意得:(1+25%)x=5,解得:x=4. ………10分 答:参加训练前的人均进球数为4个.21.(1)证明;∵ BC=2AD 、点F 为BC 中点∴CF=AD ............................................................. 1分 ∵AD ∥CF ∴四边形AFCD 为平行四边形 ∴∠FAD=∠C ....................................................2分 ∵DE ∥FG ∴∠DEA=∠AFG ∵AF ∥CD ∴∠AFG=∠FGC ...........................................3分 ∴∠DEA=∠FGC .....................................................4分∴△AED ≌△CGF ......................................................5分 (2)连结DF易证四边形ADCF 是平行四边形,四边形ABFD 是矩形.......................7分 又因为点E,G 分别为AF,CD 的中点所以 DE=EF=FG=GD 即四边形DEFG 是菱形。

...............................10分 22、过点C 作C D ⊥AB,垂足为点D 在Rt △BDC 中 tan ∠DBC=BD CD , tan ∠60°=BD CD , ∴BD=3CD =CD 33在Rt △ADC 中,tan ∠30°=ADCD∴BD=CD 3 AB=AD -BD ∴CD 3-CD 33=3 ∴CD=323≈23×1.73≈2.6(米) 答:(略) 23、(1)k=8 (5分) (2)S=32(7分) 24.(1)设旗杆的高度AB 为x 米.由题意可得,△ABE ∽△CDF .………………2分所以AB CD =AECF .………………4分因为CD =1.6米,CF =1.2米,AE =9米,所以x 1.6 =91.2.解得x =12米.……………………7分 答:旗杆的高度为12米.(2)示意图如图,答案不唯一;…………10分 卷尺、测角仪;角α(∠MPN )、β(∠MQN )的 度数和PQ 的长度.…………12分25、解:⑴设(4)y ax x =-,A 点坐标代入得1a =-,函数为24y x x =-+.(4分)⑵03m <<,23PC PD CD m m =-=-+()23294m =--+,当()32,0D 时,max 94PC =.(8分)⑶ 当03m <<时,仅有OC =PC ,此时,23m m -+=,解得3m =(3P +;当3m ≥时,23PC CD PD m m =-=-,OC ,222222(4)OP OD DP m m m =+=+-.①当OC = PC 时,23m m -=.解得3m =,(3P -;②当OC = OP 时,2222)(4)m m m =+-,解得m 1=5,m 2=3(舍去),(5,5)P -; ③当PC =OP 时,22222(3)(4)m m m m m -=+-,解得4m =,(4,0)P .(14分)。

相关文档
最新文档