2017届高三文科数学二轮复习(教师用书):第1部分 技法篇:4大思想提前看渗透整本提时效 Word版含解析

合集下载

【金版教程】2017届高考文科数学(全国通用)二轮文档讲义:第1编专题1-2数形结合思想

【金版教程】2017届高考文科数学(全国通用)二轮文档讲义:第1编专题1-2数形结合思想

第二讲 数形结合思想思想方法解读考点利用数形结合思想研究方程的根与函数的零点典例1 已知定义在R 上的奇函数f (x )满足当x ≥0时,f (x )=⎩⎪⎨⎪⎧log12 (x +1),x ∈[0,1),1-|x -3|,x ∈[1,+∞),则关于x 的函数F (x )=f (x )-a (0<a <1)的所有零点之和为( )A .2a -1B .2-a -1C .1-2-aD .1-2a[解析] 因为f (x )为R 上的奇函数,所以当x <0时,f (x )=-f (-x )=⎩⎪⎨⎪⎧-log12 (-x +1),x ∈(-1,0),-1+|-x -3|,x ∈(-∞,-1],画出函数y =f (x )的图象和直线y =a (0<a <1),如图.由图可知,函数y =f (x )的图象与直线y =a (0<a <1)共有5个交点,设其横坐标从左到右分别为x 1,x 2,x 3,x 4,x 5,则x 1+x 22=-3,x 4+x 52=3,而由-log12 (-x 3+1)=a ,即log 2(1-x 3)=a ,可得x 3=1-2a ,所以x 1+x 2+x 3+x 4+x 5=1-2a ,故选D.[答案] D利用数形结合研究方程的根(求函数零点)解决策略(1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.(2)数形结合思想在解决函数性质有关问题时常有以下几种类型:①研究函数的单调性与奇偶性:画出函数的图象,从图象的变化趋势看函数的单调性,从图象的对称看函数的奇偶性.②研究函数的对称性:画出函数的图象,可从图象的分布情况看图象的对称性.③比较函数值的大小:对于比较没有解析式的函数值大小,可结合函数的性质,画出函数的草图,结合图象比较大小.【针对训练1】 [2016·山东重点高中模拟]若实数a 满足a +lg a =4,实数b 满足b +10b=4,函数f (x )=⎩⎨⎧x 2+(a +b )x +2,x ≤0,2,x >0,则关于x 的方程f (x )=x 的根的个数是( )A .1B .2C .3D .4答案 C解析 在同一坐标系中作出y =10x ,y =lg x 以及y =4-x 的图象,其中y =10x ,y =lg x 的图象关于直线y =x 对称,直线y =x 与y =4-x 的交点为(2,2),所以a +b =4,f (x )=⎩⎨⎧x 2+4x +2,x ≤0,2,x >0,当x ≤0时,由x 2+4x +2=x 可得,x =-1或-2;当x >0时,易知x =2,所以方程f (x )=x 的根的个数是3.考点利用数形结合思想解不等式或求参数范围典例2 (1)[2015·福建高考]已知AB →⊥AC →,|AB →|=1t ,|AC →|=t .若点P 是△ABC所在平面内的一点,且AP →=AB →|AB →|+4AC→|AC →|,则PB →·PC →的最大值等于( )A .13B .15C .19D .21[解析] 依题意,以点A 为坐标原点,建立如图所示的平面直角坐标系,所以点B ⎝ ⎛⎭⎪⎫1t ,0,C (0,t ),AP →=(1,0)+4(0,1)=(1,4)即P (1,4)且t >0.所以PB →·PC →=⎝ ⎛⎭⎪⎫1t -1,-4·(-1,t -4)=⎝ ⎛⎭⎪⎫1t -1×(-1)-4×(t -4)=17-1t -4t ≤17-21t ×4t=13(当且仅当1t =4t ,即t =12时取等号),所以PB →·PC →的最大值为13,故选A.[答案] A(2)[2014·全国卷Ⅱ]已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.[解析]作出函数f (x )的大致图象如图所示, 因为f (x -1)>0,所以-2<x -1<2, 解得-1<x <3.则x 的取值范围为(-1,3). [答案] (-1,3)数形结合思想解决不等式(或求参数范围)的解题思路求参数范围或解不等式问题时经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化成数量关系来解决问题,往往可以避免繁琐的运算,获得简捷的解答.【针对训练2】 (1)使log 2(-x )<x +1成立的x 的取值范围是________. 答案 (-1,0)解析 在同一坐标系中,分别作出y =log 2(-x ),y =x +1的图象,由图可知,x 的取值范围是(-1,0).(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________. 答案 ⎝ ⎛⎦⎥⎤-∞,12解析 作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.考点利用数形结合求最值典例3(1)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎨⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49[解析] 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点A (6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.故选C.[答案] C(2)已知P 是直线l :3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,则四边形P ACB 面积的最小值为________.[解析] 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形P AC 的面积S Rt △P AC =12|P A |·|AC |=12|P A |越来越大,从而S 四边形P ACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形P ACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直于直线l 时,S 四边形P ACB 应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3, 从而|P A |=|PC |2-|AC |2=2 2.所以(S 四边形P ACB )min =2×12×|P A |×|AC |=2 2. [答案] 2 2利用数形结合思想解决最值问题的一般思路利用数形结合的思想可以求与几何图形有关的最值问题,也可以求与函数有关的一些量的取值范围或最值问题.(1)对于几何图形中的动态问题,应分析各个变量的变化过程,找出其中的相互关系求解.(2)对于求最大值、最小值问题,先分析所涉及知识,然后画出相应图象,数形结合求解.【针对训练3】 [2016·潍坊模拟]已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8,设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值),记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =( )A .16B .-16C .a 2-2a -16D .a 2+2a -16答案 B解析 H 1(x )=max{f (x ),g (x )}=⎩⎨⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).H 2(x )=min{f (x ),g (x )}=⎩⎨⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ).由f (x )=g (x )⇒x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8,解得x 1=a -2,x 2=a +2.而函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8的图象的对称轴恰好分别为x =a +2,x =a -2,可见二者图象的交点正好在它们的顶点处,如图1所示,因此H 1(x ),H 2(x )的图象分别如图2,图3所示(图中实线部分)可见,A =H 1(x )min =f (a +2)=-4a -4,B =H 2(x )max =g (a -2)=12-4a ,从而A -B =-16.考点数形结合思想在解析几何中的应用典例4 已知F 1、F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆外,则双曲线离心率的取值范围是( )A .(1,2)B .(2,3)C .(3,2)D .(2,+∞)[解析] 如图所示,过点F 2(c,0)且与渐近线y =b a x 平行的直线为y =ba (x -c ),与另一条渐近线y =-ba x 联立得⎩⎪⎨⎪⎧y =ba (x -c ),y =-ba x ,解得⎩⎪⎨⎪⎧x =c2,y =-bc2a ,即点M ⎝ ⎛⎭⎪⎫c2,-bc 2a .∴|OM |=⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫-bc 2a 2=c21+⎝ ⎛⎭⎪⎫b a 2 ∵点M 在以线段F 1F 2为直径的圆外, ∴|OM |>c , 即c 21+⎝ ⎛⎭⎪⎫b a 2>c ,得 1+⎝ ⎛⎭⎪⎫b a 2>2. ∴双曲线离心率e =ca =1+⎝ ⎛⎭⎪⎫b a 2>2. 故双曲线离心率的取值范围是(2,+∞).故选D.[答案] D数形结合在解析几何中的解题策略(1)数形结合思想中一个非常重要的方面是以数解形,通过方程等代数方法来研究几何问题,也就是解析法,解析法与几何法结合来解题,会有更大的功效.(2)此类题目的求解要结合该曲线的定义及几何性质,将条件信息和结论信息结合在一起,观察图形特征,转化为代数语言,即方程(组)或不等式(组),从而将问题解决.【针对训练4】 已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1e 2的取值范围是( )A .(0,+∞)B.⎝ ⎛⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫15,+∞D.⎝ ⎛⎭⎪⎫19,+∞ 答案 B解析 如图,由题意知r 1=10,r 2=2c ,且r 1>r 2.e 2=2c 2a 双=2c r 1-r 2=2c10-2c =c 5-c ;e 1=2c 2a 椭=2c r 1+r 2=2c 10+2c =c 5+c.∵三角形两边之和大于第三边,∴2c +2c >10,∴c >52, ∴e 1e 2=c 225-c 2=125c 2-1>13,因此选B.。

高考数学二轮复习 教师用书2 专题二-专题三

高考数学二轮复习 教师用书2 专题二-专题三

2017届高考数学二轮复习 教师用书2 专题二-专题三第1讲 三角函数的图象与性质高考定位 三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,主要涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.真 题 感 悟1.(2016·全国Ⅱ卷)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( ) A.x =k π2-π6(k ∈Z ) B.x =k π2+π6(k ∈Z )C.x =k π2-π12(k ∈Z ) D.x =k π2+π12(k ∈Z ) 解析 由题意将函数y =2sin 2x 的图象向左平移π12个单位长度后得到函数的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x +π6,由2x +π6=k π+π2得函数的对称轴为x =k π2+π6(k ∈Z ),故选B. 答案 B2.(2015·安徽卷)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A.f (2)<f (-2)<f (0)B.f (0)<f (2)<f (-2)C.f (-2)<f (0)<f (2)D.f (2)<f (0)<f (-2)解析 由于f (x )的最小正周期为π,∴ω=2,即f (x )=A sin(2x +φ),又当x =2π3时,2x +φ=4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ),又φ>0,∴φmin =π6,故f (x )=A sin(2x +π6).于是f (0)=12A ,f (2)=A sin(4+π6),f (-2)=A sin ⎝⎛⎭⎪⎫-4+π6=A sin ⎝⎛⎭⎪⎫13π6-4,又∵-π2<5π6-4<4-7π6<π6<π2,其中f (2)=A sin ⎝ ⎛⎭⎪⎫4+π6=A sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫4+π6=A sin ⎝ ⎛⎭⎪⎫5π6-4,f (-2)=A sin ⎝⎛⎭⎪⎫13π6-4=A sin ⎣⎢⎡⎦⎥⎤π-⎝⎛⎭⎪⎫13π6-4=A sin ⎝⎛⎭⎪⎫4-7π6.又f (x )在⎝ ⎛⎭⎪⎫-π2,π2内单调递增,∴f (2)<f (-2)<f (0),故选A. 答案 A3.(2016·浙江卷)设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( ) A.与b 有关,且与c 有关 B.与b 有关,但与c 无关 C.与b 无关,且与c 无关D.与b 无关,但与c 有关解析 因为f (x )=sin 2x +b sin x +c =-cos 2x 2+b sin x +c +12,其中当b =0时,f (x )=-cos 2x 2+c +12,f (x )的周期为π;b ≠0时,f (x )的周期为2π.即f (x )的周期与b 有关但与c 无关,故选B. 答案 B4.(2016·全国Ⅰ卷)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5解析 因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT2,得T =2π2k +1(k ∈Z ),则ω=2k +1(k ∈Z ),又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,又当k =5时,ω=11,φ=-π4,f (x )在⎝ ⎛⎭⎪⎫π18,5π36上不单调;当k =4时,ω=9,φ=π4,f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,满足题意.由此得ω的最大值为9,故选B. 答案 B考 点 整 合1.常用三种三角函数的易误性质 函数y =sin x y =cos x y =tan x图象单调性在⎣⎢⎡-π2+2k π,⎦⎥⎤π2+2k π(k ∈Z )上单调递增;在⎣⎢⎡π2+2k π,⎦⎥⎤3π2+2k π(k ∈Z )上单调递减在[-π+2k π,2k π](k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在⎝ ⎛-π2+k π,⎭⎪⎫π2+k π(k ∈Z )上单调递增对称性对称中心:(k π,0)(k ∈Z );对称轴:x =π2+k π(k ∈Z )对称中心:⎝⎛⎭⎪⎫π2+k π,0(k ∈Z );对称轴:x =k π(k ∈Z )对称中心:⎝ ⎛⎭⎪⎫k π2,0(k ∈Z )2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.(2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换热点一 三角函数的图象[微题型1] 三角函数的图象变换【例1-1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx +φ 0π2 π3π2 2π xπ3 5π6 A sin(ωx +φ)5-5(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:ωx +φ 0 π2 π 3π2 2π x π12 π3 7π12 5π6 1312π A sin(ωx +φ)5-5且函数表达式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6. 探究提高 在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.[微题型2] 由三角函数图象求其解析式【例1-2】 函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝ ⎛⎭⎪⎫π3的值为______.解析 根据图象可知,A =2,3T 4=11π12-π6=3π4,所以周期T =π,由ω=2πT=2.又函数过点⎝⎛⎭⎪⎫π6,2,所以有sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,而0<φ<π.所以φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,因此f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=1.答案 1探究提高 已知图象求函数y =A sin ()ωx +φ(A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练1】 (2016·绍兴模拟)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.解 (1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2,即T =π,所以π=2πω,解得ω=2,故f (x )=sin(2x +φ).由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=k π,k ∈Z ,即φ=k π-π3,k ∈Z ,因为|φ|<π2,所以φ=-π3,故函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.(2)根据条件得g (x )=sin ⎝⎛⎭⎪⎫4x +π3,当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,所以当x =π8时,g (x )取得最小值,且g (x )min =12.热点二 三角函数的性质 [微题型1] 三角函数性质的应用【例2-1】 已知函数f (x )=sin(ωx +φ)+3cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0<|φ|<π2为奇函数,且函数y =f (x )的图象的两相邻对称轴之间的距离为π2.(1)求f ⎝ ⎛⎭⎪⎫π6的值; (2)将函数y =f (x )的图象向右平移π6个单位后,得到函数y =g (x )的图象,求函数g (x )的单调递增区间.解 (1)f (x )=sin(ωx +φ)+3cos(ωx +φ) =2⎣⎢⎡⎦⎥⎤12sin (ωx +φ)+32cos (ωx +φ)=2sin ⎝⎛⎭⎪⎫ωx +φ+π3. 因为f (x )为奇函数,所以f (0)=2sin ⎝ ⎛⎭⎪⎫φ+π3=0,又0<|φ|<π2,可得φ=-π3,所以f (x )=2sin ωx ,由题意得2πω=2·π2,所以ω=2.故f (x )=2sin 2x . 因此f ⎝ ⎛⎭⎪⎫π6=2sin π3= 3.(2)将f (x )的图象向右平移π6个单位后, 得到f ⎝⎛⎭⎪⎫x -π6的图象,所以g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3.当2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),即k π-π12≤x ≤k π+5π12(k ∈Z )时,g (x )单调递增,因此g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).探究提高 对于函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的求解,其基本方法是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间),但是当A >0,ω<0时,需先利用诱导公式变形为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间即为原函数的减区间,减区间即为原函数的增区间.[微题型2] 由三角函数的性质求参数【例2-2】 (1)(2015·湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.(2)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 解析 (1)由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx 得sin ωx =cos ωx ,∴tan ωx =1,ωx =k π+π4(k ∈Z ). ∵ω>0,∴x =k πω+π4ω(k ∈Z ). 设距离最短的两个交点分别为(x 1,y 1),(x 2,y 2),不妨取x 1=π4ω,x 2=5π4ω,则|x 2-x 1|=⎪⎪⎪⎪⎪⎪5π4ω-π4ω=πω.又结合图形知|y 2-y 1|=⎪⎪⎪⎪⎪⎪2×⎝ ⎛⎭⎪⎫-22-2×22=22, 且(x 1,y 1)与(x 2,y 2)间的距离为23, ∴(x 2-x 1)2+(y 2-y 1)2=(23)2, ∴⎝ ⎛⎭⎪⎫πω2+(22)2=12,∴ω=π2.(2)由f (x )在⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,得T 2≥π2-π6,即T ≥2π3;因为f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,所以f (x )的一条对称轴为x =π2+2π32=7π12;又因为f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,所以f (x )的一个对称中心的横坐标为π2+π62=π3.所以14T =7π12-π3=π4,即T =π.答案 (1)π2(2)π探究提高 此类题属于三角函数性质的逆用,解题的关键是借助于三角函数的图象与性质列出含参数的不等式,再根据参数范围求解.或者,也可以取选项中的特殊值验证. [微题型3] 三角函数图象与性质的综合应用【例2-3】 设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1. (1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域.解 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx + 3sin 2ωx +λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎪⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0, 即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴53x -π6∈⎣⎢⎡⎦⎥⎤-π6,2π3,∴函数f (x )的值域为[-1-2,2-2].探究提高 求三角函数最值的两条思路:(1)将问题化为y =A sin(ωx +φ)+B 的形式,结合三角函数的性质或图象求解;(2)将问题化为关于sin x 或cos x 的二次函数的形式,借助二次函数的性质或图象求解.【训练2】 (2016·浙江五校联考)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+sin 2x -cos 2x .(1)求函数f (x )的最小正周期及其图象的对称轴方程; (2)设函数g (x )=[f (x )]2+f (x ),求g (x )的值域. 解 (1)f (x )=12cos 2x +32sin 2x -cos 2x=sin ⎝⎛⎭⎪⎫2x -π6. 则f (x )的最小正周期为π, 由2x -π6=k π+π2(k ∈Z ),得x =k π2+π3(k ∈Z ),所以函数图象的对称轴方程为x =k π2+π3(k ∈Z ).(2)g (x )=[f (x )]2+f (x )=sin 2⎝ ⎛⎭⎪⎫2x -π6+sin ⎝⎛⎭⎪⎫2x -π6=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6+122-14. 当sin ⎝ ⎛⎭⎪⎫2x -π6=-12时,g (x )取得最小值-14,当sin ⎝⎛⎭⎪⎫2x -π6=1时,g (x )取得最大值2, 所以g (x )的值域为⎣⎢⎡⎦⎥⎤-14,2.1.已知函数y =A sin(ωx +φ)+B (A >0,ω>0)的图象求解析式 (1)A =y max -y min2,B =y max +y min2.(2)由函数的周期T 求ω,ω=2πT.(3)利用“五点法”中相对应的特殊点求φ. 2.运用整体换元法求解单调区间与对称性类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.(1)令ωx +φ=k π+π2(k ∈Z ),可求得对称轴方程;(2)令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标;(3)将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号. 3.函数y =A sin(ωx +φ)+B 的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B (一角一函数)的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.一、选择题1.(2016·山东卷)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B.π C.3π2D.2π解析 ∵f (x )=2sin x cos x +3(cos 2x -sin 2x )=sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T=π,故选B. 答案 B2.函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则将y =f (x )的图象向右平移π6个单位后,得到的图象的解析式为( )A.y =sin 2xB.y =cos 2xC.y =sin ⎝⎛⎭⎪⎫2x +2π3 D.y =sin ⎝⎛⎭⎪⎫2x -π6解析 由图象知A =1,34T =11π12-π6=3π4,T =π,∴ω=2,由sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,|φ|<π2得π3+φ=π2⇒φ=π6⇒f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,则图象向右平移π6个单位后得到的图象的解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π6=sin ⎝ ⎛⎭⎪⎫2x -π6.答案 D3.(2016·温州模拟)已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫7π12=0,则ω取最小值时φ的值为( )A.π6B.π3C.2π3D.5π6解析 由7π12-π3=π4≥14×2πω,解得ω≥2,故ω的最小值为2.此时sin ⎝ ⎛⎭⎪⎫2×7π12+φ=0,即sin ⎝ ⎛⎭⎪⎫π6+φ=0,又0<φ<π,所以φ=5π6.答案 D4.(2016·北京卷)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( ) A.t =12,s 的最小值为π6B.t =32,s 的最小值为π6 C.t =12,s 的最小值为π3D.t =32,s 的最小值为π3解析 点P ⎝⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上,则t =sin ⎝⎛⎭⎪⎫2×π4-π3=sin π6=12. 又由题意得y =sin ⎣⎢⎡⎦⎥⎤2(x +s )-π3=sin 2x ,故s =π6+k π,k ∈Z ,所以s 的最小值为π6.答案 A5.(2016·唐山期末)已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,且f (x )在区间⎝⎛⎭⎪⎫π6,π2上递减,则ω=( )A.3B.2C.6D.5解析 ∵f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3,f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0.∴当x =π6+π22=π3时,f (x )=0.∴π3ω+π3=k π,k ∈Z ,∴ω=3k -1,k ∈Z ,排除A 、C ; 又f (x )在⎝ ⎛⎭⎪⎫π6,π2上递减,把ω=2,ω=5代入验证,可知ω=2. 答案 B 二、填空题6.(2016·浙江卷)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.解析 ∵2cos 2x +sin 2x =cos 2x +1+sin 2x =2⎝⎛⎭⎪⎫22cos 2x +22sin 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1=A sin(ωx +φ)+b (A >0),∴A =2,b =1. 答案2 17.(2016·江苏卷)定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.解析 在区间[0,3π]上分别作出y =sin 2x 和y =cos x 的简图如下:由图象可得两图象有7个交点. 答案 78.(2015·天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,则ω2=π4,所以ω=π2. 答案π2三、解答题9.已知函数f (x )=4sin 3x cos x -2sin x cos x -12cos 4x .(1)求函数f (x )的最小正周期及单调递增区间;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.解 f (x )=2sin x cos x ()2sin 2x -1-12cos 4x=-sin 2x cos 2x -12cos 4x=-12sin 4x -12cos 4x=-22sin ⎝⎛⎭⎪⎫4x +π4.(1)函数f (x )的最小正周期T =2π4=π2.令2k π+π2≤4x +π4≤2k π+3π2,k ∈Z ,得k π2+π16≤x ≤k π2+5π16,k ∈Z . 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π2+π16,k π2+5π16,k ∈Z .(2)因为0≤x ≤π4,所以π4≤4x +π4≤5π4.此时-22≤sin ⎝⎛⎭⎪⎫4x +π4≤1,所以-22≤-22sin ⎝⎛⎭⎪⎫4x +π4≤12,即-22≤f (x )≤12.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值分别为12,-22.10.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+33sin 2x -33cos 2x .(1)求f (x )的最小正周期及其图象的对称轴方程; (2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )的图象,求g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域. 解 (1)f (x )=12sin 2x +32cos 2x -33cos 2x=12sin 2x +36cos 2x =33sin ⎝ ⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期为T =2π2=π.令2x +π6=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ),(2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )=33sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+π6=-33cos 2x 的图象,即g (x )=-33cos 2x .当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,2x ∈⎣⎢⎡⎦⎥⎤-π3,2π3,可得cos 2x ∈⎣⎢⎡⎦⎥⎤-12,1,所以-33cos 2x ∈⎣⎢⎡⎦⎥⎤-33,36, 即函数g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域是⎣⎢⎡⎦⎥⎤-33,36.11.已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间. 解 (1)由题意知f (x )=a ·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2, 所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )= 3 sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.由题意知g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6.设y =g (x )的图象上符合题意的最高点为(x 0,2), 由题意知x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1,因为0<φ<π,所以φ=π6. 因此g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z , 得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z . 第2讲 三角恒等变换与解三角形高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2.正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题.真 题 感 悟1.(2016·全国Ⅲ卷)若tan α=34,则cos 2α+2sin 2α=( )A.6425B.4825C.1D.1625解析 tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425. 答案 A2.(2016·全国Ⅱ卷)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b =________.解析 在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113.答案21133.(2015·全国Ⅰ卷)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析 如图所示,延长BA ,CD 交于点E ,则可知在△ADE 中,∠DAE =105°,∠ADE =45°,∠E =30°,∴设AD =12x ,则AE =22x ,DE =6+24x ,令CD =m ,∵BC =2, ∴⎝⎛⎭⎪⎫6+24x +m ·sin 15°=1⇒6+24x +m =6+2, ∴0<x <4,而AB =6+24x +m -22x =6-24x +m =6+2-22x , ∴AB 的取值范围是(6-2,6+2). 答案 (6-2,6+2)4.(2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知 2cos C (a cos B +b cos A )=c . (1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C , 2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cosC =7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7.考 点 整 合1.三角函数公式(1)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(2)诱导公式:对于“k π2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.(4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin2α.2.正、余弦定理、三角形面积公式(1)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C=2R (R 为△ABC 外接圆的半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R;a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ;推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab;变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A .热点一 三角恒等变换及应用【例1】 (1)(2015·重庆卷)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( )A.1B.2C.3D.4(2)已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________.(3)(2016·合肥质检)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.则sin 2α=________.解析 (1)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin α·cos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.(2)∵α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=35>0, ∴α+π6为锐角,∴sin ⎝ ⎛⎭⎪⎫α+π6=45, 则sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2×45×35=2425,又cos ⎝ ⎛⎭⎪⎫2α-π6=sin ⎝ ⎛⎭⎪⎫2α+π3,∴cos ⎝⎛⎭⎪⎫2α-π6=2425.(3)cos ⎝⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12. ∵α∈⎝⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32, ∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.答案 (1)C (2)2425 (3)12探究提高 1.解决三角函数的化简求值问题的关键是把“所求角”用“已知角”表示 (1)当已知角有两个时,“所求角”一般表示为“两个已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 【训练1】 (1)已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4=( )A.16 B.13 C.12D.23(2)(2016·成都模拟)sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=( ) A.-63B.-66C.66D.63(3)(2016·中山模拟)已知cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β=________.解析 (1)法一 cos 2⎝ ⎛⎭⎪⎫α+π4=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2α+π2 =12(1-sin 2α)=16. 法二 cos ⎝ ⎛⎭⎪⎫α+π4=22cos α-22sin α.所以cos 2⎝ ⎛⎭⎪⎫α+π4=12(cos α-sin α)2=12(1-2sin αcos α) =12(1-sin 2α)=16. (2)sin(π-α)=sin α=-53,又α∈⎝ ⎛⎭⎪⎫π,3π2,∴cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-532=-23.由cos α=2cos 2α2-1,α2∈⎝ ⎛⎭⎪⎫π2,3π4,得cos α2=-cos α+12=-66. 所以sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-66. (3)因为cos(2α-β)=-1114,且π4<2α-β<π, 所以sin(2α-β)=5314.因为sin(α-2β)=437,且-π4<α-2β<π2.所以cos(α-2β)=17,所以cos(α+β)=cos[(2α-β)-(α-2β)]=cos(2α-β)cos(α-2β)+sin(2α-β)sin(α-2β)=-1114×17+5314×437=12.又π4<α+β<3π4,所以α+β=π3. 答案 (1)A (2)B (3)π3热点二 正、余弦定理的应用 [微题型1] 三角形基本量的求解【例2-1】 (2016·四川卷)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos Bb=sin Cc.(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0),则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c中,有cos A k sin A +cos B k sin B =sin Ck sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C . (2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.探究提高 1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”.[微题型2] 求解三角形中的最值问题【例2-2】 (2016·绍兴模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.解 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1,所以sin ⎝⎛⎭⎪⎫A -π6=12.又0<A <π,所以A =π3.(2)法一 由(1)得B +C =2π3⇒C =2π3-B ⎝ ⎛⎭⎪⎫0<B <2π3,由正弦定理得a sin A =b sin B =csin C =2sinπ3=43, 所以b =43sin B ,c =43sin C .所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎪⎫2π3-B =433⎝ ⎛⎭⎪⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝ ⎛⎭⎪⎫2B -π6+33. 易知-π6<2B -π6<7π6,故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc+4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c =2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.探究提高 求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值.(2)将要求的量转化为边的形式,借助于基本不等式求最值. [微题型3] 解三角形与三角函数的综合问题【例2-3】 (2016·四川成都诊断二)已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx ,1),其中ω>0,x ∈R .若函数f (x )=m ·n 的最小正周期为π. (1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA →·BC →的值.解 (1)f (x )=m ·n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin 2ωx +cos 2ωx =2sin ⎝⎛⎭⎪⎫2ωx +π6. ∵f (x )的最小正周期为π, ∴T =2π2|ω|=π.∵ω>0,∴ω=1.(2)设△ABC 中角A ,B ,C 所对的边分别是a ,b ,c . ∵f (B )=-2,∴2sin ⎝ ⎛⎭⎪⎫2B +π6=-2, 即sin ⎝ ⎛⎭⎪⎫2B +π6=-1,解得B =2π3(B ∈(0,π)).∵BC =3,∴a =3,∵sin B =3sin A , ∴b =3a ,∴b =3. 由正弦定理,有3sin A =3sin2π3, 解得sin A =12.∵0<A <π3,∴A =π6.∴C =π6,∴c =a = 3.∴BA →·BC →=ca cos B =3×3×cos 2π3=-32.探究提高 解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【训练2】 (2016·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B + sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin 2B =sin B cos B ,因sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B . 当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.1.对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.2.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.3.解答与三角形面积有关的问题时,如已知某一内角的大小或三角函数值,就选择S =12ab sinC 来求面积,再利用正弦定理或余弦定理求出所需的边或角.一、选择题1.已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C.-34D.-43解析 ∵sin α+2cos α=102, ∴sin 2 α+4sin α·cos α+4cos 2α=52.用降幂公式化简得4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.答案 C2.(2016·宁波二模)已知锐角△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,23cos 2A +cos 2A =0,a =7,c =6,则b =( ) A.10 B.9 C.8D.5解析 化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,又角A 为锐角, 解得cos A =15,由a 2=b 2+c 2-2bc cos A ,得b =5. 答案 D3.(2016·全国Ⅲ卷)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010 B.1010C.-1010D.-31010解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD =1,tan∠CAD =2,tan A =1+21-1×2=-3,所以cos A =-1010.答案 C4.(2014·新课标全国Ⅰ卷)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A.3α-β=π2B.2α-β=π2C.3α+β=π2D.2α+β=π2解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin ⎝⎛⎭⎪⎫π2-α.∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝⎛⎭⎪⎫0,π2,∴由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α,∴2α-β=π2.答案 B5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A.3 B.932C.332D.33解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6①.∵C =π3,由余弦定理得c 2=a 2+b 2-ab ②,由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C. 答案 C 二、填空题6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析 ∵cos A =-14,0<A <π,∴sin A =154,S △ABC =12bc sin A =12bc ×154=315,∴bc =24, 又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52,由余弦定理得,a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8.答案 87.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析 在△ABC 中,AB =600,∠BAC =30°,∠ACB =75°-30°=45°,由正弦定理得BCsin ∠BAC =AB sin ∠ACB ,即BC sin 30°=600sin 45°,所以BC =300 2.在Rt △BCD 中,∠CBD =30°,CD =BC tan ∠CBD =3002·tan 30°=100 6. 答案 10068.(2016·杭州模拟)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.解析 ∵sin A +2sin B =2sin C . 由正弦定理可得a +2b =2c ,即c =a +2b2,cos C =a 2+b 2-c 22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24,当且仅当3a 2=2b 2即a b=23时等号成立.∴cos C 的最小值为6-24. 答案6-24三、解答题9.(2016·北京卷)在△ABC 中,a 2+c 2=b 2+2ac . (1)求角B 的大小;(2)求2cos A +cos C 的最大值.解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac .由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.又0<B <π,所以B =π4.(2)A +C =π-B =π-π4=3π4,所以C =3π4-A ,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎪⎫3π4-A=2cos A +cos 3π4cos A +sin 3π4sin A=2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎪⎫A +π4,∵0<A <3π4,∴π4<A +π4<π,故当A +π4=π2,即A =π4时,2cos A +cos C 取得最大值为1.10.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.解 (1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去),因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20,又b =5,知c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21.又由正弦定理得sin B sin C =ba sin A ·c asin A =bc a 2sin 2A =2021×34=57. 11.(2015·山东卷)设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z,可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z , 可得π4+k π≤x ≤3π4+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,当且仅当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.\ 第3讲 平面向量高考定位 1.以选择题、填空题的形式考查向量的线性运算,多以熟知的平面图形为背景,难度中低档;2.以选择题、填空题的形式考查平面向量的数量积,多考查角、模等问题,难度中低档;3.向量作为工具常与三角函数、解三角形、不等式、解析几何等结合,以解答题形式出现.真 题 感 悟1.(2016·北京卷)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件. 答案 D2.(2016·山东卷)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( ) A.4 B.-4 C.94D.-94解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t ·m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.答案 B3.(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析 由|a +b |2=|a |2+|b |2,得a ⊥b ,所以m ×1+1×2=0,得m =-2. 答案 -24.(2016·浙江卷)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________. 解析 法一 由已知可得:6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e | 由于上式对任意单位向量e 都成立. ∴6≥|a +b |成立.∴6≥(a +b )2=a 2+b 2+2a ·b =12+22+2a ·b . 即6≥5+2a ·b ,∴a ·b ≤12.法二 由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6可得|cos α|+2|cos β|≤ 6 ①.令sin α+2sin β=m ②, ①2+②2得4[|cos α cos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1.故a ·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案 12考 点 整 合1.平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一一个实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底. 2.平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 3.平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则。

2017届高三数学文二轮复习教师用书:策略一 学选择、

2017届高三数学文二轮复习教师用书:策略一 学选择、

高中数学题分客观题与主观题两大类,而客观题分为选择题与填空题,选择题属于“小灵通”题,其解题过程“不讲道理”,所以解答选择题的基本策略是:充分地利用题干和选项两方面的条件所提供的信息作出判断,先定性后定量,先特殊后推理,先间接后直接,先排除后求解.而填空题是不要求写出计算或推理过程,只需要将结论直接写出的“求解题”.解答此类题目的方法一般有直接法、特例法、数形结合法、构造法、排除法等.定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.[典例] (1)(2016·全国丙卷)若z =4+3i ,则=( )A .1B .-1 C.45+35i D.45-35i [解析] ∵z =4+3i ,∴=4-3i ,|z |=42+32=5,∴=4-3i 5=45-35i.[答案] D(2)(2016·江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.[解析] 设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.[答案] 20直接法是解决计算型客观题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解客观题的关键. [技法领悟][应用体验]1.(2016·海口调研)设全集U =R ,集合A ={x |7-6x ≤0},集合B ={x |y =lg(x +2)},则(∁U A )∩B 等于( )A.⎝⎛⎭⎫-2,76B.⎝⎛⎭⎫76,+∞ C.⎣⎡⎭⎫-2,76 D.⎝⎛⎭⎫-2,-76 解析:选A 依题意得A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥76,∁U A ={x |x <76};B ={x |x +2>0}={x |x >-2},因此(∁U A )∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <76,选A. 2.(2016·合肥质检)若a ,b 都是正数,则⎝⎛⎭⎫1+b a ·⎝⎛⎭⎫1+4a b 的最小值为( ) A .7 B .8 C .9 D .10解析:选C 因为a ,b 都是正数,所以⎝⎛⎭⎫1+b a (1+4a b )=5+b a +4ab ≥5+2 b a ·4ab=9,当且仅当b =2a 时取等号,选项C 正确.3.(2016·福建质检)已知cos ⎝⎛⎭⎫α+π2=13,则cos 2α的值等于( )A.79 B .-79 C.89 D .-89解析:选A 法一:因为cos ⎝⎛⎭⎫α+π2=13,所以sin α=-13,所以cos α=±223,所以cos 2α=cos 2α-sin 2α=⎝⎛⎭⎫±2232-⎝⎛⎭⎫-132=79,故选A. 法二:因为cos ⎝⎛⎭⎫α+π2=13,所以sin α=-13,所以cos 2α=1-2sin 2α=1-2×19=79,故选A.4.(2016·武汉调研)已知直线y =233x 和椭圆x 2a 2+y 2b 2=1(a >b >0)交于不同的两点M ,N ,若点M ,N 在x 轴上的射影恰好为椭圆的两个焦点,则椭圆的离心率e =( )A.22 B.32 C.33 D.23解析:选C 由题意知,直线与椭圆的两交点分别为⎝⎛⎭⎫c ,b 2a ,⎝⎛⎭⎫-c ,-b 2a ,则有-b 2a -b 2a -c -c =233,整理得3b 2=23ac ,即3(a 2-c 2)=23ac ,亦即3e 2+23e -3=0,解得e =33或e=-3(舍),故选C.数或图形位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.[典例](1)如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,那么() A.a1a8>a4a5B.a1a8<a4a5C.a1+a8>a4+a5D.a1a8=a4a5[解析]取特殊数列1,2,3,4,5,6,7,8,显然只有1×8<4×5成立.[答案] B(2)(2015·四川高考)设四边形ABCD为平行四边形,.若点M,N满足,,则=() A.20 B.15 C.9 D.6[解析]法一:(特例法)若四边形ABCD为矩形,建系如图.由知M(6,3),N(4,4)∴=(6,3),=(2,-1)=6×2+3×(-1)=9.法二:如图所示,由题设知:∴=13×36-316×16=9.[答案] C[技法领悟]特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点:第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.[应用体验]1.设[x ]表示不大于x 的最大整数,则对任意实数x ,有( ) A .[-x ]=-[x ] B.⎣⎡⎦⎤x +12=[x ] C .[2x ]=2[x ] D .[x ]+⎣⎡⎦⎤x +12=[2x ] 解析:选D 当x =12时,可排除A 、B 、C.2.如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1 D.3∶1解析:A 1,Q →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有VC ­AA 1B =VA 1­ABC =VABC -A 1B 1C 13.故过P ,Q ,C 三点的截面把棱柱分成的两部分体积之比为2∶1(或1∶2).3.已知等比数列{a n }满足a n >0,n =1,2,3,…,且a 5·a 2n -5=22n (n ≥3),当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:选C 因为a 5·a 2n -5=22n (n ≥3),所以令n =3,代入得a 5·a 1=26,再令数列为常数列,得每一项为8,则log 2a 1+log 2a 3+log 2a 5=9=32.4.设椭圆C :x 24+y 23=1的长轴的两端点分别是M ,N ,P 是C 上异于M ,N 的任意一点,则PM 与PN 的斜率之积等于________.解析:取特殊点,设P 为椭圆的短轴的一个端点(0,3),又M (-2,0),N (2,0), 所以k PM ·k PN =32·3-2=-34. 答案:-34起来思考,促使抽象思维和形象思维有机结合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决的方法.[典例] (1)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x+1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}[解析] 令g (x )=log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2(x +1), 得⎩⎪⎨⎪⎧x =1,y =1. ∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. [答案] C(2)(2016·北京高考)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.[解析] 当x ≤a 时,由f ′(x )=3x 2-3=0,得x =±1.如图是函数y =x 3-3x 与y =-2x 在没有限制条件时的图象. ①若a =0,则f (x )max =f (-1)=2. ②当a ≥-1时,f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >(x 3-3x )max ,所以a <-1.[答案] ①2 ②(-∞,-1)[技法领悟]平面几何图形、Venn 图、三角函数线、函数的图象等,都是常用的图形.利用函数图象或某些数学知识的几何意义,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,再辅以简单计算,确定正确答案,从而有效地降低这类客观题的错误率.[应用体验]1.(2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12解析: 选C 作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.2.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为( )A .60°B .90°C .120°D .150°解析:选B 如图,因为〈a ,b 〉=120°,|b |=2|a |,a +b +c =0,所以在△OBC 中,BC 与CO 的夹角为90°,即a 与c 的夹角为90°.3.(2016·四川高考)已知正三角形ABC 的边长为23,平面ABC 内的动点P ,M 满足=1,,则的最大值是( )A.434B.494C.37+634D.37+2334解析:选B 设BC 的中点为O ,以点O 为原点建立如图所示的平面直角坐标系,则B (-3,0),C (3,0),A (0,3).又=1,∴点P 的轨迹方程为x 2+(y -3)2=1.由知点M 为PC 的中点,设M 点的坐标为(x ,y ),相应点P 的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧x 0+32=x ,y 0+02=y ,∴⎩⎨⎧x 0=2x -3,y 0=2y ,∴(2x -3)2+(2y -3)2=1, 即⎝⎛⎭⎫x -322+⎝⎛⎭⎫y -322=14, ∴点M 的轨迹是以H ⎝⎛⎭⎫32,32为圆心,r =12为半径的圆,∴|BH |=⎝⎛⎭⎫32+32+⎝⎛⎭⎫322=3, ∴|BM |的最大值为3+r =3+12=72,∴的最大值为494.4.(2015·湖南高考)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.解析:由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示,则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. 答案:(0,2)从而简化推理与计算过程,使较复杂的数学问题得到解决.它需要对基础知识和基本方法进行积累,从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到的类似问题中寻找灵感,构造出相应的具体的数学模型,使问题简化.[典例] 如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.[解析] 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.[答案] 6π[技法领悟]构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.[应用体验]1.(2016·全国丙卷)已知a =243,b =323,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A a =243=423,b =323,c =2513=523.∵y =x 23在第一象限内为增函数,又5>4>3,∴c >a >b .2.已知三个互不重合的平面α,β,γ,α∩β=m ,n ⊂γ,且直线m ,n 不重合,由下列三个条件:①m ∥γ,n ⊂β;②m ∥γ,n ∥β;③m ⊂γ,n ∥β.能推得m ∥n 的条件是________(填序号).解析:构建长方体模型,如图,观察选项特点,可优先判断条件②:取平面α为平面ADD ′A ′,平面β为平面ABCD ,则直线m 为直线AD .因m ∥γ,故可取平面γ为平面A ′B ′C ′D ′,因为n ⊂γ且n ∥β,故可取直线n 为直线A ′B ′.则直线AD 与直线A ′B ′为异面直线,故m与n 不平行;对于①:α,β取②中平面,取平面γ为平面BCC ′B ′,可取直线n 为直线BC ,故可推得m ∥n ;对于③:α,β取②中平面,取γ为平面AB ′C ′D ,取直线n 为直线B ′C ′故可推得结论.答案:①③答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰选项逐一排除,从而获得正确结论.[典例] (1)(2016·浙江高考)函数y =sin x 2的图象是( )[解析] ∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =±π2时,y =sin x 2=1,而π2<π2,且y =sin π24<1,故D 项正确. [答案] D(2)(2016·北京高考)已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0 B .sin x -sin y >0 C.⎝⎛⎭⎫12x-⎝⎛⎭⎫12y<0 D .ln x +ln y >0[解析] 因为x >y >0,选项A ,取x =1,y =12,则1x -1y =1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sin π-sin π2=-1<0,排除B ;选项D ,取x =2,y =12,则ln x +ln y =ln(xy )=ln 1=0,排除D ,故选C.[答案] C[技法领悟](1)排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.(2)排除法有时会与特例法相结合,通过取一些特殊值,排除错误选项,得到正确答案.[应用体验]1.(2016·福建质检)已知a >0,b >0,则“ab >1”是“a +b >2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为a >0,b >0,若ab >1,则a +b ≥2ab >2,所以ab >1可以推出a +b >2;反之,若a +b >2,取a =3,b =0.2,满足a +b >2,但不能推出ab >1,所以“ab >1”是“a +b >2”的充分不必要条件,故选A.2.方程ax 2+2x +1=0至少有一个负根的充要条件是( ) A .0<a ≤1 B .a <1 C .a ≤1 D .0<a ≤1或a <0解析:选C 当a =0时,x =-12,故排除A 、D.当a =1时,x =-1,排除B.3.函数f (x )=sin x -13-2cos x -2sin x (0≤x ≤2π)的值域是( ) A.⎣⎡⎦⎤-22,0 B.[]-1,0 C.[]-2,-1 D.⎣⎡⎦⎤-33,0 解析:选B 令sin x =0,cos x =1,则f (x )=0-13-2×1-2×0=-1,排除A 、D ;令sin x =1,cos x =0,则f (x )=1-13-2×0-2×1=0,排除C. 4.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x>1,则函数y =f (1-x )的大致图象是( )解析:选D 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当x =-13时,y =f ⎝⎛⎭⎫43=log 1343<0,即y =f (1-x )的图象过点⎝ ⎛⎭⎪⎫-13,log 1343,排除C.。

高三数学二轮复习 教师用书 文

高三数学二轮复习 教师用书 文

(通用版)2017届高三数学二轮复习教师用书文当你打开本书,你会发现她与众不同:她不同——没有按传统目录去编排;她不同——没有按固定体例去“套”.传统目录太“老”——已不能适应全国卷的高考.全国卷考什么,怎么考,传统目录区分度不高,指导性不明.“方向比努力更重要”,这一点,对二轮复习尤显重要!体例固定太“板”——二轮复习时间紧、任务重,该学什么,怎么学,如果再轻重不分,难易无别,一条道走到黑,哪有这么多时间任你我折腾!当研究完全国新课标卷近5年的高考题,你就会发现,本书的编排设计竟是如此的精妙!因为高考这样考,所以本书这样编排设计[全国课标卷5年考情统计分析]一、30%的题目是基础题目,主要集中在6大知识点进行命题(一)集合与常用逻辑用语1.集合作为高考必考内容,多年来命题较稳定,多在第1题的位置以选择题形式进行考查,难度较小,命题的热点依然会集中在集合的运算上,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的频率较低,且命题点分散,其中含有量词的命题的否定、充分必要条件的判断需要关注,多结合函数、平面向量、三角函数、不等式、数列等内容命题.(二)平面向量[命题分析]1.平面向量是高考必考内容,每年每卷均有一个小题(选择题或填空题),一般出现在第2~6或第13~15题的位置上,难度较低,主要考查平面向量的模、数量积的运算、线性运算等,数量积是其考查的热点.2.有时也会以平面向量为载体,与三角函数、解析几何等其他知识相交汇综合命题,难度中等.(三)不等式[命题分析]1.不等式作为高考命题热点内容之一,多以选择题、填空题的形式进行考查,直接考查时主要是简单的线性规划问题,关于不等式性质的应用、不等式的解法以及基本不等式的应用,主要体现在其工具作用上.2.题目多出现在第13~15题的位置上,难度中等,但命题的模式比较固定,只要平时多加练习得分不难.3.若不等式与函数、导数、数列等其他知识交汇综合命题,难度较大.(四)空间几何体的三视图、表面积与体积[1.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).2.考查一个小题时,本小题一般会出现在第6~7题的位置上,难度一般;考查2个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第9~11题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.(五)算法、复数、推理与证明[1.高考对复数的考查重点是其代数形式的四则运算(特别是乘、除法),也涉及复数的概念及几何意义等知识,题目多出现在第2~3题的位置,难度较小,纯属送分题目.2.高考对算法的考查,每年平均有一道小题,一般出现在6~9题的位置上,难度中等偏下,都是考查程序框图,热点是循环结构和条件结构,有时综合性较强,其背景涉及数列、统计等知识.3.在全国课标卷中很少直接考查“推理与证明”,特别是合情推理,而演绎推理,则主要体现在对问题的证明上.(六)统计与统计案例[命题分析]1.统计与统计案例是高考命题的热点之一,从题型上看,多为选择题和解答题.2.选择题常出现在第3~4题的位置,多考查统计图表的识别、抽样方法的选取、变量间的相关性判断等,难度较小.3.解答题常出现在第18~19题的位置,多考查用最小二乘法求线性回归方程、样本的相关性检验、用样本估计总体等,难度中等.二、50%的题目是中等题目,主要集中在12个命题点上(七)函数的图象与性质[命题分析]1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等,主要考查求函数的定义域,分段函数函数值的求解或分段函数中参数的求解及函数图象的识别.题型多以选择题、填空题形式考查,一般出现在第9~11或第13~15题位置上,难度中等.2.此部分内容有时出现在选择题、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题.(八)基本初等函数、函数与方程1.基本初等函数作为高考的命题热点,多考查利用函数的性质比较大小,一般出现在第7~11题的位置,有时难度较大.2.函数的应用问题多体现在函数零点与方程根的综合问题上,近几年全国课标卷考查较少,但也要引起重视,题目可能较难.(九)导数的简单应用[命题分析]1.此部分内容是高考命题的热点内容.在选择题、填空题中多考查导数的几何意义,难度较小.2.应用导数研究函数的单调性、极值、最值,多在选择题、填空题最后几题的位置考查,难度中等偏上,属综合性问题.(十)三角函数的图象与性质[1.高考对此部分内容的命题主要集中于三角函数的定义、图象与性质,主要考查图象的变换,函数的单调性、奇偶性、周期性、对称性及最值,并常与三角恒等变换交汇命题.2.主要以选择、填空题的形式考查,难度为中等偏下,大多出现在第6~11或第14题位置上.(十一)三角恒等变换与解三角形1.高考对此部分的考查一般以“二小”或“一大”的命题形式出现.2.若无解答题,一般在选择题或填空题各有一题,主要考查三角函数的图象与性质、三角恒等变换、解三角形,难度一般,一般出现在第4~11或第14~16题位置上.3.若以解答题命题形式出现,主要考查三角函数与解三角形的综合问题,一般出现在解答题第17题位置上,难度中等.(十二)数列1.高考主要考查两类基本数列(等差数列、等比数列)、两种数列求和方法(裂项求和法、错位相减法)、两类综合(与函数综合、与不等式综合),主要突出数学思想的应用.2.若以解答题形式考查,往往与解三角形交替考查,试题难度中等;若以客观题考查,难度中等的题目较多,但有时也出现在第12题或16题位置上,难度偏大,复习时应引起关注.(十三)点、直线、平面之间的位置关系1.高考对此部分命题较为稳定,选择题、填空题多考查线面位置关系的判断,此类试题难度中等偏下.2.解答题的第(1)问考查空间平行关系和垂直关系的证明,而第(2)问多考查面积、体积的计算,难度中等偏上.解答题的基本模式是“一证明二计算”.(十四)直线与圆[命题分析]1.圆的方程近两年为高考全国课标卷命题的热点,需重点关注.此类试题难度中等偏下,多以选择题或填空题形式呈现.2.直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时会出现在第12题或第16题位置,难度很大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上.(十五)圆锥曲线的方程与性质[命题分析]1.圆锥曲线的定义、方程与性质是每年必考内容,多以选择题的形式考查,常出现在第4~10题的位置,着重考查圆锥曲线的几何性质与标准方程的求法,难度中等.2.圆锥曲线与直线的综合问题多以解答题的形式考查,常出现在第20题的位置,一般难度较大.(十六)概率[1.对概率的考查是高考命题的热点之一,命题形式为“一小一大”,即一道选择或填空题和一道解答题.2.选择或填空题常出现在第3~8题或第13题的位置,主要考查古典概型、几何概型,难度一般.3.解答题常出现在第18或19题的位置,多以交汇性的形式考查,交汇点主要有两种:一是两图(频率分布直方图与茎叶图)择一与频率与概率的关系、数据的数字特征相交汇来考查;二是两图(频率分布直方图与茎叶图)择一与线性回归或独立性检验相交汇来考查,难度中等.(十七)选修4-4(坐标系与参数方程)[命题分析]1.坐标系与参数方程是高考的选考内容之一,高考考查的重点主要有两个方面:一是简单曲线的极坐标方程;二是参数方程、极坐标方程与曲线的综合应用.2.全国课标卷对此部分内容的考查以解答题形式出现,难度中等,备考此部分内容时应注意转化思想的应用.(十八)选修4-5(不等式选讲)[命题分析]1.不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法等,命题的热点是绝对值不等式的求解,以及绝对值不等式与函数的综合问题的求解.2.此部分命题形式单一、稳定,难度中等,备考本部分内容时应注意分类讨论思想的应用.三、20%的题目是较难题目,主要集中在3大块(一)选择题、填空题中的压轴题[命题分析]1.每年高考题中的第12题和第16题都有一定难度,所考查的知识点多样,有函数的零点与不等式,函数、导数与不等式,数列与不等式,圆锥曲线的综合问题和一些知识点的创新问题等.2.学有余力的考生在对此部分内容复习时要有深度和广度,能力一般的考生要掌握一定的答题技巧,争取拿分.(二)解答题第20题压轴题1.解答题第20题压轴题一般考查解析几何的有关内容,难度较大.2.本题常考查直线与圆锥曲线的位置关系、最值、范围、定点、定值、存在性问题及证明问题,多涉及最值与范围的求解,综合性强.(三)解答题第21题压轴题[命题分析]1.解答题第21题压轴题一般考查利用导数研究函数的有关性质,难度中等偏上.2.本题考查内容灵活多变,常涉及分类讨论思想、数形结合思想.另外,多与不等式、方程根的分布及函数的值域等问题相结合设置成综合性试题,难度较大.题型专题(一) 集合与常用逻辑用语集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.[题组练透]1.(2016²全国甲卷)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B =( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2016²河南六市联考)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是( )A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)解析:选B ∵A∩B有4个子集,∴A∩B中有2个不同的元素,∴a∈A,∴a2-3a<0,解得0<a<3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.3.(2016²江西两市联考)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A.{x|2<x<3} B.{x|-1<x≤0}C.{x|0≤x<6} D.{x|x<-1}解析:选C 由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又图中阴影部分表示的集合为(∁U B)∩A,因为∁U B={x|x≥0},所以(∁U B)∩A ={x|0≤x<6},故选C.4.(2016²湖北七市联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为( )A.147 B.140 C.130 D.117解析:选B 由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,与y=3,y =5时,没有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3³50-10=140,故选B.5.已知全集U={a1,a2,a3,a4},集合A是集合U的恰有两个元素的子集,且满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.则集合A=________.(用列举法表示)解析:若a1∈A,则a2∈A,则由若a3∉A,则a2∉A可知,a3∈A,假设不成立;若a4∈A,则a3∉A,则a2∉A,a1∉A,假设不成立,故集合A={a2,a3}.答案:{a2,a3}[技法融会]1.集合运算中的3种常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴求解;(2)图象法:若已知的集合是点集,用图象法求解;(3)Venn图法:若已知的集合是抽象集合,用Venn图求解.2.(易错提醒)在写集合的子集时,易忽视空集;在应用条件A∪B=B⇔A∩B=A⇔A⊆B 时,易忽略A=∅的情况.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件;(2)充要条件与集合的关系:设命题p对应集合A,命题q对应集合B,则p⇒q等价于A⊆B,p⇔q等价于A=B.[题组练透]1.(2016²湖北七市联考)已知a,b为两个非零向量,设命题p:|a²b|=|a||b|,命题q:a与b共线,则命题p是命题q成立的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选C |a²b|=|a||b|⇔|a||b||cos〈a,b〉|=|a||b|⇔cos〈a,b〉=±1⇔a∥b,故p是q成立的充要条件,选C.2.若p是q的充分不必要条件,则下列判断正确的是( )A.┐p是q的必要不充分条件B.┐q是p的必要不充分条件C.┐p是┐q的必要不充分条件D.┐q是┐p的必要不充分条件解析:选C 由p是q的充分不必要条件可知p⇒q,q p,由互为逆否命题的两命题等价可得┐q⇒┐p,┐p┐q,∴┐p是┐q的必要不充分条件,选C.3.(2016²天津高考)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n-1+a2n<0”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:选C 设数列的首项为a1,则a2n-1+a2n=a1q2n-2+a1q2n-1=a1q2n-2(1+q)<0,即q<-1,故q<0是q<-1的必要而不充分条件.故选C.4.已知“x>k”是“3x+1<1”的充分不必要条件,则k的取值范围是( )A.[2,+∞) B.[1,+∞) C.(2,+∞) D.(-∞,-1]解析:选A 由3x+1<1,可得3x+1-1=-x+2x+1<0,所以x<-1或x>2,因为“x>k”是“3x+1<1”的充分不必要条件,所以k≥2.[技法融会]1.判定充分条件与必要条件的3种方法(1)定义法:正、反方向推理,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A⊆B,则A是B的充分条件(B是A的必要条件);若A=B,则A是B的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.2.(易错提醒)“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定是┐p:∃x0∈M,┐p(x0).(2)特称命题p:∃x0∈M,p(x0).它的否定是┐p:∀x∈M,┐p(x).[题组练透]1.(2016²南昌一模)已知命题p:函数f(x)=|cos x|的最小正周期为2π;命题q:函数y=x3+sin x的图象关于原点中心对称,则下列命题是真命题的是( ) A.p∧q B.p∨qC.(┐p)∧(┐q) D.p∨(┐q)解析:选B 因为命题p为假,命题q为真,所以p∨q为真命题.2.(2016²浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2解析:选D 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.3.(2016²广州五校联考)以下有关命题的说法错误的是( )A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.“x=1”是“x2-3x+2=0”的充分不必要条件C.若p∨q为假命题,则p,q均为假命题D.对于命题p:∃x∈R,使得x2+x+1<0,则┐p:∀x∈R,均有x2+x+1<0解析:选D 选项D中┐p应为:∀x∈R,均有x2+x+1≥0.故选D.[技法融会]1.命题真假的4种判定方法(1)一般命题p的真假由涉及的相关知识辨别.(2)四种命题真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律.(3)形如p∨q,p∧q,┐p命题的真假根据真值表判定.(4)全称命题与特称命题的真假的判定:①全称命题:要判定一个全称命题为真命题,必须对限定集合M中的每一个元素x验证p(x)成立,要判定其为假命题时,只需举出一个反例即可;②特称命题:要判定一个特称命题为真命题,只要在限定集合M中至少能找到一个元素x0,使得p(x0)成立即可;否则,这一特称命题就是假命题.2.(易错提醒)“否命题”是对原命题“若p,则q”既否定其条件,又否定其结论;而“命题p的否定”即:非p,只是否定命题p的结论.一、选择题1.命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是( )A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0∉(0,+∞),ln x0=x0-1解析:选A 改变原命题中的三个地方即可得其否定,∃改为∀,x0改为x,否定结论,即ln x≠x-1,故选A.2.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M 的个数是( )A.0 B.1 C.2 D.3解析:选C 由题中集合可知,集合A 表示直线x +y =1上的点,集合B 表示直线x -y=3上的点,联立可得A ∩B ={(2,-1)},M 为A ∩B 的子集,可知M 可能为{(2,-1)},∅,所以满足M ⊆(A ∩B )的集合M 的个数是2.3.(2016²武汉调研)已知命题p :x ≥1,命题q :1x<1,则┐p 是 q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选D 由题意,得┐p 为x <1,由1x<1,得x>1或x<0,故q 为x >1或x<0,所以┐p 是q 的既不充分也不必要条件,故选D.4.(2016²河南八市质量检测)已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( )A .A ∪B =R B .A ∪(∁U B )=RC .(∁U A )∪B =RD .A ∩(∁U B )=A解析:选D 因为A ={x |-4<x <4},B ={x |x >4},所以∁U B ={x |x ≤4},所以A ∩(∁U B )=A ,故选D.5.(2016²天津高考)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件解析:选C 当x =1,y =-2时,x >y ,但x >|y |不成立;若x >|y |,因为|y |≥y ,所以x >y .所以x >y 是x >|y |的必要而不充分条件.6.已知全集U ={x ∈Z|0<x <10},集合A ={1,2,3,4},B ={x |x =2a ,a ∈A },则(∁U A )∩B =( )A .{6,8}B .{2,4}C .{2,6,8}D .{4,8}解析:选A 法一:由已知得全集U ={1,2,3,4,5,6,7,8,9},所以∁U A ={5,6,7,8,9},而B ={2,4,6,8},故(∁U A )∩B ={6,8},所以选A.法二:因为2,4∈A ,所以2,4∉∁U A ,故2,4∉(∁U A )∩B ,所以排除B 、C 、D ,所以选A. 7.若集合A ={x |x 2-x -2<0},B ={x |-2<x <a },则“A ∩B ≠∅”的充要条件是( ) A .a >-2 B .a ≤-2C .a >-1D .a ≥-1解析:选C A ={x |-1<x <2},B ={x |-2<x <a },如图所示:∵A ∩B ≠∅,∴a >-1.8.(2016²皖江名校联考)命题p :存在x 0∈⎣⎢⎡⎦⎥⎤0,π2,使sin x 0+cos x 0>2;命题q :命题“∃x 0∈R ,2x 20+3x 0-5=0”的否定是“∀x ∈R ,2x 2+3x -5≠0”,则四个命题(┐p )∨(┐q ),p ∧q ,(┐p )∧q ,p ∨(┐q )中,真命题的个数为( )A .1B .2C .3D .4解析:选B 因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,故命题p 为假命题;特称命题的否定为全称命题,易知命题q 为真命题,故(┐p )∨(┐q )真,p ∧q 假,(┐p )∧q 真,p ∨(┐q )假.9.如图所示的程序框图,已知集合A ={x |x 是程序框图中输出的x 的值},集合B ={y |y 是程序框图中输出的y 的值},全集U =Z ,Z 为整数集.当输入的x =-1时,(∁U A )∩B 等于( )A .{-3,-1,5}B .{-3,-1,5,7}C .{-3,-1,7}D .{-3,-1,7,9}解析:选D 根据程序框图所表示的算法,框图中输出的x 值依次为0,1,2,3,4,5,6;y 值依次为-3,-1,1,3,5,7,9.于是A ={0,1,2,3,4,5,6},B ={-3,-1,1,3,5,7,9},因此(∁U A )∩B ={-3,-1,7,9}.10.(2016²广州高考模拟)下列说法中正确的是( ) A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则┐p :∀x ∈R ,x 2-x -1<0 C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”解析:选D f (0)=0,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x 20-x 0-1>0,则┐p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a 在(0,+∞)上是减函数.若p 且┐q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)²f (1)<0,即-1²(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则┐q 对应的a 的范围是(-∞,2].因为p 且┐q 为真命题,所以实数a 的取值范围是1<a ≤2.故选C.12.(2016²浙江高考)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎪⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.选A.二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则┐p :_______________________.解析:全称命题的否定为特称命题,┐p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.已知集合A ={x ∈R||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.解析:A ={x ∈R||x -1|<2}={x ∈R|-1<x <3},集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}.故A ∩Z 中所有元素之和为0+1+2=3.答案:315.已知命题p :∀x ∈R ,x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p 且q ”是真命题,则实数a 的取值范围为________.解析:由已知条件可知p 和q 均为真命题,由命题p 为真得a ≤0,由命题q 为真得a ≤-2或a ≥1,所以a ≤-2.答案:(-∞,-2]16.对任意两个集合X ,Y ,定义X -Y ={x |x ∈X 且x ∉Y },X ΔY =(X -Y )∪(Y -X ).设A ={y |y =x 2,x ∈R},B ={y |y =3sin x ,x ∈R},则A ΔB =________.解析:由已知得A ={y |y =x 2,x ∈R}=[0,+∞).B ={y |y =3sin x ,x ∈R}=[-3,3],于是A -B =(3,+∞),B -A =[-3,0),故A ΔB =[-3,0)∪(3,+∞).答案:[-3,0)∪(3,+∞)题型专题(二) 平面向量(1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化.(2)在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量的终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[题组练透]1.(2016²河北三市联考)已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则mn等于( )A .-12 B.12C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n =-2.2.(2016²唐山模拟)在等腰梯形ABCD 中,M 为BC 的中点,则=( )解析:选 B因为,所以.又M是BC的中点,所以,故选B.3.(2016²广州综合测试)在梯形ABCD中,AD∥BC,已知AD=4,BC=6,若 (m,n∈R),则mn=( )A.-3 B.-13C.13D.3解析:选A过点A作AE∥CD,交BC于点E,则BE=2,CE=4,∴∴mn=1-13=-3.4.(2016²杭州综合测试)设P是△ABC 所在平面内的一点,且,则△PAB 与△PBC的面积的比值是( )A.13B.12C.23D.34解析:选B ∵,∴,又△PAB在边PA上的高与△PBC在边PC 上的高相等,∴S△PABS△PBC==12.[技法融会]1.平面向量线性运算的2种技巧(1)对于平面向量的线性运算问题,要尽可能转化到三角形或平行四边形中,灵活运用三角形法则、平行四边形法则,紧密结合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理(当b≠0时,a∥b⇔存在唯一实数λ,使得a =λb)来判断.2.(易错提醒)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(1)两个向量的数量积是一个数量,而不是向量,它的值为两个向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值确定.(2)求非零向量a ,b 的夹角,一般利用公式cos 〈a ,b 〉=a ²b |a ||b |先求出夹角的余弦值,然后求夹角.(3)向量a 在向量b 方向上的投影为a ²b|b |=|a |cos θ(θ为两向量的夹角).[题组练透]1.(2016²全国丙卷)已知向量=⎝ ⎛⎭⎪⎫12,32,=⎝⎛⎭⎪⎫32,12,则∠ABC =( ) A .30° B .45° C .60° D .120° 解析:选A 因为=⎝ ⎛⎭⎪⎫12,32,=⎝⎛⎭⎪⎫32,12, 所以²=34+34=32.又因为²=||||cos ∠ABC =1³1³cos ∠ABC =32,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.2.(2016²合肥质检)已知不共线的两个向量a ,b 满足|a -b |=2且a ⊥(a -2b ),则|b |=( )A. 2 B .2 C .2 2 D .4解析:选B 由a ⊥(a -2b )得,a ²(a -2b )=|a |2-2a ²b =0,则|a -b |=(a -b )2=|a |2-2a ²b +|b |2=|b |=2,选项B 正确.3.(2016²重庆二测)设单位向量e 1,e 2的夹角为2π3,a =e 1+2e 2,b =2e 1-3e 2,则b在a 方向上的投影为( )A .-332B .- 3 C. 3 D.332解析:选A 依题意得e 1²e 2=1³1³cos2π3=-12,|a |=(e 1+2e 2)2=e 21+4e 22+4e 1²e 2=3,a ²b =(e 1+2e 2)²(2e 1-3e 2)=2e 21-6e 22+e 1²e 2=-92,因此b 在a 方向上的投影为a ²b |a |=-923=-332,选A.4.(2016²天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则的值为( )A .-58 B.18 C.14 D.118解析:选B 如图所示,=+又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以,,所以.又,则.又=1,∠BAC =60°, 故=34-12-14³1³1³12=18.故选B. 5.(2016²长春质检)已知向量a =(1,3),b =(0,t 2+1),则当t ∈[-3,2]时,⎪⎪⎪⎪⎪⎪a -t b |b |的取值范围是________.解析:由题意,b|b |=(0,1),根据向量的差的几何意义,⎪⎪⎪⎪⎪⎪a -tb |b |表示同起点的向量tb|b |的终点到a 的终点的距离,当t =3时,该距离取得最小值1,当t =-3时,该距离取得最大值13,即⎪⎪⎪⎪⎪⎪a -tb |b |的取值范围是[1,13 ].答案:[1,13 ][技法融会]1.平面向量数量积运算的2种形式(1)依据模和夹角计算,要注意确定这两个向量的夹角,如夹角不易求或者不可求,可通过选择求夹角和模的基底进行转化;(2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.2.(易错提醒)两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.一、平面向量与其他知识的交汇平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[新题速递]1.已知向量a ,b 满足|a |=2|b |≠0,且关于x 的函数f (x )=-2x 3+3|a |x 2+6a ²bx +5在R 上单调递减,则向量a ,b 夹角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤0,π3C.⎝ ⎛⎭⎪⎫0,π6D.⎣⎢⎡⎦⎥⎤2π3,π 解析:选D 设向量a ,b 的夹角为θ,因为f (x )=-2x 3+3|a |x 2+6a ²bx +5,所以f ′(x )=-6x 2+6|a |x +6a ²b ,又函数f (x )在R 上单调递减,所以f ′(x )≤0在R 上恒成立,所以Δ=36|a |2-4³(-6)³(6a ²b )≤0,解得a ²b ≤-14|a |2,因为a ²b =|a ||b |cos θ,且|a |=2|b |≠0,所以|a ||b |cos θ=12|a |2cos θ≤-14|a |2,解得cos θ≤-12,因为θ∈[0,π],所以向量a ,b 的夹角θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,π,故选D.2.(2016²广东茂名二模)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83 D.53解析:选B ∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3,∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ³13(2x +3y )=13(6+9y x +4x y +6)≥13⎝ ⎛⎭⎪⎫12+29y x ²4x y =8,当且仅当2x =3y =32时,等号成立.∴3x +2y 的最小值是8.故选B.[技法融会]这两题考查的是平面向量与函数、不等式的交汇.第1题由函数的性质把问题转化为平面向量问题,求解时应注意两向量的夹角θ∈[0,π].而第2题是利用平面向量的知识得到有关x 和y 的一个等式,再利用基本不等式求解.二、新定义下平面向量的创新问题近年,高考以新定义的形式考查向量的概念、线性运算、数量积运算的频率较大,其形式体现了“新”.解决此类问题,首先需要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,通过转化思想解决,这是破解新定义信息题的关键所在.[新题速递]1.已知向量a 与b 的夹角为θ,定义a ³b 为a 与b 的“向量积”,且a ³b 是一个向量,它的长度|a ³b |=|a ||b |sin θ,若u =(2,0),u -v =(1,-3),则|u ³(u +v )|等于( )A .4 3 B. 3 C .6 D .2 3解析:选D 由题意v =u -(u -v )=(1,3),则u +v =(3,3),cos 〈u ,u +v 〉=32,得sin 〈u ,u +v 〉=12,由定义知|u ³(u +v )|=|u |²|u +v |sin 〈u ,u +v 〉=2³23³12=2 3.故选D.2.定义平面向量的一种运算a ⊙b =|a +b |³|a -b |³sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ²b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.。

2017届高三数学(文)二轮复习(通用版)教师用书:题型专题(五) 算法、复数、推理与证明

2017届高三数学(文)二轮复习(通用版)教师用书:题型专题(五) 算法、复数、推理与证明

题型专题(五) 算法、复数、推理与证明1.复数的除法复数的除法一般是先将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 2.复数运算中常见的结论 (1)(1±i)2=±2i ,1+i 1-i =i ,1-i1+i=-i ; (2)-b +ai =i(a +bi);(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ;(4)i 4n +i 4n +1+i 4n +2+i 4n +3=0.[题组练透]1.(2016·全国丙卷)若z =1+2i ,则=( )A .1B .-1C .iD .-i解析:选C 因为z =1+2i ,则=1-2i ,所以z =(1+2i)(1-2i)=5,则=4i4=i.故选C . 2.(2016·广州模拟)已知复数z =3+i1-i ,其中i 为虚数单位,则复数z 的共轭复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D ∵z =3+i 1-i =(3+i )(1+i )(1-i )(1+i )=2+4i2=1+2i ,∴=1-2i ,∴所对应的点(1,-2)在第四象限.3.(2016·武昌调研)已知(1+2i)z =4+3i(其中i 是虚数单位,是z 的共轭复数),则的虚部为( )A .1B .-1C .iD .-i解析:选A 因为z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i ,所以=2+i ,故选A.4.(2016·河南六市联考)已知i 为虚数单位,a ∈R ,若2-ia +i 为纯虚数,则复数z =2a +2i 的模等于( )A. 2B.11C. 3D. 6解析:选C 由题意得,2-ia +i =t i ,t ≠0,∴2-i =-t +ta i ,∴⎩⎪⎨⎪⎧-t =2,ta =-1,解得⎩⎪⎨⎪⎧t =-2,a =12,∴z =2a +2i =1+2i ,|z |=3,故选C.[技法融会]复数问题的解题思路(1)以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.(2)若与其他知识结合考查,则要借助其他的相关知识解决问题.利用循环结构表示算法要注意的3个问题(1)要选择准确的表示累计的变量; (2)要注意在哪一步结束循环;(3)完整执行每一次循环,防止执行程序不彻底,造成错误.[题组练透]1.(2016·全国乙卷)执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x 解析:选C 输入x =0,y =1,n =1, 运行第一次,x =0,y =1,不满足x 2+y 2≥36;运行第二次,x =12,y =2,不满足x 2+y 2≥36;运行第三次,x =32,y =6,满足x 2+y 2≥36,输出x =32,y =6.由于点⎝⎛⎭⎫32,6在直线y =4x 上,故选C.2.(2015·湖南高考)执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.67B.37C.89D.49解析:选B 第一次循环:S =11×3,i =2;第二次循环:S =11×3+13×5,i =3;第三次循环:S =11×3+13×5+15×7,i =4,满足循环条件,结束循环. 故输出S =11×3+13×5+15×7=12(1-13+13-15+15-17)=37.3.(2016·河南六市联考)运行如图所示的程序,若结束时输出的结果不小于3,则t 的取值范围为( )A.⎣⎡⎭⎫14,+∞B.⎣⎡⎭⎫ 18,+∞ C.⎝⎛⎦⎤-∞,14 D.⎝⎛⎦⎤-∞,18 解析:选B 依次运行程序框图中的语句可得,n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x =38t ≥3,则8t ≥1,t ≥18,故选B.4.(2016·河北五校联考)如图所示的程序框图输出的结果是S =720,则判断框内应填的是( )A .i ≤7B .i >7C .i ≤9D .i >9解析:选B 第一次运行,i =10,满足条件,S =1×10=10,i =9;第二次运行,i =9满足条件,S =10×9=90,i =8;第三次运行,i =8满足条件,S =90×8=720,i =7;此时不满足条件,输出的S =720.故条件应为i =8,9,10满足,i =7不满足,所以条件应为i >7.[技法融会]1.解答程序框图(流程图)问题的方法(1)首先要读懂程序框图,要熟练掌握程序框图的三种基本结构,特别是循环结构,在累加求和、累乘求积、多次输入等有规律的科学计算中,都有循环结构.(2)准确把握控制循环的变量,变量的初值和循环条件,弄清在哪一步结束循环;弄清循环体和输入条件、输出结果.(3)对于循环次数比较少的可逐步写出,对于循环次数较多的可先依次列出前几次循环结果,找出规律.2.(易错提醒)循环结构的两个注意点: (1)注意区分计数变量与循环变量. (2)注意哪一步结束循环.1.合情推理的解题思路(1)在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.(2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.(3)归纳推理关键是找规律,类比推理关键是看共性.2.类比推理和归纳推理在近几年高考题中未单独考查,学生在复习时,应重点关注归纳推理.[题组练透]1.如图,在平面直角坐标系的格点(横、纵坐标均为整数的点)处:点(1,0)处标b 1,点(1,-1)处标b 2,点(0,-1)处标b 3,点(-1,-1)处标b 4,点(-1,0)处标b 5,点(-1,1)处标b 6,点(0,1)处标b 7,…,以此类推,则b 963处的格点的坐标为________.解析:观察已知点(1,0)处标b 1,即b 1×1,点(2,1)处标b 9,即b 3×3,点(3,2)处标b 25,即b 5×5,…,由此推断点(n ,n -1)处标b (2n -1)×(2n -1),因为961=31×31时,n =16,故b 961处的格点的坐标为(16,15),从而b 963处的格点的坐标为(16,13).答案:(16,13)2.(2016·贵阳模拟)已知不等式1+14<32,1+14+19<53,1+14+19+116<74,照此规律总结出第n 个不等式为____________________________________.解析:由已知,三个不等式可以写成1+122<2×2-12,1+122+132<2×3-13,1+122+132+142<2×4-14,所以照此规律可得到第n 个不等式为1+122+132+…+1n 2+1(n +1)2<2(n +1)-1n +1=2n +1n +1.答案:1+122+132+…+1n 2+1(n +1)2<2n +1n +1[技法融会]破解归纳推理题的思维步骤(1)发现共性,通过观察特例发现某些相似性(特殊的共性或一般规律); (2)归纳推理,把这种相似性推广为一个明确表述的一般命题(猜想); (3)检验,得结论,对所得的一般性命题进行检验.一般地,“求同存异”“逐步细化”“先粗后精”是求解由特殊结论推广到一般结论型创新题的基本技巧.一、选择题1.(2016·全国乙卷)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3 D .2解析:选B ∵(1+i)x =1+y i ,∴x +x i =1+y i. 又∵x ,y ∈R ,∴x =1,y =x =1. ∴|x +y i|=|1+i|=2,故选B.2.(2016·郑州模拟)设z =1+i(i 是虚数单位),则2z -=( )A .iB .2-iC .1-iD .0解析:选D 因为2z -=21+i -1+i =2(1-i )(1+i )(1-i )-1+i =1-i -1+i =0,故选D.3.(2016·湖北八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁解析:选D 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故仅有丁猜测正确,所以选D.4.(2016·福建质检)执行如图所示的程序框图,若要使输出的y 的值等于3,则输入的x 的值可以是( )A .1B .2C .8D .9解析:选C 由程序框图可知,其功能是运算分段函数y =⎩⎪⎨⎪⎧x 2-1,x ≤1,3x,1<x ≤2,log 2x ,x >2,因为y =3,所以⎩⎪⎨⎪⎧x ≤1,x 2-1=3或⎩⎪⎨⎪⎧1<x ≤2,3x =3或⎩⎪⎨⎪⎧x >2,log 2x =3,解得x =-2或x =8,故选C.5.设复数z 1=1-i ,z 2=a +2i ,若z 2z 1的虚部是实部的2倍,则实数a 的值为( )A .6B .-6C .2D .-2 解析:选Az 2z 1=a +2i 1-i =(a +2i )(1+i )(1-i )(1+i )=a -2+(2+a )i 2,故该复数的实部是a -22,虚部是a +22.由题意,知a +22=2×a -22.解得a =6.故选A. 6.(2016·广东3月测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i =( )A .iB .1C .-iD .-1解析:选C ∵z 为纯虚数,∴a =2,∴a +i 71+a i =2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=-3i 3=-i.7.(2016·南昌一模)从1,2,3,4,5,6,7,8中随机取出一个数为x ,执行如图所示的程序框图,则输出的x 不小于40的概率为( )A.34B.58C.78D.12解析:选B 依次执行程序框图中的语句,输出的结果分别为13,22,31,40,49,58,67,76,所以输出的x 不小于40的概率为58.8.(2016·郑州质检)某程序框图如图所示,则该程序运行后输出的值是( )A .2 014B .2 015C .2 016D .2 017解析:选D 分析程序框图可知,当i 为偶数时,S =2 017,当i 为奇数时,S =2 016,而程序在i =0时跳出循环,故输出的S =2 017,故选D.9.(2016·长春质检)运行如图所示的程序框图,则输出的S 值为( )A.29-129B.29+129C.210-1210D.210210+1解析:选A 由程序框图可知,输出的结果是首项为12,公比也为12的等比数列的前9项和,即为29-129,故选A.10.(2016·全国丙卷)执行如图所示的程序框图,如果输入的a=4,b=6,那么输出的n =()A.3 B.4 C.5 D.6解析:选B程序运行如下:开始a=4,b=6,n=0,s=0.第1次循环:a=2,b=4,a=6,s=6,n=1;第2次循环:a=-2,b=6,a=4,s=10,n=2;第3次循环:a=2,b=4,a=6,s=16,n=3;第4次循环:a=-2,b=6,a=4,s=20,n=4.此时,满足条件s>16,退出循环,输出n=4.故选B.11.(2016·山西模拟)运行如图所示的程序框图,若输出的点恰有5次落在直线y=x上,则判断框中可填写的条件是()A.i>6 B.i>7 C.i>8 D.i>9解析:选D依次执行程序框图中的语句:x=1,y=1,i=2,输出(1,1)(1次);x=0,y =1,i =3,输出(0,1);x =-1,y =0,i =4,输出(-1,0);x =0,y =0,i =5,输出(0,0)(2次);x =1,y =1,i =6,输出(1,1)(3次);x =0,y =1,i =7,输出(0,1);x =-1,y =0,i =8,输出(-1,0);x =0,y =0,i =9,输出(0,0)(4次);x =1,y =1,i =10,输出(1,1)(5次),此时跳出循环,故判断框中可填写的条件是“i >9?”,故选D.12.(2016·石家庄一模)如图所示的数阵中,用A (m ,n )表示第m 行的第n 个数,则依此规律A (8,2)为( )13 16 16 110 112 110 115 122 122 115 121 137 144 137 121…A.145B.186C.1122D.1167解析:选C 由数阵知A (3,2)=16+6,A (4,2)=16+6+10,A (5,2)=16+6+10+15,…,则A (8,2)=16+6+10+15+21+28+36=1122,选项C 正确.二、填空题13.(2016·山西模拟)若复数z 满足(2+i )2z =i ,则z =________.解析:由题意得,z =(2+i )2i =3+4ii =4-3i.答案:4-3i14.(2016·山东高考)执行如图所示的程序框图,若输入n 的值为3,则输出的S 的值为________.解析:第一次循环:S =2-1,1<3,i =2;第二次循环:S =3-1,2<3,i =3;第三次循环:S =4-1=1,3≥3,输出S =1.答案:115.在平面几何中:△ABC 的∠C 的内角平分线CE 分AB 所成线段的比为AC BC =AE BE.把这个结论类比到空间:在三棱锥A -BCD 中(如图),平面DEC 平分二面角A -CD -B 且与AB 相交于E ,则得到类比的结论是________.解析:由类比推理的概念可知,平面中线段的比可转化为空间中面积的比,由此可得:AE EB =S △ACD S △BCD. 答案:AE EB =S △ACD S △BCD16.(2016·山东高考)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; ……照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________. 解析:通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1). 答案:43n (n +1)。

高三文科数学(通用版)二轮复习(教师用书)第1部分 技法篇4大思想提前看渗透整本提时效 Word版含解析

高三文科数学(通用版)二轮复习(教师用书)第1部分 技法篇4大思想提前看渗透整本提时效 Word版含解析

技法篇:大思想提前看,渗透整本提时效高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学内容,可用文字和符号来记录与描述,那么数学思想方法则是数学意识,重在领会、运用,属于思维的范畴,用以对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.这些在一轮复习中都有所涉及,建议二轮复习前应先学习此部分.带着方法去复习,这样可以使理论指导实践,“一法一练”“一练一过”,既节省了复习时间又能起到事半功倍的效果,而市面上有些资料把方法集中放于最后,起不到”依法训练”的作用,也因时间紧造成学而不透、学而不深,在真正的高考中不能从容应对.不过也可根据自身情况选择学完后再复习此部分.思想函数与方程思想函数的思想,就是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的数学思想.方程的思想,就是建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数学思想.()设函数()的导函数为′(),对任意∈都有()>′()成立,则( )【导学号:】.( )<( ).( )=( ).( )>( ).( )与( )的大小不确定()(名师押题)直线=+和椭圆+=在轴左侧部分交于,两点,直线过点(,-)和线段的中点,则在轴上的截距的取值范围为.() ()()令()=,则′()=.因为对∀∈都有()>′(),所以′()<,即()在上单调递减.又<,所以( )>( ),即( )>( ),所以()>(),即( )>( ),故选.()设(,),(,),(,),直线与轴的交点为().由(\\(=+,,()+()=,))得(+)++=.因为直线=+和椭圆+=在轴左侧部分交于,两点,所以错误!解得>.又为线段的中点,所以错误!由(,-),(,),()三点共线,所以=,所以-=+.又因为>,所以+≥,当且仅当=时等号成立,所以-≥,则-≤≤.]函数与方程思想在解题中的应用.函数与不等式的相互转化,对函数=(),当>时,就化为不等式()>,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式..数列的通项与前项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要..解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数有关理论..立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.变式训练] 将函数=的图象向左平移(>)个单位长度后,所得到的图象关于轴对称,则的最小值为.【导学号:】把=的图象上所有的点向左平移个单位长度后,得到==的图象,而此图象关于轴对称,则-=π+(∈),解得=π+(∈).又>,所以的最小值为.]思想数形结合思想数形结合思想,就是通过数与形的相互转化来解决数学问题的思想.其应用包括以下两个方面:。

高中总复习二轮文科数学精品课件 第1部分 思想方法研析指导 二、分类讨论思想

高中总复习二轮文科数学精品课件 第1部分 思想方法研析指导 二、分类讨论思想

低了问题难度.
2.分类讨论思想在解题中的应用
(1)由数学概念引起的分类讨论;
(2)由性质、定理、公式的限制引起的分类讨论;
(3)由数学运算要求引起的分类讨论;
(4)由图形的不确定性引起的分类讨论;
(5)由参数的变化引起的分类讨论.
高频考点•探究突破
命题热点一
根据数学概念的分类讨论
【思考】 在中学数学中,哪些概念会引起分类讨论?
2 = 42 ,
两式相减,得(y1+y2)(y1-y2)=4(x1-x2).
当 l 的斜率不存在,即 x1=x2 时,符合条件的直线 l 必有两条.
当 l 的斜率 k 存在,即 x1≠x2 时,有 2y0(y1-y2)=4(x1-x2),即
由 CM⊥AB,得直线 CM 的斜率
0
0
kCM= -5=- 2 ,即 x0=3.
当m<0时,对任意x≥1,f(x+2m)+mf(x)>0,
即 f(x+2m)>-mf(x)=f( -x),
显然 f(x)在 R 上单调递增,则 x+2m> -x 对任意 x≥1 恒成立,
即(1- -)x+2m>0 对任意 x≥1 恒成立,
1- - > 0,
1

解得- <m<0.
4
1- - + 2 > 0,
所以 h
π
2
π
2
= e -π>0.所以 g
所以 g(x0)·
g
π
2
π
2
π
2
= e -π>0.
<0.
所以 g(x)在区间

高三文科数学第二轮复习专题导数教案

高三文科数学第二轮复习专题导数教案

高三文科数学第二轮复习专题导数教案文科数学第二轮专题导数及其应用(一)教学目标1、知识与技能:1、利用导数求函数的单调区间、极值和最值2、解决基本的含参问题2、过程与方法:利用导数研究函数,作出图形,再通过图形反馈函数的性质,进一步体会数形结合及分类讨论的思3、情感态度与价值观:这是一堂复习课,教学难度有所增加。

培养学生思考问题的习惯,以及克服困难的信心。

强化讨论意识,不断提高解题的灵活性和变通性(二)重点、难点教学重点:利用导数求多项式函数的单调性极值和最值教学难点:含参的讨论教具准备:与教材内容相关的资料教学设想:通过学习,培养学生思考问题的习惯,以及克服困难的信心。

强化讨论意识,不断提高解题的灵活性和变通性(三)教学过程一、学生自学自探1、某物体的运动方程为s(t) 5t2(位移单位:m,时间单位:s)则它在t=2s时的速度是2、曲线y 4x x3在点(-1,-3)处的切线方程是3、求f(x) lnx 4x的单调增区间4、121f(x) x4 x3 x2 1的极值点是4325、函数y x4 4x 3在区间[-2,3]上的最小值为二、合作交流分小组讨论:回顾以前做过的题目思考、讨论以下问题1、利用导数求瞬时变化率常见的问题及解决方法?2、利用导数研究函数的切线方程的方法和步骤?高三文科数学第二轮复习专题导数教案3、利用导数研究函数的单调性的方法和步骤?4、利用导数研究函数极值的方法和步骤?5、利用导数研究函数的最值的方法和步骤?三、展示评价以小组为单位:展示讨论的结论,其他小组可以补充。

四、规律总结1、利用导数求瞬时速度、加速度问题:规律如下:路程对时间求导得到的是瞬时速度;瞬时速度对时间求导得到的是加速度。

s (t) v(t),v (t) a(t)步骤如下:先求导,再把对应的时刻,带进导数式子,就是所求的某时刻的瞬时速度,加速度。

2、利用导数求切线问题:步骤如下:先求导,把切点(x0,y0)的横坐标x0带入导数,得到切线的斜率k f (x0),然后用点斜式y y0 k(x x0)得出切线方程3、利用导数求函数的单调区间的方法和步骤:(1) 确定函数的定义域(2) 求函数的导数f (x)(3) ①若求单调区间(或证明单调性)只需要在函数f(x)的定义域内解(或证明)不等式f (x) 0(或f (x) 0)②若已知f(x)的单调性,则转化成不等式f (x) 0或f (x) 0在单调区间上恒成立问题求解4、利用导数求函数的极值的步骤(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)检验f (x)在方程f (x)=0的根x0的左右的符号,高三文科数学第二轮复习专题导数教案若当x x0,若当x x0,f (x) 0,当x x0,f (x) 0,则x0是极小值点,f(x0)是函数的极小值 f (x) 0,当x x0,f (x) 0,则x0是极大值点,f(x0)是函数的极大值5、利用导数研究函数的最值的方法和步骤?(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)①定义域是[a,b],若x0 [a,b],比较f(x0),f(a),f(b)之间的大小,最大的是最大值,最小的是最小值,若x0 [a,b],比较f(a),f(b)的大小,最大的是最大值,最小的是最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技法篇:4大思想提前看,渗透整本提时效高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学内容,可用文字和符号来记录与描述,那么数学思想方法则是数学意识,重在领会、运用,属于思维的范畴,用以对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.这些在一轮复习中都有所涉及,建议二轮复习前应先学习此部分.带着方法去复习,这样可以使理论指导实践,“一法一练”“一练一过”,既节省了复习时间又能起到事半功倍的效果,而市面上有些资料把方法集中放于最后,起不到”依法训练”的作用,也因时间紧造成学而不透、学而不深,在真正的高考中不能从容应对.不过也可根据自身情况选择学完后再复习此部分.思想1 函数与方程思想函数的思想,就是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的数学思想.方程的思想,就是建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数学思想.(1)设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )【导学号:85952000】A .3f (ln 2)<2f (ln 3)B .3f (ln 2)=2f (ln 3)C .3f (ln 2)>2f (ln 3)D .3f (ln 2)与2f (ln 3)的大小不确定(2)(名师押题)直线y =kx +2和椭圆x 24+y 23=1在y 轴左侧部分交于A ,B 两点,直线l 过点P (0,-2)和线段AB 的中点M ,则l 在x 轴上的截距a 的取值范围为________.(1)C (2)⎣⎢⎡⎦⎥⎤-63,0 (1)令F (x )=f (x )e x ,则F ′(x )=f ′(x )-f (x )e x .因为对∀x ∈R 都有f (x )>f ′(x ),所以F ′(x )<0,即F (x )在R 上单调递减.又ln 2<ln 3,所以F (ln 2)>F (ln 3), 即f (ln 2)e ln 2>f (ln 3)e ln 3,所以f (ln 2)2>f (ln 3)3,即3f (ln 2)>2f (ln 3),故选C.(2)设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),直线l 与x 轴的交点为N (a,0). 由⎩⎪⎨⎪⎧y =kx +2,x 24+y 23=1,得(3+4k 2)x 2+16kx +4=0.因为直线y =kx +2和椭圆x 24+y 23=1在y 轴左侧部分交于A ,B 两点,所以⎩⎪⎨⎪⎧Δ=(16k )2-4×4(3+4k 2)>0,x 1+x 2=-16k 3+4k2<0,x 1x 2=43+4k 2>0,解得k >12.又M 为线段AB 的中点,所以 ⎩⎪⎨⎪⎧x 0=x 1+x 22=-8k 3+4k 2,y 0=y 1+y 22=63+4k 2.由P (0,-2),M (x 0,y 0),N (a,0)三点共线, 所以63+4k 2+2-8k 3+4k 2=0-(-2)a -0,所以-4a =2k +3k .又因为k >12,所以2k +3k ≥26,当且仅当k =62时等号成立,所以-4a ≥26,则-63≤a ≤0.]函数与方程思想在解题中的应用1.函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.2.数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.3.解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数有关理论.4.立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.变式训练1] 将函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为________.【导学号:85952001】5π24 把y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象上所有的点向左平移m 个单位长度后,得到y =sin ⎣⎢⎡⎦⎥⎤4(x +m )-π3=sin ⎝ ⎛⎭⎪⎫4x +4m -π3的图象, 而此图象关于y 轴对称,则4m -π3=k π+π2(k ∈Z ), 解得m =14k π+5π24(k ∈Z ).又m >0,所以m 的最小值为5π24.]思想2 数形结合思想数形结合思想,就是通过数与形的相互转化来解决数学问题的思想.其应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质,如应用函数的图象来直观地说明函数的性质.(2)“以数定形”,把直观图形数量化,使形更加精确,如应用曲线的方程来精确地阐明曲线的几何性质.(2016·山东高考)已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.(3,+∞) 作出f (x )的图象如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,∴要使方程f (x )=b 有三个不同的根,则4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.]数形结合思想在解题中的应用1.构建函数模型并结合其图象求参数的取值范围或解不等式. 2.构建函数模型并结合其图象研究方程根或函数的零点的范围. 3.构建解析几何模型求最值或范围.4.构建函数模型并结合其图象研究量与量之间的大小关系.变式训练2] (1)若方程x 2+(1+a )x +1+a +b =0的两根分别为椭圆、双曲线的离心率,则ba 的取值范围是( )A .(-2,-1)B .(-∞,-2)∪(-1,+∞) C.⎝ ⎛⎭⎪⎫-2,-12 D.()-∞,-2∪⎝ ⎛⎭⎪⎫-12,+∞(2)(2015·吉林模拟)若不等式4x 2-log a x <0对任意x ∈⎝ ⎛⎭⎪⎫0,14恒成立,则实数a的取值范围为( )A.⎝ ⎛⎭⎪⎫1256,1 B.⎣⎢⎡⎭⎪⎫1256,1 C.⎝ ⎛⎭⎪⎫0,1256 D.⎝ ⎛⎦⎥⎤0,1256 (1)C (2)B (1)由题意可知,方程的一个根位于(0,1)之间,另一根大于1. 设f (x )=x 2+(1+a )x +1+a +b ,则 ⎩⎨⎧f (0)>0,f (1)<0, 即⎩⎨⎧1+a +b >0,2a +b +3<0.作出可行域如图阴影部分所示.b a 可以看作可行域内的点(a ,b )与原点(0,0)连线的斜率,由图可知k OA =-12,∴-2<b a <-12.(2)由已知4x 2<log a x 对任意x ∈⎝ ⎛⎭⎪⎫0,14恒成立,相当于在⎝ ⎛⎭⎪⎫0,14上,函数y =log a x的图象恒在函数y =4x 2图象的上方,显然当a >1时,不成立,当a <1时,如图,只需log a 14≥4×⎝ ⎛⎭⎪⎫142⇒a 14≥14⇒a ≥1256,又a <1,故a ∈⎣⎢⎡⎭⎪⎫1256,1.故选B.]思想3 分类讨论思想分类讨论思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.(1)(2015·山东高考)设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B.0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D.1,+∞)(2)设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.(1)C (2)2或72 (1)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C. (2)若∠PF 2F 1=90°, 则|PF 1|2=|PF 2|2+|F 1F 2|2. ∵|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43, ∴|PF 1||PF 2|=72.若∠F 2PF 1=90°, 则|F 1F 2|2=|PF 1|2+|PF 2|2 =|PF 1|2+(6-|PF 1|)2, 解得|PF 1|=4,|PF 2|=2, ∴|PF 1||PF 2|=2.综上所述,|PF 1||PF 2|=2或72.]分类讨论思想在解题中的应用1.由数学概念引起的分类.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.2.由性质、定理、公式的限制引起的分类讨论.有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n 项和公式、函数的单调性等.3.由数学运算和字母参数变化引起的分类.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.4.由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类,如:角的终边所在的象限;点、线、面的位置关系等.变式训练3] (1)已知二次函数f (x )=ax 2+2ax +1在区间-3,2]上的最大值为4,则a 等于( )A .-3 B.-38 C.3D.38或-3(2)在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________.(1)D (2)32或6 (1)当a >0时,f (x )在-3,-1]上单调递减,在-1,2]上单调递增,故当x =2时,f (x )取得最大值,即8a +1=4,解得a =38.当a <0时,易知f (x )在x =-1处取得最大,即-a +1=4,∴a =-3.综上可知,a =38或-3.故选D. (2)当q =1时,a 1=a 2=a 3=32, S 3=3a 1=92,显然成立; 当q ≠1时,由题意, 得⎩⎪⎨⎪⎧a 1q 2=a 3=32,a 1(1-q 3)1-q =S 3=92.所以⎩⎪⎨⎪⎧a 1q 2=32, ①a 1(1+q +q 2)=92,②由①②,得1+q +q 2q 2=3,即2q 2-q -1=0,所以q =-12或q =1(舍去). 当q =-12时,a 1=a 3q 2=6. 综上可知,a 1=32或a 1=6.]思想4 转化与化归思想转化与化归思想,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.(1)(2016·洛阳模拟)抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,又点A (-1,0),则|PF ||P A |的最小值是( )【导学号:85952002】A.12B.22 C.32D.232(2)(名师押题)已知函数f (x )=3e |x |.若存在实数t ∈-1,+∞),使得对任意的x ∈1,m ],m ∈Z 且m >1,都有f (x +t )≤3e x ,则m 的最大值为________.解题指导] (1)利用抛物线的定义把|PF ||P A |的最值问题等价转化成直线P A 的斜率问题.(2)f (x +t )≤3e x ――→x +t ≥0e x +t≤e x ――→两边取对数t ≤1+ln x -x ――→令h (x )=1+ln x -xh (x )min ≥-1.(1)B (2)3 (1)如图,作PH ⊥l 于H ,由抛物线的定义可知,|PH |=|PF |,从而|PF ||P A |的最小值等价于|PH ||P A |的最小值,等价于∠P AH 最小,等价于∠P AF 最大,即直线P A 的斜率最大.此时直线P A 与抛物线y 2=4x 相切,由直线与抛物线的关系可知∠P AF =45°,所以|PF ||P A |=|PH ||P A |=sin 45°=22.(2)因为当t ∈-1,+∞)且x ∈1,m ]时,x +t ≥0, 所以f (x +t )≤3e x ⇔e x +t ≤e x ⇔t ≤1+ln x -x .所以原命题等价转化为:存在实数t ∈-1,+∞),使得不等式t ≤1+ln x -x 对任意x ∈1,m ]恒成立.令h (x )=1+ln x -x (x ≥1).因为h ′(x )=1x -1≤0,所以函数h (x )在1,+∞)上为减函数. 又x ∈1,m ],所以h (x )min =h (m )=1+ln m -m . 所以要使得对x ∈1,m ],t 值恒存在, 只需1+ln m -m ≥-1.因为h (3)=ln 3-2=ln ⎝ ⎛⎭⎪⎫1e ·3e >ln1e =-1, h (4)=ln 4-3=ln ⎝ ⎛⎭⎪⎫1e ·4e 2<ln 1e =-1,且函数h (x )在1,+∞)上为减函数,所以满足条件的最大整数m 的值为3.]转化与化归思想在解题中的应用1.在三角函数中,涉及到三角式的变形,一般通过转化与化归将复杂的三角问题转化为已知或易解的三角问题,以起到化暗为明的作用,主要的方法有公式的“三用”(顺用、逆用、变形用)、角度的转化、函数的转化等.2.换元法:是将一个复杂的或陌生的函数、方程、不等式转化为简单的或熟悉的函数、方程、不等式的一种重要的方法.3.在解决平面向量与三角函数、平面几何、解析几何等知识的交汇题目时,常将平面向量语言与三角函数、平面几何、解析几何语言进行转化.4.在解决数列问题时,常将一般数列转化为等差数列或等比数列求解. 5.在利用导数研究函数问题时,常将函数的单调性、极值(最值)、切线问题,转化为其导函数f ′(x )构成的方程.变式训练4] (1)(2016·杭州二模)在正方体ABCD -A 1B 1C 1D 1中,E 是AA 1的中点,则异面直线BE 与B 1D 1所成角的余弦值等于________,若正方体的边长为1,则四面体B -EB 1D 1的体积为________.(2)若对于任意t ∈1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.(1)105 16 (2)⎝ ⎛⎭⎪⎫-373,-5 (1)连接BD ,DE ,因为BD ∥B 1D 1,所以∠EBD 就是异面直线BE 与B 1D 1所成的角,设A 1A =1,则DE =BE =52,BD =2,cos∠EBD =54+2-542×52×2=105,由V 三棱锥B -EB 1D 1=V 三棱锥D 1-BEB 1得V 三棱锥B -EB 1D 1=13×12×1=16.(2)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373. 所以若函数g (x )在区间(t,3)上总不为单调函数,则m 的取值范围为-373<m <-5.]。

相关文档
最新文档