发动机冷却和中冷系统设计规范
冷却系设计要求

冷却系设计要求冷却系设计说明书冷却系设计要求:1、保证发动机在任何工况下工作在最佳温度范围;2、发动机启动后能在短时间内达到最佳温度范围;3、保证散热器散热效率高,材料消耗少;4、水泵,风扇消耗功率小,噪声低;5、冷却系统中的零部件拆装、维修方便。
冷却系结构:1、基本结构:该结构由发动机水路、水泵、散热器、风扇、节温器以及连接管路组成。
为保证冷却系统中的气体能顺利排出,加水充分,排水彻底,一般要求散热器的上水室(散热器进水室)进水口处为冷却系统的最高点,下水室(出水室)出水口为冷却系的最低点。
2、带补偿水桶结构:补偿水桶的作用是发动机工作时水温升高后,水膨胀外溢可流入补偿水桶内;当水温降低后,冷却系水体积减小,补偿水桶内的水会重新被吸回到冷却系。
特点:为确保补偿水桶内的水进出通畅、对冷却系统的密封性要求较高。
散热器的上下水室也应处在冷却系的最高及最低点。
3、带膨胀水箱结构:膨胀水箱布置在冷却系最高点,散热器的最高点可以低于发动机。
散热器设计要点:1、在整车空间布置允许的条件下,尽量增大散热器的迎风面积,减薄芯子厚度。
这样可以充分利用风扇的风量和车的迎面风,提高散热器的散热效率。
2、货车散热器一般采用纵流结构,因为货车的布置空间较宽裕。
而且纵流式结构的散热器强度及悬置的可靠性好。
轿车由于空间限制,也可采用横流结构。
散热器悬置设计要点1、悬置点应设计在一个部件总成上,改善散热器受力状况,尽量减少散热器的振动强度。
主悬置点应与辅助悬置点保持一定的距离,以提高散热器的稳定性。
主悬置点,辅助悬置点处散热器与其连接的部件总成之间以胶垫或胶套等柔性非金属材料过度达到减振的目的。
护风罩设计要点1、确保风扇产生的风量全部流经散热器,提高风扇效率。
护风罩对低速大功率风扇效率提高特别显著。
2、风扇与护风罩的径向间隙越小,风扇的效率越高。
一般控制在5-25mm。
3、从成本角度考虑,在大批量生产的车型中,多采用塑料护风罩。
发动机冷却系统设计规范

编号:冷却系统设计规范编制:万涛校对:审核:批准:厦门金龙联合汽车工业有限公司技术中心年月日一、概述要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严重的影响。
冷却不足,发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增加,磨损加剧,特别是活塞环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动机停转或者发生“拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现象。
也会使润滑油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。
同时会降低发动机充气量,使发动机功率下降。
发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。
发动机过冷,气缸磨损加剧。
同时,由于过冷,混合气形成的液体,容易进入曲轴箱使润滑油变稀,影响润滑作用。
由此可见,使发动机工作温度保持在最适宜范围内的冷却系,是何其重要。
一般地,发动机最适宜的工作温度是其气缸盖处冷却水温度保持在80℃~90℃,此时发动机的动力性、经济性最好。
二、冷却系统设计的总体要求a)具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值(一般为55°);b) 冷却系统的设计应保证散热器上水室的温度不超过99 ℃。
c) 采用105 kPa压力盖,在不连续工况运行下,最高水温允许到110 ℃,但一年中水温达到和超过99 ℃的时间不应超过50 h。
d) 冷却液的膨胀容积应等于整个系统冷却液容量的6 %。
e) 冷却系统必须用不低于19 L/min的速度加注冷却液,直至达到应有的冷却液平面,以保证所有工作条件下气缸体水套内冷却液能保持正常的压力。
三、冷却系统的构成液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。
四、主要部件的设计选型1、散热器散热器的散热量(Q)和散热器散热系数(K)、散热器散热面积(A)及气液温差(⊿T)有关: Q=K·A·⊿T其中:Q---散热器的散热量(kcal/h)K---散热器散热系数(kcal/m2•h•ºC)A---散热器散热面积(m2)⊿T---气液温差:散热器进水温度和散热器进风温度之差(ºC)散热器的散热系数是代表散热效率的重要指标,主要影响因素如下:①冷却管内冷却液的流速---据试验结果,冷却液流速由0.2m/s提高到0.8m/s,散热效率有较大提高,但超过0.8m/s后,效果不大;②通过散热器芯部的空气流量---空气的导热系数很小,因此散热器的散热能力主要取决于空气的流动,通过散热器芯部的风量起了决定性作用;③散热器的材料和管带的厚度---国内散热器的材料目前基本上已标准化;④制造质量---主要是冷却管和散热带之间的贴合性和焊接质量;1.1 散热器是冷却系统中的重要部件,其主要作用是对发动机进行强制冷却,以保证发动机能始终处于最适宜的温度状态下工作,以获得最高的动力性、经济性和可靠性。
发动机冷却系统设计规范..

发动机冷却系统设计规范..号:冷却系统设计规范编制:万涛校对:审核:批准:第1页第1页水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。
四、主要部件的设计选型1、散热器散热器的散热量(Q)和散热器散热系数(K)、散热器散热面积(A)及气液温差(⊿T)有关: Q=K·A·⊿T其中:Q---散热器的散热量(kcal/h)K---散热器散热系数(kcal/m2•h•ºC)A---散热器散热面积(m2)⊿T---气液温差:散热器进水温度和散热器进风温度之差(ºC)散热器的散热系数是代表散热效率的重要指标,主要影响因素如下:①冷却管内冷却液的流速---据试验结果,冷却液流速由0.2m/s提高到0.8m/s,散热效率有较大提高,但超过0.8m/s后,效果不大;②通过散热器芯部的空气流量---空气的导热系数很小,因此散热器的散热能力主要取决于空气的流动,通过散热器芯部的风量起了决定性作用;③散热器的材料和管带的厚度---国内散热器的材料目前基本上已标准化;④制造质量---主要是冷却管和散热带之间的贴合性和焊接质量;第1页1.1 散热器是冷却系统中的重要部件,其主要作用是对发动机进行强制冷却,以保证发动机能始终处于最适宜的温度状态下工作,以获得最高的动力性、经济性和可靠性。
1.2 发动机最适宜的冷却液温度为85 ℃~95 ℃,测量位置在散热器的上水室。
1.3 散热器和风扇组合匹配效率是当散热器芯子未被气流扫过的面积最小时为最高,因此,最好采用接近正方形的散热器芯子。
1.4 散热器的总散热面积、芯子的迎风面积、结构形状和结构尺寸要通过发动机冷却系统所需最大散热量来计算确定,并应通过试验评价来最终确定。
但一般可按散热器芯子的迎风面积来估算:0.31~0.38m2/100kW,载货车和前置客车通风良好时,可取下限值;后置客车通风欠佳时可取上限值;城市公交车长期低速运转可偏下限值;自卸车、牵引车、山区长途客运车等经常大负荷运行的车辆可偏上限值。
汽车发动机冷却系统的设计原则

发动机冷却系统的设计原则(李勇)水冷式汽车发动机冷却系统一般由散热器、节温器、水泵、缸体水道、缸盖水道、风扇及连接水管、冷却液等组成。
我们主机厂主要根据整车布置及发动机功率的要求来选定散热器及各零部件的形状、大小,并合理布置整个冷却系统,保证发动机的动力性、经济性、可靠性和耐久性,从而提高整车的性能。
一、冷却系统的总体布置原则冷却系统总布置主要考虑两方面,一是空气流通系统;二是冷却液循环系统。
因此在设计中必须做到提高进风系数和冷却液循环中的散热能力。
1,提高进风系数。
要做到提高进风系数就必须要做到:(1)减小空气的流通阻力,(2)降低进风温度,防止热风回流。
(1)减小空气的流通阻力设计中应尽量减少散热器前面的障碍物,进风口的有效进风面积不要小于60%的散热器芯部正面积;在整车布置允许的前提下,尽可能采用迎风正面积较大的散热器;风扇与任何部件的距离不应小于20mm这样就可以组织气流通畅排出,可以减少风扇后的排风背压。
(2)降低进风温度,要合理布置散热器的进风口,提高散热器与车身、发动机舱接合处的密封性,防止热风回流。
(3)合理布置风扇与散热器芯部的相对位置从正面看,尽量使风扇中心与散热器中心重合,并使风扇直径与正方形一边相等,这样可以使通过散热器的气流分布最为均匀,或者使风扇中心高一下些,使空气流经散热器上部的高温高效区。
另:考虑发动机振动的因素,风扇和护风罩之间的间隙应该在20mm 以上。
从轴向看,尽可能加大风扇前端面与散热器之间的距离,并合理设计护风罩。
要使气流均匀通过散热器芯部整个面积,必须要求风扇与散热器之间保持一定的距离,一般对载货汽车,风扇与散热器芯部之间的距离不得小于50mm。
2,提高冷却液循环中的散热能力要提高冷却液循环中的散热能力,提高冷却液循环中的除气能力是关键。
冷却系统的气体会造成水泵流量下降,使散热器的冷却率下降;还会造成发动机水套内局部沸腾,致使局部热应力猛增,影响发动机性能;在热机停工况,气体还会造成冷却液过多的损失。
发动机冷却系统设计规范

发动机冷却系统设计规范发动机冷却系统在汽车和其他内燃机动力设备中起着至关重要的作用。
它的设计和工作原理直接影响到发动机的性能、寿命和可靠性。
因此,对于发动机冷却系统的设计规范十分重要。
本文将探讨一些常见的发动机冷却系统设计规范。
首先,冷却剂的选择是冷却系统设计的首要考虑因素之一、冷却剂应具有良好的热传导性能、高温稳定性、低粘度和耐腐蚀性。
一般来说,乙二醇和甘油是常用的冷却剂。
冷却剂的选择应根据发动机的工作条件和环境温度进行合理的考虑。
其次,冷却系统的设计应根据发动机的散热需求进行。
发动机在工作时会产生大量的热量,因此需要一个有效的散热系统来保持发动机的温度在可控制的范围内。
冷却系统应包括散热器、水泵、温度传感器和风扇等组件。
散热器的设计应充分考虑到冷却剂的流动性和散热面积,以提高散热效果。
另外,冷却系统的设计还应考虑到发动机的工作性质和负载条件。
例如,对于大型货车或挖掘机等需要长时间连续工作的设备,冷却系统应具备足够的散热能力,以保证发动机在高负荷下不会过热。
此外,还需要考虑到环境温度和海拔等因素对冷却系统的影响,以确保发动机在各种工作条件下都能保持适当的温度。
值得注意的是,冷却系统设计应注重节能和环保。
冷却系统的能源消耗在整个发动机系统中占据很大比例,因此应设计出能有效降低能耗的冷却系统。
例如,可以采用可变速风扇或控制风扇的闭环反馈系统,以根据发动机的温度自动调整风扇转速。
此外,应选择符合环保要求的冷却剂和材料,以减少对环境的污染和健康的影响。
最后,冷却系统的设计还应注重可靠性和维护性。
一个好的冷却系统应具备稳定的性能和长久的使用寿命。
例如,冷却系统的管道应采用高质量的材料和耐腐蚀的涂层,以防止管道的堵塞和泄漏。
此外,冷却系统的设计还应方便维护和检修,以减少维修时间和成本。
综上所述,发动机冷却系统设计规范是确保发动机正常运行和延长其使用寿命的关键因素之一、冷却剂的选择、散热系统的设计、能耗和环保、可靠性和维护性等都是设计冷却系统时需要考虑的重要因素。
冷却和中冷系统设计规范

冷却和中冷系统设计规范冷却和中冷系统设计规范1. 适用范围本设计规范适用于重型汽车冷却、中冷系统设计。
本设计规范规定了冷却、中冷系统设计中应遵循的通用原则,和一般的设计方法。
2. 设计原则设计良好的冷却、中冷系统应该充分考虑以下几方面原则:2.1 首先应优先考虑冷却、中冷系统的冷却能力问题。
其中所要求的冷却常数、中冷系统冷却效率及发动机进气温度等皆应一一满足。
2.2 冷却、中冷系统的安装方式及在整车中的合理位置也应充分考虑,不应有因为安装点位置及结构引起系统损坏或造成潜在易损坏因素。
系统在整车中的位置将影响其性能,应谨慎考虑。
2.3 冷却、中冷系统的管路应合理并力求简洁清晰。
防止因管路走向不合理而引起的系统内阻的增加和性能的下降。
2.4 冷却、中冷系统应有良好的保护装置,防止系统异常损坏和性能下降。
2.5 冷却、中冷系统的设计应考虑到装车工艺性要求和维修的接近性要求。
3. 设计方法3.1 中冷器和散热器的设计、选择及安装:如果有足够的空间,冷却系统可以选用迎风面积大、芯子薄、散热效率高的热交换器。
在有风扇离合器控制风扇运作的情况下,应充分利用空间加大热交换器的尺寸,这样可以降低风扇的功耗和降低风扇工作噪声。
在无中冷器的情况下且无风扇离合器情况下,按经验推荐,发动机功率每100千瓦的散热器迎风面积应为0.3~0.375m2之间。
由于排放法规要求,现代重型车上一般具有空空中冷系统。
所以在推荐迎风面积上稍作增加。
散热器散热面积(冷侧)的推荐值大概为:0.1~0.16 m2/kW(发动机功率)。
在中冷系统布置空间足够时,一般推荐采用一字流向的中冷器,反之则为U型流向的中冷器。
因为U型的中冷器的内阻大于一字流的中冷器。
另外中冷器气室应尽量避免遮蔽散热器芯子太多面积。
中冷器和散热器的芯子可参考以往系统配置,因为主片模具价格较贵,如无必要,尽量采用同样的管型和散热带波高。
由于中冷器处于冷却空气上游,必须将它设计成能适应多尘的环境,推荐每英寸的散热片为8~10片,散热带可不开窗以便清洗。
发动机各主要系统设计规范

发动机各主要附件系统设计规范一、进气系统1、空气滤清器:1.1 根据发动机排量、额定转速、增压度等严格按计算结果,确定空滤器额定空气流量(计算公式及方法见附件1)。
1.2 参照国际标准规定并结合我公司Q/FT A002《干式空气滤清器总成技术条件》的标准要求,确定空滤器的原始进气阻力、最大进气阻力、原始滤清效率、粗滤效率等技术参数。
1.3 牵引车等公路运输车辆,粗滤效率应不低于75%(卧式安装复合式空滤器)或87%(立式安装复合式空滤器),自卸车等经常在工地上,或在灰尘较多环境下运行的车辆,应配装粗滤效率不低于90%的双级带旋流管的沙漠空滤器。
空滤器试验用灰尘应不低于JB/T9747标准要求。
1.4 根据国内道路状况,空滤器必须加装安全滤芯。
并且应配装空滤器阻塞报警装置。
1.5 确保空滤内部清洁,各焊接或连接部位密封可靠。
1.6 空滤器出气口为了保证密封,应用圆形管,并要求接口处有一凸缘和止口,以保证密封和不会松动。
1.7 为了保养和清洁方便,在空滤器最底端部位要加装排尘袋,并保证排尘袋子不靠近污染大的地方。
1.8 空滤器进出管走向避免肘关节现象。
中冷器:、2根据发动机的有关技术参数先用理论计算公式初步确定中冷器的总散热面积,并在此基础上增加10%~15%的余量(计算公式及方法见附件1)。
根据水冷散热器的外形尺寸及整车空间尺寸,确定最合理的中冷器芯体尺寸,并尽可能加大迎风面积。
为了提高进气效率,减少增压后的空气压降,应尽量使中冷器进、出气口内表面光滑,并保证各连接和圆角处无死角、急弯。
还应考虑气室大小、形状对效率的影响。
根据发动机增压后最大空气压力,确定中冷器密封试验的气压。
欧Ⅱ发动机取250kPa,欧Ⅲ取300kPa,时间均为不低于2分钟。
并保证中冷器进、出气管直径不能小于发动机的进、出气口直径。
中冷器技术条件中应明确在生产、运输及使用过程中,确保内部清洁,无残留物。
管路:、3由于中冷器通常与水冷散热器一起通过软垫安装在车架上,而发动机也是通过悬置软垫固定在车架,考虑到两部分振动频率不一致,为了提高进气系统各接口不会由于振动产生松动及泄漏,因此各接口必须安装有一定伸缩量的弹性软管,两个硬管之间的距离不小于管径的2倍。
中冷系统设计

--含90度弯管的中冷系统,容易在软管连接的地方脱落,因此应将与之 连接的硬管固定在发动机上。同时两端应设置带360度卷边,防止胶管 脱落。最小卷边半径为2.5mm。
五、中冷器散热能力的计算:
在设计环境温度下满足IMTD(进气歧管处空气温度相对环境温度
的温升)要求时需要中冷器散出的热量:
中冷器散热量CAC(Btu/min)=0.241Btu/lb·℉×进气流量(lb/min)
× (TCOH-IMTS)
式中:TCOH—当环境温度高于77 ℉(25℃)时,增压器出气口的空气
4
--硬管一般推荐使用镀铝钢管,而不推荐使用铝管(由于我国的镀铝工 艺控制水平较差,钢管渗铝工艺控制较好,故我们的硬管均采用渗铝钢 管。渗铝钢管热膨胀系数介于镀铝钢管和铝管之间)。因为从增压器出 来的气体温度一般高于150℃,铝管在这个温度下强度会降低很多,容易 被卡箍压变形。另外,铝管的热膨胀系数远远大于不锈钢卡箍,受热后 会在铝管和不锈钢卡箍之间产生很大的应力,会损坏卡箍或铝管。也可 以用不锈钢管或内外都有粉未镀层的钢管代替镀铝钢管。但由于不锈钢 管不易成型,为了实现有效连接,往往管路是由若干钢管焊接而成。由 于焊接过程会破坏保护层,同时焊渣处理不彻底会脱落造成增压器损坏, 故尽量少用焊接管。 --由于渗铝钢管相对不锈钢材质的卡箍热膨胀系数要大一些,故系统卡 箍应采用带轴向加力弹簧,具有扭力保持特性的T型卡箍。设计时应注意 钢带硬度、弹簧旋向、固定螺母的自锁性能及弹簧端部防松等要求。 --系统软管采用带加强层、在安装空间许可条件下尽量设置带波纹伸缩 型、外部带加强线的硅树脂软管。带外部加强线的波纹伸缩软管可有效 控制软管的膨胀,防止脱落,同时在高压环境下保持柔性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机冷却和中冷系统设计规范
1. 适用范围本设计规范适用于重型汽车冷却、中冷系统设计。
本设计
规范规定了冷却、中冷系统设计中应遵循的通用原则,和一般的设计
方法。
2. 设计原则设计良好的冷却、中冷系统应该充分考虑以下几方面原
则:
2.1 首先应优先考虑冷却、中冷系统的冷却能力问题。
其中所要求的
冷却常数、中冷系统冷却效率及发动机进气温度等皆应一一满足。
2.2 冷却、中冷系统的安装方式及在整车中的合理位置也应充分考虑,不
应有因为安装点位置及结构引起系统损坏或造成潜在易损坏因素。
系
统在整车中的位置将影响其性能,应谨慎考虑。
2.3 冷却、中冷系统的管路应合理并力求简洁清晰。
防止因管路走向不
合理而引起的系统内阻的增加和性能的下降。
2.4 冷却、中冷系统应有良好的保护装置,防止系统异常损坏和性能下降。
2.5 冷却、中冷系统的设计应考虑到装车工艺性要求和维修的接近性要
求。
3. 设计方法
3.1 中冷器和散热器的设计、选择及安装:如果有足够的空间,冷却
系统可以选用迎风面积大、芯子薄、散热效率高的热交换器。
在有风
扇离合器控制风扇运作的情况下,应充分利用空间加大热交换器的尺
寸,这样可以降低风扇的功耗和降低风扇工作噪声。
在无中冷器的情
况下且无风扇离合器情况下,按经验推荐,发动机功率每100千瓦的
散热器迎风面积应为0.3~0.375m2之间。
由于排放法规要求,现代重
型车上一般具有空空中冷系统。
所以在推荐迎风面积上稍作增加。
散
热器散热面积(冷侧)的推荐值大概为:0.1~0.16 m2/kW(发动机功
率)。
在中冷系统布置空间足够时,一般推荐采用一字流向的中冷器,
反之则为U型流向的中冷器。
因为U型的中冷器的内阻大于一字流的
中冷器。
另外中冷器气室应尽量避免遮蔽散热器芯子太多面积。
中冷
器和散热器的芯子可参考以往系统配置,因为主片模具价格较贵,如
无必要,尽量采用同样的管型和散热带波高。
由于中冷器处于冷却空
气上游,必须将它设计成能适应多尘的环境,推荐每英寸的散热片为
8~10片,散热带可不开窗以便清洗。
一般中冷器迎风正面积比散热
器迎风正面积略小由于中冷器的热胀冷缩量较大,在安装时应给予考
虑,防止由于热胀冷缩带来的不必要系统元件损坏。
另外,应尽量保
证风扇中心与散热器中心重合,尽量使风扇未扫过的四角死区最小。
风扇前端面与散热器芯子的距离大于50~100mm,特别是风扇未扫过
的四角死区很大时,应尽量扩大两者之间的距离。
中冷器、散热器与
车架之间应为柔性连接。
可根据系统重量及车架震动频率来确定系统
悬置软垫的刚度和结构。
3.2 风扇及风扇离合器的选择和安装:重型车上所用风扇大多为塑料的吸风式风扇。
它可分为两种:直叶风扇和叶端前弯风扇(马刀形风扇)。
马刀形风扇
在高速大风量时优势较为明显,并且空气下游一部分空气向四周排出,这对发动机前端与风扇叶片后端较近的布置比较适应。
特别对使用离合器的风扇较为适合。
但在同一转速和相同的静压下,在小流量范围内,直叶风扇提供的风量比弯叶的大。
另外,由于噪声的要求,
根据推荐,风扇叶尖线速度不应超过87m/s。
现代重型车功率越来越
大,其选用的风扇的功耗就比较大,所以,应该采用风扇离合器。
在
选择时应考虑离合器能承受的扭矩和转速。
理论上来讲,希望风扇后
端离发动机前端越远越好。
但可能风扇安装悬臂过长会引起风扇异常
振动而引起损坏。
实际设计中应综合考虑风扇、发动机前端面、散热
器芯子的位置关系确定风扇安装悬臂的长度。
风扇叶尖与护风圈的距
离关系着风扇容积效率,一般要求两者之间的距离不得大于风扇直径
的2.5%。
为冷却系统能力方面考虑,希望两者间距离越小越好,在
此考虑下可采用柔性风罩方案。
另外对吸风式风扇来讲,风扇伸入护
风圈的深度为风扇投影宽度的1/3(环式或箱式护风圈)和1/2(文杜里
式护风圈)两种情况。
3.3 膨胀箱、除气管路:膨胀箱的容积应为16%的系统总容积+35*A(A
为膨胀箱底平面面积)。
其安装位置应保障在水泵入口处的压力大于大
气压。
由于不易确认高度是否合适,那么必须保证膨胀箱下底面高于
冷却系统其它最高点。
压力盖必须保证冷却系统压力达到发动机要求
压力。
真空阀开启压力约为10kPa。
除气管路的走向应向上到膨胀箱,
中途应避免有弯曲或向下的趋势。
除气管最好采用双管(发动机及散
热器除气管)的内径大约应在7~9mm左右,并且尽量短且直。
根据康
明斯要求推荐除气回路循环量不应大于2升/分。
3.3 系统其它管
路:对于冷却系统而言,管路应沿水流方向适当上翘,尽量避免水平
布置和呈凸形的管路,管路的弯角处或直径变化处必须圆滑过渡。
管
路布置中应考虑系统各元件之间的相互运动。
长度在150mm以下的胶
管在没有柔性并且难以安装,而长度超过450mm的胶管应考虑支撑问
题。
关于管路内径,如果发动机离散热器较远的话,理论上讲从发动
机端到散热器端内径应逐渐加大,但实际设计时考虑到制造工艺及大
总成的通用性这点一般不予考虑,应按实际出发。
对于中冷系统而言,
管路越直越好,尽量减少弯头的处数。
其内径也有要求,根据康明斯
推荐,对于小于9升排量的发动机内径应在2.5~4英寸,15升以上
为4~5英寸。
软管部分尽量不要安装于气流拐弯处以免脱落,弯折处
应用硬管。
在高温侧不应该用成型的硅胶管来替代硬弯管的功能。
3.4 其它:如果系统热回风量较大就应考虑加装挡风板。
在工作状况比较恶劣的情况下,应考虑在冷却系统单元前方加一阻挡空气中杂质的滤网以减轻对中冷器、散热器污染。
对于需要在不好路面上工作的车辆应加冷却系统的下防护板。
(注:范文素材和资料部分来自网络,供参考。
只是收取少量整理收集费用,请预览后才下载,期待你的好评与关注)。