高中数学人教A版选修4-1学案创新应用:第一讲 三 相似三角形的判定含解析
1.3 第一课时 相似三角形的判定及性质 课件(人教A选修4-1)

6.
如图,在 Rt△ABC 中,∠BAC=90° , AD⊥BC 于 D,点 E 是 AC 的中点,ED 的延长线交 AB 的延长线于 F. AB DF 求证:AC=AF.
证明:∵E 是 Rt△ADC 斜边 AC 上的中点, ∴AE=EC=ED. ∴∠EDC=∠C=∠BDF. 又∵AD⊥BC 且∠BAC=90° , ∴∠BAD=∠C. ∴∠BAD=∠BDF. 又∠F=∠F,∴△DBF∽△ADF, DB DF ∴AD= AF. AB DB 又在 Rt△ABD 与 Rt△CBA 中,AC=AD, AB DF ∴AC= AF.
点击下图进入应用创新演练
证明:在正方形 ABCD 中, AD ∵Q 是 CD 的中点,∴QD=2. BP BC ∵PC=3,∴PC =4. CQ 又 BC=2CQ,∴ CP =2. 在△ADQ 和△QCP 中, AD QC , QD= PC ,∠C=∠D=90° ∴△ADQ∽△QCP.
[例 2]
如图,D 为△ABC 的边 AB 上一点,
证明:(1)∵四边形 ABCD 是平行四边形, ∴AB∥CD. 又∵点 F 在 BA 的延长线上, ∴∠DCF=∠F,∠D=∠FAE. ∴△CDE∽△FAE. (2)∵E 是 AD 的中点,∴AE=DE. CD DE 由△CDE∽△FAE,得 FA =AE. ∴CD=FA. ∴AB=CD=AF.∴BF=2CD. 又∵BC=2CD,∴BC=BF.∴∠F=∠BCF.
解:∵AB∥CD, ∴△EDH∽△EAG,
△CHM∽△AGM,
△FBG∽△FCH. ∵AD∥BC, ∴△AEM∽△CFM, △AEG∽△BFG,
△EDH∽△FCH.
∴图中相似的三角形有: △AEM∽△CFM,△CHM∽△AGM, △EDH∽△EAG∽△FBG∽△FCH.
人教版高中数学选修4-1《第一讲:相似三角形的判定》

A
图形
A 1
B
C B 1 C 1
A
D
E
对于直角三角形呢?
相似三角形的性质定理:
B
C
预习交流,探究总结 内容四:直角三角形的射影定理
1、直角三角形斜边上的高是 ______________________的比例中项; 两直角边在斜边上的射影 2、两直角边分别是它们在斜边上____ 射影与 ____ 斜边的比例中项。(射影,斜边)
AD:BD=2:1,BC=8.4cm。求(1)DE的长;(2) AG
AF
;(3)
你认为求解的关键是什么? 求解的关键是利用平行DE//BC.
S ABC . S ADE
说题解题 巩固知识
【例3】已知:如图,△ABC 的高AD、BE交于点F.求证: (1)AD•BC=BE•AC;(2)AF•FD=BF•FE.
讨论作业:P9,2;P10,4 要求:小组讨论,理清思路,代表“说题” 作业:P19,7;P20,10 弹性作业: 复习指导P154 17.1几何证明选讲(一)
3、(2007湛江一模理)如图,在△ABC中,D是AC的中点,E是BD的
中点,AE交BC于F,则 BF _____. 1:2
FC
D C F
E A
B
知识总结 1、三住平行这一关键,构造相似(全等)三角形 (或比例关系); 2 )(乘积→)比例关系→相似(全等)三角形 (或平行)。 3)线段长→三角形→相似(全等)三角形(相似 三角形→比例关系→线段长)。
【例5】如图,在△ABC 内任取一点 D ,连接AD 和 BD. 点 E 在△ABC外, ∠EBC=∠ABD,∠ECB=∠DAB.求证: △DBE∽△ABC.
高中数学人教A版选修4-1 3.1相似三角形的判定 教案

相似三角形的性质和判定(第一课时)教学目标1、知识与技能:理解并掌握相似三角形的判定方法.2、过程与方法:以问题的形式,创设一个有利于学生动手和探究的情境,达到掌握相似三角形判定的方法的目的.3、态度、情感、价值观:培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值.教学重点:掌握相似三角形的判定方法教学难点:理解和应用相似三角形判定.教具:课件、多媒体展台教学方法:讲练结合、点拨与讨论结合学具:教学过程及教学内容设计:问题与情境师生行为设计意图活动一:问题探究1. 如图,D 、E 分别为AB 、AC 中点,求证:(1)DE ∥BC ;(2)△ABC ∽△ADE 吗?E D CB A2.如图所示, DE ∥BC ,问△ABC ∽△ADE 成立吗? 12.51.51.523ABC D E活动二:相似三角形的判定 1.上面练习1、2中为特殊情形若推广到一般是否成立呢?2.判定方法1:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.已知:如图, DE ∥BC ,DE 交AB 、AC 于D 、E .求证:△ADE ∽△ABC . 写出推理格式.复习巩固证明:∵D 、E 分别为AB 、AC 中点,∴DE 是△ABC 的中位线∴DE ∥BC ,且BC DE 21=∴∠ADE =∠B ,∠AED =∠C ,21=BC DE∵D 、E 分别为AB 、AC 中点,∴AD =21AB ,AE=21AC即21==AC AE AB AD 又∠A=∠A ∴△ADE ∽△ABC2.==AC AE AB AD 53=BC DE ∠ADE=∠B ,∠AED=∠C ,∠A=∠A∴△ADE ∽△ABC学生熟练运用判定方法推理格式: ∵DE ∥BC∴△ADE ∽△ABC .这两道小题的设计目的是复习旧知识,探索新知.通过练习题导入新知,这样可使学生思维连贯, 培养学生的归纳能力.掌握推理格式3.3相似三角形的性质和判定(第二课时)教学过程设计教学过程设计问题与情境师生行为设计意图证明:在线段A ′B (或它的延长线)上截取A ′D =AB ,过点D 作DE ∥B ′C ′,交A ′C ′于点E , 根据前面的结论可得△A ′DE ∽△A ′B ′C ′. ∴''''''''CA E A CB DE B A D A == 又B A AB ''=C B BC ''=AC CA'',A ′D =AB∴'''C A E A =A C CA '' ∴A′E =AC 同理DE =BC△A ′DE ≌△ABC△ABC ∽△A ′B ′C ′.4.三角形相似的判定方法:三边对应成比例的两个三角形相似.活动三:应用举例 例1.根据下列条件,判断△ABC 和 △A′B′C′是否相似,并说明理由. (1)AB =4,BC =6,AC =8,A′B′=12, B′C′=18, A′C′=21;(2)AB =5,BC =4,AC =3,A′B′=10,B′C′=8, A′C′=6. 例2.探究:. 如图,△ABC 中,D 、E 分别在AB 、AC 上,且AD =3,BD =4,AE =6,EC =8,DE =4,BC =328.能否得到DE ∥BC ? 分析:要证明△ABC ∽△A ′B ′C ′,可以先作一个与△ABC 全等的三角形,证明它与△A ′B ′C ′相似.这里所作的三角形是证明的桥梁,它把△ABC 与△A ′B ′C ′联系起来.师生分析解题思路,教师展示解题详细步骤.师生一起运用判定方法解决问题,学生书写.例1.解(1)B A AB ''=C B BC ''=21而B A AB ''=76 ∴B A AB ''=C B BC ''≠A C CA '', ∴△ABC 和△A′B′C′不相似.(2)B A AB ''=C B BC ''=A C CA ''=21,∴△ABC ∽△A′B′C′学生分析,口述证明过程,教师板书. 例2.解:∵ AD =3,BD =4, AE =6,EC =8 ∴AB =7,AC =14 ∴73===BC DE AC AE AB AD ∴△ADE ∽△ ABC∴∠ADE =∠B∴ DE ∥BC通过猜测、验证、证明得出相似三角形判定方法:三边对应成比例,两三角形相似.巩固三角形相似的判定方法让学生通过自己解决问题后发现新的问题,激发学生的学习兴趣,鼓励学生自己解决问题.4.3相似三角形的性质和判定(第三课时)〔教学目标〕1.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
高中数学第一讲相似三角形的判定及有关性质单元检测(A)新人教A版选修4-1(2021学年)

高中数学第一讲相似三角形的判定及有关性质单元检测(A)新人教A版选修4-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一讲相似三角形的判定及有关性质单元检测(A)新人教A版选修4-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一讲相似三角形的判定及有关性质单元检测(A)新人教A版选修4-1的全部内容。
第一讲相似三角形的判定及有关性质单元检测(时间:90分钟,满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AA ′∥B B′∥CC ′,AB ∶BC =1∶3,那么下列等式成立的是( )A.AB =2A ′B′ B.3A ′B ′=B ′C ′ C.BC =B′C ′ D.AB =A ′B′2.如图,已知45AD DB =,D E∥BC ,若DE =3,则B C等于( )A.125 B.154 C.184 D.2743.如图,A ,B,C,D把OE 五等分,且AA ′∥BB ′∥CC ′∥DD ′∥EE ′,如果OE ′=20cm,那么B ′D′等于( )A.12 cm B .10 cm C.6 cm D.8 cm4.如果两条直角边在斜边上的射影分别是4和16,则此直角三角形的面积是( ) A.80 B.70 C.64 D.325.如图,△ABC 中,DE ∥BC ,D E分别交A B,AC于D ,E 两点,S △AD E=2S △DC E,则ADE ABCSS ∆∆=( )A.14 B .12C.23D.496.如图,在△ABC 中,A B=A C,点D 在AB 上,点E在A C的延长线上,B D=3CE ,DE 交BC 于F ,则D F∶FE 等于( )A .5∶2 B.2∶1 C.3∶1 D .4∶17.如图所示,在Rt△AB C中,∠ACB =90°,CD ⊥AB 于点D ,E是AC 上一点,CF ⊥BE 于点F ,则下列与△BFD 相似的三角形是( )A.△ABC B .△BEC C .△BAE D .△B CF8.如图所示,铁道口的栏杆短臂长1 m,长臂长16 m,当短臂端点下降0。
数学人教A版选修4-1学案课堂探究 第一讲三 相似三角形的判定及性质(第1课时) Word版含解析

课堂探究探究一判定三角形相似判定两个三角形相似时,关键是分析已知哪些边对应成比例,哪些角对应相等,根据三角形相似的判定定理,寻找推导出结论的条件.【典型例题】如图,已知==,求证:△∽△.思路分析:证明三角形相似,关键在于找到符合定理的条件.由题目所给条件,应需再找出角的相等关系.证明:因为==,所以△∽△.所以∠=∠,∠-∠=∠-∠,即∠=∠.又=,即=,所以△∽△.点评本题中,∠与∠的相等关系,不易直接找到,这里用∠=∠,在∠和∠中分别减去同一个角∠,间接证明.探究二判定直角三角形相似直角三角形相似的判定方法很多,既可根据一般三角形相似的判定方法判定,又有其独特的判定方法,在求证、识别的过程中,可由已知条件结合图形特征,确定合适的方法.【典型例题】如图,已知在正方形中,是上的点,且=,是的中点,求证:△∽△.思路分析:由于这两个三角形都是直角三角形,且已知条件是线段间的关系,故考虑证明对应边成比例,即只需证明=即可.证明:在正方形中,∵是的中点,∴=.∵=,∴=.又=,∴=.在△和△中,==,∠=∠=°,∴△∽△.规律总结证明直角三角形相似的方法主要有除直角外的一组锐角对应相等或两边对应成比例.本题就是利用了=两直角边对应成比例证明.探究三证明两直线平行常利用引理来证明两直线平行,其关键是证明其对应线段成比例,这样就转化为证明线段成比例,其证明方法有:利用中间量,转化成线段成比例,两者结合使用证明.【典型例题】如图,在△中,是的中点,是上一点,,的延长线分别交,于,两点.求证:∥.思路分析:要证明线段∥,则需要利用平行线分线段成比例定理.反过来思考,结合题目作出平行线以便利用判定定理来证明平行.证法一:延长至,使=,连接,,如图所示.∵=,=,∴四边形为平行四边形.∴∥,∥.∴=,=,∴=.∴∥.证法二:过点作的平行线,与,的延长线分别交于,两点,如图所示.∵∥,∥,∴=,=,∴=.。
高中数学人教A版选修4-1学案第1讲 3 1 相似三角形的判定 Word版含解析

三相似三角形的判定及性质
.相似三角形的判定
.了解三角形相似的定义.
.掌握相似三角形的判定定理,以及直角三角形相似的判定方法.(重点、易混点)
[基础·初探]
教材整理相似三角形的有关概念
阅读教材“定义”部分,完成下列问题.
.定义
对应角相等,对应边成比例的两个三角形叫做相似三角形.
.相似比
相似三角形对应边的比值叫做相似比(或相似系数).
教材整理相似三角形的判定
阅读教材~“思考”以上部分,完成下列问题.
.预备定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
.相似三角形的判定
如图--所示,在△中,∥∥,则与△相似的三角形有( ) 【导学号:】
图--
.个 .个 .个
.个
【解析】∵∥∥, ∴△∽△∽△. 【答案】
教材整理 直角三角形的相似
阅读教材~“相似三角形的性质”以上部分,完成下列问题. .引理
如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
.直角三角形相似的判定
定理:()如果两个直角三角形有一个锐角对应相等,那么它们相似. ()如果两个直角三角形的两条直角边对应成比例,那么它们相似. 定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
下列判断中,不正确的是( )
.两直角边分别是和的两个直角三角形相似。
1.3 第一课时 相似三角形的判定及性质 课件(人教A选修4-1)

解析:∠A=∠D,∠B=∠E,∠C=F. AB BC AC 1 DE=EF=DF=2.
答案:∠D ∠E ∠F DE BC DF 1 2
5. 如图,四边形ABCD是平行四边形,点F在BA的延长线上,
连接CF交AD于点E.
(1)求证:△CDE∽△FAE;
(2)当E是AD的中点,且BC
=2CD时,求证:∠F=∠BCF.
的
.
(3)判定定理3:对于任意两个三角形,如果一个三角形的
三边 三条边和另一个三角形的三条边对应成比例,那么这两个三角 形相似,简述为: [说明] 对应成比例,两三角形相似.
在这些判定方法中,应用最多的是判定定理1,
即两角对应相等,两三角形相似.因为它的条件最容易寻 求.在实际证明当中,要特别注意两个三角形的公共角.判定
1.相似三角形
(1)定义:对应角相等,对应边成比例的两个三角形叫
做 相似三角形 ,相似三角形对应边的比值叫做 相似比 或 (相似系数). (2)预备定理:平行于三角形一边的直线和其他两边(或 两边的延长线)相交,所构成的三角形与原三角形相似 .
2.相似三角形的判定定理 (1)判定定理1:对于任意两个三角形,如果一个三角形 的两个角与另一个三角形的两个角对应相等,那么这两个
解:∵AB∥CD, ∴△EDH∽△EAG,
△CHM∽△AGM,
△FBG∽△FCH. ∵AD∥BC, ∴△AEM∽△CFM, △AEG∽△BFG,
△EDH∽△FCH.
∴图中相似的三角形有: △AEM∽△CFM,△CHM∽△AGM, △EDH∽△EAG∽△FBG∽△FCH.
2.如图,在四边形 ABCD 中, AE AF BG DH EB=FD,GC=HC. 求证:△OEF∽△OHG.
2016-2017学年高中数学人教A版选修4-1 第一讲 相似三角形的判定及有关性质 第1讲 3 1

简述
判定 定理 1
对于任意两个三角形,如果一个三角形的两个 两角对应相等,
角与另一个三角形的两个角__对_应__相__等___,那么 两三角形相似.
这两个三角形相似.
判定 定理 2
对于任意两个三角形,如果一个三角形的两边 两边对应成比
和另一个三角形的两边_对__应_成__比__例___,并且夹 例且夹角相等,
上一页
返回首页
下一页
第十六页,编辑于星期五:十六点 四十四分。
[再练一题]
2.如图 1-3-5 所示,已知梯形 ABCD 中,AB∥DC,
AC,BD 相交于点 O,BE∥AD 交 AC 的延长线于点 E.
求证:OA2=OC·OE. 【证明】 ∵DC∥AB,
∴△AOB∽△COD,
∴OOCA =OODB .
上一页
返回首页
下一页
第八页,编辑于星期五:十六点 四十四分。
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1:_______________________________________________________ 解惑:________________________________________________________ 疑问 2:_______________________________________________________ 解惑:________________________________________________________ 疑问 3:_______________________________________________________ 解惑:________________________________________________________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相似三角形的判定及性质1.相似三角形的判定[对应学生用书P7]1.相似三角形(1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比或(相似系数).(2)预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.相似三角形的判定定理(1)判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,简述为:两角对应相等,两三角形相似.(2)判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似,简述为:两边对应成比例且夹角相等,两三角形相似.引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似,简述为:三边对应成比例,两三角形相似.[说明] 1.在这些判定方法中,应用最多的是判定定理1,即两角对应相等,两三角形相似.因为它的条件最容易寻求.在实际证明当中,要特别注意两个三角形的公共角.判定定理2则常见于连续两次证明相似时,在证明时第二次使用此定理的情况较多.2.引理是平行线分线段成比例定理的推论的逆定理,可以判定两直线平行.3.直角三角形相似的判定定理(1)定理:①如果两个直角三角形有一个锐角对应相等,那么它们相似;②如果两个直角三角形的两条直角边对应成比例那么它们相似.(2)定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.[说明]对于直角三角形相似的判定,除了以上方法外,还有其他特殊的方法,如直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.在证明直角三角形相似时,要特别注意直角这一隐含条件的利用.[对应学生用书P8]相似三角形的判定[例1]如图,已知在△ABC中,AB=AC,∠A=36°,BD是角平分线,证明:△ABC∽△BCD.[思路点拨]已知AB=AC,∠A=36°,所以∠ABC=∠C=72°,而BD是角平分线,因此,可以考虑使用判定定理1.[证明]∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.又∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∴∠A=∠CBD.又∵∠C=∠C,∴△ABC∽△BCD.判定两三角形相似,可按下面顺序进行:(1)有平行截线,用预备定理;(2)有一对等角时,①找另一对等角,②找夹这个角的两边对应成比例;(3)有两对应边成比例时,①找夹角相等,②找第三边对应成比例,③找一对直角.1.如图,BC∥FG∥ED,若每两个三角形相似,构成一组相似三角形,那么图中相似的三角形的组数是()A.1B.2C.3 D.4解析:△AED与△AFG相似,△AED与△ABC相似,△AFG与△ABC相似.答案:C2.如图,O是△ABC内任一点,D,E,F分别是OA,OB,OC的中点,求证:△DEF ∽△ABC.证明:∵D ,E ,F 分别是OA ,OB ,OC 的中点, ∴DE =12AB ,EF =12BC ,FD =12CA .∴DE AB =EF BC =FD CA =12. ∴△DEF ∽△ABC .3.如图,D 在AB 上,且DE ∥BC 交AC 于E ,F 在AD 上,且AD 2=AF ·AB ,求证:△AEF ∽△ACD .证明:∵DE ∥BC ,∴AC AE =AB AD .①∵AD 2=AF ·AB ,∴AD AF =ABAD .②由①②两式得AC AE =ADAF,又∠A 为公共角,∴△AEF ∽△ACD .直角三角形相似的判定[例2] ,Q 是CD 的中点,求证:△ADQ ∽△QCP .[思路点拨] 由于这两个三角形都是直角三角形,且已知条件是线段间的关系,故考虑证明对应边成比例,即只需证明AD QC =DQCP即可.[证明] 在正方形ABCD 中, ∵Q 是CD 的中点,∴ADQC =2.∵BP PC =3,∴BC PC=4. 又BC =2DQ ,∴DQ CP=2.在△ADQ 和△QCP 中, AD QC =DQCP=2,∠C =∠D =90°, ∴△ADQ ∽△QCP .直角三角形相似的判定方法:(1)相似三角形的判定定理1,2,3都适用于直角三角形相似的判定.(2)两个直角三角形,已经具备直角对应相等,只要再证明有一对锐角相等,或夹直角的两边对应成比例,就可以证明这两个直角三角形相似.4.如图,∠C =90°,D 是AC 上的一点,DE ⊥AB 于E ,求证:△ADE ∽△ABC .证明:∵DE ⊥AB , ∴∠DEA =90°, ∵∠C =90°, ∴∠DEA =∠C . ∵∠A =∠A . ∴△ADE ∽△ABC5.如图,BD ,CE 是△ABC 的高,BD ,CE 交于F ,写出图中所有与△ACE 相似的三角形.解:∵∠ACE 为公共角,由直角三角形判定定理1,知Rt △FDC ∽Rt △ACE . 又∠A 为公共角,∴Rt △ABD ∽Rt △ACE . 又∵∠A +∠ACE =90°,∠A +∠ABD =90°, ∴∠ACE =∠ABD .∴Rt △FBE ∽Rt △ACE . 故共有三个直角三角形,即Rt △ABD ,Rt △FBE , Rt △FCD 与Rt △ACE 相似.相似三角形的应用[例3] 如图,D 为△ABC 的边AB 上一点,过D 点作DE ∥BC ,DF ∥AC ,AF 交DE 于G ,BE 交DF 于H ,连接GH .求证:GH ∥AB .[思路点拨] 根据此图形的特点可先证比例式GE DE =EHEB成立,再证△EGH ∽△EDB ,由相似三角形的定义得∠EHG =∠EBD 即可.[证明] ∵DE ∥BC , ∴GE FC =AG AF =DG FB ,即GE DG =CF FB. 又∵DF ∥AC ,∴EH HB =CFFB .∴GE DG =EH HB .∴GE ED =EH EB. 又∠GEH =∠DEB , ∴△EGH ∽△EDB . ∴∠EHG =∠EBD . ∴GH ∥AB .不仅可以由平行线得到比例式,也可以根据比例式的成立确定两直线的平行关系.有时用它来证明角与角之间的数量关系,线段之间的数量关系.6.如图,△ABC 的三边长是2、6、7,△DEF 的三边长是4、12、14,且△ABC 与△DEF 相似,则∠A =__________,∠B =__________,∠C =________.AB ( )=( )EF =AC ( )=________.解析:∠A =∠D ,∠B =∠E ,∠C =F . AB DE =BC EF =AC DF =12. 答案:∠D ∠E ∠F DE BC DF 127.如图,四边形ABCD 是平行四边形,点F 在BA 的延长线上,连接CF 交AD 于点E .(1)求证:△CDE ∽△F AE ;(2)当E 是AD 的中点,且BC =2CD 时, 求证:∠F =∠BCF .证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD .又∵点F 在BA 的延长线上, ∴∠DCF =∠F ,∠D =∠F AE . ∴△CDE ∽△F AE .(2)∵E 是AD 的中点,∴AE =DE . 由△CDE ∽△F AE ,得CD F A =DEAE .∴CD =F A .∴AB =CD =AF .∴BF =2CD .又∵BC =2CD ,∴BC =BF .∴∠F =∠BCF .8.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,点E 是AC 的中点,ED 的延长线交AB 的延长线于F .求证:AB AC =DFAF. 证明:∵E 是Rt △ADC 斜边AC 上的中点, ∴AE =EC =ED . ∴∠EDC =∠C =∠BDF . 又∵AD ⊥BC 且∠BAC =90°, ∴∠BAD =∠C . ∴∠BAD =∠BDF .又∠F =∠F ,∴△DBF ∽△ADF , ∴DB AD =DFAF. 又在Rt △ABD 与Rt △CBA 中,AB AC =DBAD ,∴AB AC =DF AF.[对应学生用书P10]一、选择题1.如图所示,AD ∥EF ∥BC ,GH ∥AB ,则图中与△BOC 相似的三角形共有( )A .1个B .2个C .3个D .4个解析:根据相似三角形的判定定理可得: △OEF ∽△OBC (∵EF ∥BC ); △CHG ∽△CBO (∵HG ∥OB ); △OAD ∽△OBC (∵AD ∥BC ). 故与△BOC 相似的三角形共有3个. 答案:C2.下列判断中,不.正确的是( ) A .两直角边分别是3.5,2和2.8,1.6的两个直角三角形相似B .斜边和一直角边长分别是25,4和5,2的两个直角三角形相似C .两条边长分别是7,4和14,8的两个直角三角形相似D .两个等腰直角三角形相似解析:由直角三角形相似判定定理知A 、B 、D 正确. 答案:C3.如图,要使△ACD ∽△BCA ,下列各式中必须成立的是( ) A.AC AB =AD BC B.AD CD =AC BC C .AC 2=CD ·CB D .CD 2=AC ·AB解析:∠C =∠C ,只有AC CD =CBAC ,即AC 2=CD ·CB 时,才能使△ACD ∽△BCA .答案:C4.如图,在等边三角形ABC 中,E 为AB 中点,点D 在AC 上,使得AD AC =13,则有( ) A .△AED ∽△BED B .△AED ∽△CBD C .△AED ∽△ABD D .△BAD ∽△BCD解析:因为∠A =∠C ,BC AE =CDAD =2,所以△AED ∽△CBD . 答案:B5.如图,△ABC 中,DE ∥BC ,GF ∥AB ,DE ,GF 交于点O ,则图中与△ABC 相似的三角形共有________个,它们分别是____________________.解析:与△ABC 相似的有△GFC ,△OGE ,△ADE . 答案:3 △GFC ,△OGE ,△ADE6.如图所示,∠ACB =90°,CD ⊥AB 于点D ,BC =3,AC =4,则AD =________,BD =________.解析:由题设可求得AB =5, ∵Rt △ABC ∽Rt △ACD , ∴AB AC =AC AD .∴AD =AC 2AB =165. 又∵Rt △ABC ∽Rt △CBD , ∴AB CB =BC BD .∴BD =BC 2AB =95. 答案:165 957.已知:在△ABC 中,AD 为∠BAC 的平分线,AD 的垂直平分线EF 与AD 交于点E ,与BC 的延长线交于点F ,若CF =4,BC =5,则DF =________.解析:连接AF . ∵EF ⊥AD ,AE =ED , ∴AF =DF , ∠F AD =∠FDA .又∵∠F AD =∠DAC +∠CAF , ∠FDA =∠BAD +∠B , 且∠DAC =∠BAD ,∴∠CAF =∠B .而∠CF A =∠AFB , ∴△AFC ∽△BF A . ∴AF CF =BFAF. ∴AF 2=CF ·BF =4×(4+5)=36. ∴AF =6,即DF =6. 答案:68.如图,已知△ABC 中,AB =AC ,D 是AB 的中点,E 在AB 的延长线上,且BE =AB ,求证:△ADC ∽△ACE .证明:∵D 是AB 的中点,∴AD AB =12. ∵AB =AC ,∴AD AC =12.∵ BE =AB ,∴AB AE =12.又AB =AC ,∴AC AE =12.∴AD AC =AC AE. 又∠A 为公共角,∴△ADC ∽△ACE .9.如图,直线EF 交AB 、AC 于点F 、E ,交BC 的延长线于点D ,AC ⊥BC ,且AB ·CD =DE ·AC .求证:AE ·CE =DE ·EF . 证明:∵AB ·CD =DE ·AC ∴AB DE =ACCD. ∵AC ⊥BC ,∴∠ACB =∠DCE =90°. ∴△ACB ∽△DCE . ∴∠A =∠D .又∵∠AEF =∠DEC ,∴△AEF ∽△DEC . ∴AE DE =EFCE. ∴AE ·CE =DE ·EF .10.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AE 是∠CAB 的角平分线,CD 与AE 相交于点F ,EG ⊥AB 于G .求证:EG 2=FD ·EB .证明:因为∠ACE =90°,CD ⊥AB ,所以∠CAE +∠AEC =90°,∠F AD +∠AFD =90°.因为∠AFD =∠CFE , 所以∠F AD +∠CFE =90°. 又因为∠CAE =∠F AD , 所以∠AEC =∠CFE . 所以CF =CE .因为AE 是∠CAB 的平分线,EG ⊥AB ,EC ⊥AC , 所以EC =EG ,CF =EG .因为∠B +∠CAB =90°,∠ACF +∠CAB =90°, 所以∠ACF =∠B .因为∠CAF =∠BAE , 所以△AFC ∽△AEB ,AF AE =CF EB .因为CD ⊥AB ,EG ⊥AB , 所以Rt △ADF ∽Rt △AGE . 所以AF AE =FD EG ,CF EB =FD EG.所以CF ·EG =FD ·EB ,EG 2=FD ·EB .2.相似三角形的性质[对应学生用书P11]1.相似三角形的性质定理相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 相似三角形周长的比等于相似比. 相似三角形面积的比等于相似比的平方.2.两个相似三角形的外接圆的直径比、周长比、面积比与相似比的关系相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方. [说明] 相似三角形中的“对应线段”不仅仅指对应边、对应中线、角平分线和高,应包括一切“对应点”连接的线段;同时也可推演到对应的内切圆、外接圆的半径.[对应学生用书P11]利用相似三角形性质计算[例1] 已知如图,△ABC 中,CE ⊥AB 于E ,BF ⊥AC 于F ,若S △ABC =36 cm 2,S △AEF =4 cm 2,求sin A 的值.[思路点拨] 由题目条件证明△AEC ∽△AFB ,得AE ∶AF =AC ∶AB ,由此推知△AEF ∽△ACB ,进而求出线段EC 与AC 的比值.[解] ∵CE ⊥AB 于E ,BF ⊥AC 于F , ∴∠AEC =∠AFB =90°.又∵∠A =∠A ,∴△AEC ∽△AFB . ∴AE AF =ACAB. 又∵∠A =∠A ,∴△AEF ∽△ACB . ∴(AEAC )2=S △AEF S △ACB =436. ∴AE AC =26=13. 设AE =k , 则AC =3k , ∴EC =22k . ∴sin A =EC AC =223.利用相似三角形的性质进行有关的计算往往与相似三角形对应边的比及对应角相等有关,解决此类问题,要善于联想,变换比例式,从而达到目的.1.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点.AB =8 cm ,AC =10 cm ,若△ADE 和△ABC 相似,且S △ABC ∶S △ADE =4∶1,则AE =________cm.解析:因为△ADE ∽△ABC ,且S △ABC ∶S △ADE =4∶1,所以其相似比为2∶1,即AE AC =12或AE AB =12,所以AE =5或4(cm). 答案:5或42.如图,在▱ABCD 中,AE ∶EB =2∶3. (1)求△AEF 与△CDF 周长的比;(2)若S △AEF =8,求S △CDF .解:(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD 且AB =CD .∵AE EB =23,∴AE AE +EB =22+3,即AE AB =25.∴AE CD =25.又由AB ∥CD 知△AEF ∽△CDF , ∴△AEF 的周长∶△CDF 的周长=2∶5. (2)S △AEF ∶S △CDF =4∶25, 又S △AEF =8,∴S △CDF =50.利用相似三角形的性质解决实际问题[例2] 如图,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷.经过了解,教学楼、水塔的高分别是20米和30米,它们之间的距离为30米,小张身高为1.6米.小张要想看到水塔,他与教学楼之间的距离至少应有多少米?[思路点拨] 此题的解法很多,其关键是添加适当的辅助线,构造相似三角形,利用相似三角形的知识解题.[解] 如图,设小张与教学楼的距离至少应有x 米,才能看到水塔. 连接FD ,由题意知,点A 在FD 上,过F 作FG ⊥CD 于G ,交AB 于H ,则四边形FEBH ,四边形BCGH 都是矩形.∵AB ∥CD ,∴△AFH ∽△DFG . ∴AH ∶DG =FH ∶FG .即(20-1.6)∶(30-1.6)=x ∶(x +30), 解得x =55.2(米).故小张与教学楼的距离至少应有55.2米,才能看到水塔.此类问题是利用数学模型解实际问题,关键在于认真分析题意,将实际问题转化成数学问题,构造相似三角形求解.3.如图,△ABC 是一块锐角三角形余料,边BC =200 mm ,高AD =300 mm ,要把它加工成长是宽的2倍的矩形零件,使矩形较短的边在BC 上,其余两个顶点分别在AB 、AC 上,求这个矩形零件的边长.解:设矩形EFGH 为加工成的矩形零件,边FG 在BC 上,则点E 、H 分别在AB 、AC 上,△ABC 的高AD 与边EH 相交于点P ,设矩形的边EH 的长为x mm.因为EH ∥BC ,所以△AEH ∽△ABC . 所以AP AD =EH BC .所以300-2x 300=x 200,解得x =6007(mm),2x =1 2007(mm).答:加工成的矩形零件的边长分别为6007 mm 和1 2007mm.4.已知一个三角形的三边长分别为3 cm,4 cm,5 cm ,和它相似的另一个三角形的最长边为12 cm ,求另一个三角形内切圆和外接圆的面积.解:设边长为3 cm,4 cm,5 cm 的三角形的内切圆半径为r ,外接圆半径为R ,因为该三角形为直角三角形,所以R =52,且12(3+4+5)r =12×3×4,即r =1.∴S 内切圆=π(cm 2),S 外接圆=π·(52)2=25π4(cm 2).又两三角形的相似比为512,∴S ′内切圆=(125)2S 内切圆=144π25(cm 2),S ′外接圆=(125)2S 外接圆=36π(cm 2).[对应学生用书P12]一、选择题1.如图,△ABC 中,DE ∥BC ,若AE ∶EC =1∶2,且AD =4 cm ,则DB 等于( )A .2 cmB .6 cmC .4 cmD .8 cm解析:由DE ∥BC ,得△ADE ∽△ABC , ∴AD AB =AE AC . ∴AD DB =AE EC =12. ∴DB =4×2=8(cm). 答案:D2.如果两个相似三角形对应边上的中线之比为3∶4,周长之和是35,那么这两个三角形的周长分别是( )A .13和22B .14和21C .15和20D .16和19解析:由相似三角形周长之比,中线之比均等于相似比可得. ∴周长之比l 1l 2=34.又l 1+l 2=35,∴l 1=15,l 2=20,即两个三角形的周长分别为15,20. 答案:C3.如图所示,在▱ABCD 中,AB =10,AD =6,E 是AD 的中点,在AB 上取一点F ,使△CBF ∽△CDE ,则BF 的长是( )A .5B .8.2C .6.4D .1.8解析:∵△CBF ∽△CDE ,∴BF DE =CBCD .∴BF =DE ·CB CD =3×610=1.8.答案:D4.如图,是一个简单的幻灯机,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm ,幻灯片到屏幕的距离是1.5 m ,幻灯片上小树的高度是10 cm ,则屏幕上小树的高度是( )A .50 cmB .500 cmC .60 cmD .600 cm解析:图中的两个三角形相似.设屏幕上小树的高度为x cm ,根据相似三角形对应高的比等于相似比,得x 10=30+15030,解得x =60 cm.答案:C5.在比例尺为1∶500的地图上,测得一块三角形土地的周长为12 cm ,面积为6 cm 2,则这块土地的实际周长是________m ,实际面积是________m 2.解析:这块土地的实际形状与地图上的形状是两个相似三角形,由比例尺可知,它们的相似比为1500,则实际周长是12×500=6 000(cm)=60 m ;实际面积是6×5002=1 500 000(cm 2)=150 m 2.答案:60 1506.如图,在△ABC 中,D 为AC 边上的中点,AE ∥BC ,ED 交AB 于G ,交BC 延长线于F ,若BG ∶GA =3∶1,BC =10,则AE 的长为________.解析:∵AE ∥BC ,∴△BGF ∽△AGE . ∴BF ∶AE =BG ∶GA =3∶1. ∵D 为AC 中点,∴AE CF =ADDC =1.∴AE =CF .∴BC ∶AE =2∶1.∵BC =10,∴AE =5. 答案:57.如图所示,在矩形ABCD 中,AE ⊥BD 于E ,S 矩形ABCD =40 cm 2.S△ABE∶S △DBA =1∶5,则AE 的长为________. 解析:因为∠BAD =90°,AE ⊥BD , 所以△ABE ∽△DBA .所以S △ABE ∶S △DBA =AB 2∶DB 2. 因为S △ABE ∶S △DBA =1∶5, 所以AB ∶DB =1∶ 5. 设AB =k cm ,DB =5k cm , 则AD =2k cm.因为S 矩形ABCD =40 cm 2,所以k ·2k =40,所以k =25(cm). 所以BD =5k =10 (cm).AD =45(cm). 又因为S △ABD =12BD ·AE =20,所以12·10·AE =20.所以AE =4(cm). 答案:4 cm8.如图,已知△ABC 中,∠A =90°,AB =AC ,D 为AB 中点,E 是AC 上的点,BE 、CD 交于M .若AC =3AE ,求∠EMC 的度数.解:如图,作EF ⊥BC 于F , 设AB =AC =3, 则AD =32,BC =32,CE =2,EF =FC = 2. ∴BF =BC -FC =2 2.∴EF ∶BF =2∶22=1∶2=AD ∶AC . ∴△FEB ∽△ADC .∴∠2=∠1. ∵∠EMC =∠2+∠MCB ,∴∠EMC =∠1+∠MCB =∠ACB =45°.9.如图,▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积. 解:(1)证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AB ∥CD . ∴∠ABF =∠E . ∴△ABF ∽△CEB .(2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴△DEF ∽△CEB ,△DEF ∽△ABF . ∵DE =12CD ,∴S △DEF S △CEB =(DE EC)2=19,S △DEF S △ABF =(DE AB)2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8, ∴S 四边形BCDF =S △BCE -S △DEF =16. ∴S ▱ABCD =S 四边形BCDF +S △ABF =16+8=24.10.如图所示,在矩形ABCD 中,AB =12 cm ,BC =6 cm ,点P沿AB 边从点A 开始向点B 以2 cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1 cm/s 的速度移动,如果P 、Q 同时出发,用t 秒表示移动的时间(0≤t ≤6),那么:(1)当t 为何值时,△QAP 为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果无关的结论. (3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似? 解:(1)由题意可知:AQ =6-t (cm),AP =2t (cm). 若△QAP 为等腰直角三角形, 则AQ =AP ,即t =2(s).(2)S 四边形QAPC =S 矩形ABCD -S △DQC -S △PBC =12×6-12×12×t -12×6×(12-2t )=72-6t -36+6t =36(cm 2), 结论:无论P 、Q 运动到何处, S 四边形QAPC 都不变,为36 cm 2. (3)①△QAP ∽△ABC , ∴AQ AB =AP BC .∴6-t 12=2t 6. ∴t =1.2 s.②△QAP ∽△CBA , ∴AQ BC =AP AB .∴6-t 6=2t 12.∴t =3 s. 即t 为1.2 s 或3 s 时,以Q 、A 、P 为顶点的三角形与△ABC 相似.。