Chitosan

合集下载

壳聚糖

壳聚糖

性质
主要物理性质
不能完全溶解于水和碱溶液中,但可溶于稀 酸,游离氨基质子化促进溶解。溶于稀酸呈 粘稠状,在稀酸中壳聚糖的B-1,4糖苷键会慢 慢水解,生成相对分子质量的壳聚糖。 壳聚糖在溶液中市带正电荷多聚电解质,具 有很强的吸附性。
主要化学反应
酰化反应
羧基化反应
烷基化反应度、相对分子质量、 黏度有关,脱乙酰度越高、相对分子质量越 其他化学反应(如shiff碱反应 接枝共聚反应 小,越易溶于水。 交联反应) 壳聚糖具有很好的吸附性、成膜性、通透性、 成纤性、吸湿性和保湿性。
来源
壳聚糖是甲壳素脱N-乙酰基的产物,一般而言,N-乙酰基脱去 55%以上的就可称之为壳聚糖,或者说,能在1%乙酸或1%盐 酸中溶解1%的脱乙酰甲壳素,这种脱乙酰甲壳素被称之为壳聚 糖。事实上,N-脱乙酰度为55%以上的甲壳素,就能在这种稀 酸中溶解。
自然界中的来源
甲壳素在自然界中广泛存在于低等生物菌类,藻类的细胞,节支 动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和 软骨,高等植物的细胞壁等
应用
药物载体 缓释药物 抗菌 功能性药物
1. 提高肽类药物的吸收 2. 制取抗癌药剂
絮凝剂 废水处理
壳聚糖(CHITOSAN)
定义
壳聚糖(chitosan),又名 脱乙酰甲壳素,是自然界广泛 存在的几丁质(chitin)经过 脱乙酰作用得到的,属于高分 子直链型多糖,是自然界唯一 的碱性多糖,壳聚糖作为一种 天然、绿色的环保高分子物质, 具有可生物降解性、可食用性 及生物相容性等特点,且安全 无毒,对环境无公害。

壳聚糖——精选推荐

壳聚糖——精选推荐

壳聚糖壳聚糖壳聚糖(chitosan)是由⾃然界⼴泛存在的⼏丁质(chitin)经过脱⼄酰作⽤得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,⾃1859年,法国⼈Rouget⾸先得到壳聚糖后,这种天然⾼分⼦的⽣物官能性和相容性、⾎液相容性、安全性、微⽣物降解性等优良性能被各⾏各业⼴泛关注,在医药、⾷品、化⼯、化妆品、⽔处理、⾦属提取及回收、⽣化和⽣物医学⼯程等诸多领域的应⽤研究取得了重⼤进展。

针对患者,壳聚糖降⾎脂、降⾎糖的作⽤已有研究报告。

分⼦式:C56H103N9O39分⼦量:1526.4539简介壳聚糖是甲壳质经脱⼄酰反应后的产品,脱⼄酰基程度(D.D)决定了⼤分⼦链上胺基(NH2)含量的多少,⽽且D.D增加,由于胺基质⼦化⽽使壳聚糖在稀酸溶液中带电基团增多,聚电解质电荷密度增加,其结果必将导致其结构,性质和性能上的变化,⾄今壳聚糖稀溶液性质⽅⾯的研究都忽略了D.D值对⽅程的影响。

壳聚糖是以甲壳质为原料,再经提炼⽽成,不溶于⽔,能溶于稀酸,能被⼈体吸收。

壳聚糖是甲壳质的⼀级衍⽣物。

其化学结构为带阳离⼦的⾼分⼦碱性多糖聚合物,并具有独特的理化性能和⽣物活化功能。

近年来国内外的报导主要集中在吸附和絮凝⽅⾯。

也有报道表明,壳聚糖是⼀种很好的污泥调理剂,将其⽤于活性污泥法废⽔处理,有助于形成良好的活性污泥菌胶团,并能提⾼处理效率。

但研究其对活性污泥中微⽣物活性的影响以及其强化⽣物作⽤的机理,国内外均未见有报导。

在甲壳素分⼦中,因其内外氢键的相互作⽤,形成了有序的⼤分⼦结构.溶解性能很差,这限制了它在许多⽅⾯的应⽤,⽽甲壳素经脱⼄酰化处理的产物⼀壳聚糖,却由于其分⼦结构中⼤量游离氨的存在,溶解性能⼤⼤改观,具有⼀些独特的物化性质及⽣理功能,在农业、医药、⾷品、化妆品、环保诸⽅⾯具有⼴阔的应⽤前景。

物性数据1. 性状:⽩⾊⽆定形透明物质,⽆味⽆臭。

2. 密度(g/mL,25℃):未确定3. 相对蒸汽密度(g/mL,空⽓=1):未确定4. 熔点(oC):未确定5. 沸点(oC,常压):未确定6. 沸点(oC,5.2kPa):未确定7. 折射率:未确定8. 闪点(oC):未确定9. ⽐旋光度(o):未确定10. ⾃燃点或引燃温度(oC):未确定11. 蒸⽓压(kPa,20oC):未确定12. 饱和蒸⽓压(kPa,60oC):未确定13. 燃烧热(KJ/mol):未确定14. 临界温度(oC):未确定15. 临界压⼒(KPa):未确定16. 油⽔(⾟醇/⽔)分配系数的对数值:未确定17. 爆炸上限(%,V/V):未确定18. 爆炸下限(%,V/V):未确定19. 溶解性:溶于PH<6.5的稀酸,不溶于⽔和碱溶液.主要⽤途1.主要应⽤于⾷品、医药、农业种⼦、⽇⽤化⼯、⼯业废⽔处理等⾏业。

低聚壳聚糖功能性质及应用

低聚壳聚糖功能性质及应用

低聚壳聚糖功能性质及应用壳聚糖(Chitosan)是甲壳素(Chitin)的脱乙酰化产物。

甲壳素广泛存在于虾、蟹等甲壳动物及昆虫、藻类和细菌中,是世界上仅次于纤维素的第二大类天然高分子化合物。

壳聚糖大分子的分子量通常在几十万左右。

一、分子量小于10000的低聚壳聚糖具有许多优于壳聚糖大分子的功能性质,包括良好的水溶性、保湿增湿性、抑菌抗菌作用等。

1 水溶性质壳聚糖是含氮多糖类天然生物活性物质,在其大分子链结构中含有大量的-NH3和-OH基团,当壳聚糖降解时,其均分子量降低,壳聚糖分子内的氢键作用随之减弱,使壳聚糖分子在溶液中具有更大的扩展趋势,从而引起壳聚糖分子构像发生一定的变化。

而长链的缩短和分子构像的变化使得壳聚糖在水溶液中的无序程度增加,从而使其水溶性能大为改善。

2 吸湿保湿性质低聚壳聚糖分子中大量的-NH3和-OH强极性基团的存在,不仅使低聚壳聚糖的水溶性大为改观,也使其具有良好的吸湿保湿功能。

研究表明:均分子量一定的低聚壳聚糖具有优于甘油和透明质酸的吸湿保湿功能,且在一定的分子量范围内,随均分子量的降低,保湿增湿性能逐渐增强。

3 抗菌抑菌作用低聚壳聚糖具有明显的抗菌抑菌作用,无锡轻工业大学夏文水等通过对大肠杆菌的抗菌抑菌活性的试验,证明壳聚糖的抑菌作用也是随着壳聚糖的均分子量的降低而逐渐增强的,尤以均分子量为1500左右的低聚壳聚糖的抗菌效果好。

而且通过比较实验,还证明了游离氨基的存在是壳聚糖抑菌抗菌作用的基础。

二、低聚壳聚糖的应用低聚壳聚糖所特有的各种生理活性和功能性质,使其在保健食品、生物医药、日用化妆品等方面具有独特的应用价值。

2.1 低聚壳聚糖在保健食品方面的应用低聚壳聚糖作为一种生物活性的天然高分子化合物,具有低甜度、低热值、降血脂、降血糖等功效,而且无毒、无副作用。

以低聚壳聚糖为主要原料生产的生物保健品,不仅有利于人体肠内双歧杆菌的增值,同时可抑制肠内有毒菌和腐败物质的生成,增加人体内纤维素的质和量,提高机体的免疫力。

壳聚糖的结构

壳聚糖的结构

壳聚糖的结构
壳聚糖结构式:6 CH2OH O OH O 3 2 NH2 n。

壳聚糖(chitosan)甲壳素N-脱乙酰基的产物,甲壳素(几丁质)、壳聚糖、纤维素三者具有相近的化学结构,纤维素在C2位上是羟基,甲壳素、壳聚糖在C2位上分别被一个乙酰氨基和氨基所代替,甲壳素和壳聚糖具有生物降解性、细胞亲和性和生物效应等许多独特的性质,尤其是含有游离氨基的壳聚糖,是天然多糖中唯一的碱性多糖。

壳聚糖分子结构中的氨基基团比甲壳素分子中的乙酰氨基基团反应活性更强,使得该多糖具有优异的生物学功能并能进行化学修饰反应。

因此,壳聚糖被认为是比纤维素具有更大应用潜力的功能性生
物材料。

壳聚糖是由自然界广泛存在的几丁质经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。

分子式(C6H11NO4)n,一种白色或灰白色半透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。

通常所说甲壳素主要指壳聚糖,它又称壳多糖、脱乙酰甲壳素、脱酰甲壳素、可溶性几丁质、可溶性甲壳素。

无定形固体,比旋光度[α]D11—3°~+10°。

几乎不溶于水,但溶于甲酸、乙酸、苯甲酸和环烷酸等有机酸以及稀无机酸。

工业品为白色或灰白色的半透明片状固体,略带珍珠光泽。

无味、无毒、易降解,是少有的天然阳离子聚电解质。

用强碱水解或酶解脱去甲壳素糖基上的乙酰基得到的多糖。

壳聚糖

壳聚糖

文献综述钟士亮 041511130壳聚糖(chitosan)是甲壳素N-脱乙酰基的产物,是由β-(1,4)-2-氨基-2-脱氧-D-葡萄糖单元和β-(1,4)-2-乙酰胺基-2-脱氧-D-葡萄糖单元组成的共聚体[1]。

而甲壳素是地球上最丰富的高分子化合物之一,每年的天然产量达上百亿吨,仅次于纤维素。

甲壳素与Ca2+是虾、蟹、昆虫的外壳、藻类、菌类细胞壁的主要构成成分[2]。

壳聚糖是迄今发现的唯一具有明显碱性、带正电荷的天然多糖类有机高分子。

壳聚糖分子结构中含有氨基、羟基、氧桥以及富含电子的吡喃环活性基团,通常在生物体内表现出极强的亲和性,同时具有抗菌活性等,但是,壳聚糖结构上大量的羟基和氨基,使得壳聚糖分子间与分子内有强烈的氢键作用,所以壳聚糖不溶于一般溶剂和水,但可以溶解于稀酸,如醋酸,盐酸等,这使得壳聚糖的推广应用受到很大程度上的限制,因此改善壳聚糖的溶解性能特别是改善其水溶性,是壳聚糖改性研究中最重要的方向之一[3-4]。

壳聚糖在生物学和医学上都具有潜在的应用价值。

据报道壳聚糖单体,有许多独特的生理活性,促进脾脏抗体生长,抑制肿瘤细胞[5];强化肝脏功能,降低血压,吸附胆固醇;在微酸环境中具有较强的抗菌作用和显著的吸湿保湿力;活化植物细胞,促进植物快速生长[6]。

壳聚糖能促进血液凝固,可用作止血剂。

它还可用于伤口填料物质,良好的生物相容性和生物可降解性,还具有消炎、减少创面渗出和促进创伤组织再生、修复和愈合的作用。

壳聚糖结构如下图1.1:图 1.1 壳聚糖的结构式它分子链上的胺基和羟基都是很好的配位基团。

1 壳聚糖的性质1.1壳聚糖物理化学性质1811年法国科学家Braconno提取得到的甲壳素,甲壳素通过脱乙酰化得到壳聚糖,从此人们对它的研究越来越多。

壳聚糖呈白色或灰白色,略有金属光泽,为透明且无定形固体。

在185 ℃下开始分解,不溶于水和稀碱,可溶于大多数有机酸和部分无机酸中,壳聚糖分子中同时存在大量的氨基和羟基,因此可以进行相应的修饰、接枝、以及活化等[7]壳聚糖以其氢键相互交联成网状结构,利用适当的溶剂,可制成透明的的薄膜,壳聚糖的溶液具有粘性是一种理想的成膜物。

壳 聚 糖 介 绍

壳 聚 糖 介 绍
脱乙酰度Deacetylation (DAC)
≥85%, 90%, 95%
粘度(Mpa.S)Viscosity
≤100(1%CTS,1%HAC,25℃)
PH值PH value
7.0-9.0
重金属(pb)(ppm)
≤10
砷(As) (ppm)
≤0.5
细菌总数Total plate count
≤1000/g
大肠杆菌E. Coli
阴性Absent
致病菌Germs
不得检出No finding
包装Packing
10/25Kg纸箱纸板箱Carton
高密度壳聚糖(High Density Chitosan)
高密度壳聚糖
标准Specification(Food grade)
外观Appearance
原白色Original white
几丁质Chitin
标准Specification
外观Appearance
原白色Original white
粒度Particle
片状Slice
水分Moisture content
<10%
灰分Ash content
1.0%; <2.0%
蛋白质Protein
<1.0%
PH(1%)
7-9
包装Packing
10Kg
粒度Particle
80目粉末80Mesh powder
水分Moisture
≤10%
灰分Ash
≤1.0%
不溶物Insoluble
≤1.0%
脱乙酰度Deacetylation (DAC)
≥85%, 90%, 95%
粘度(Mpa.S)Viscosity

壳聚糖与聚丙烯酸的物理性质对比研究

壳聚糖与聚丙烯酸的物理性质对比研究

壳聚糖与聚丙烯酸的物理性质对比研究壳聚糖(Chitosan)和聚丙烯酸(Polyacrylic Acid)是两种常见的高分子化合物,它们在医药、食品、环境等领域有着广泛的应用。

两者具有不同的化学结构,因此它们的物理性质也有所差异。

本文将分别对壳聚糖和聚丙烯酸的物理性质进行对比研究,以探究它们在不同应用领域的潜力。

首先,壳聚糖与聚丙烯酸的溶解性质是不同的。

壳聚糖是由葡萄糖分子经去乙酰化而得,其主要溶解性质受溶剂酸碱度的影响。

在酸性条件下,壳聚糖较为溶解,而在中性或碱性条件下溶解度显著降低。

聚丙烯酸则是由丙烯酸分子聚合而成,它在水中具有良好的溶解性。

聚丙烯酸与水形成氢键,从而增强了其溶解性。

因此,在溶解性方面,聚丙烯酸相对壳聚糖具有更广泛的应用。

其次,壳聚糖和聚丙烯酸的荷电性质也有所区别。

壳聚糖是一种阳离子高分子,它具有良好的荷电性能,可通过与阴离子相互作用形成凝胶或络合物。

这种特性使得壳聚糖广泛应用于药物控释、伤口愈合和组织工程等领域。

而聚丙烯酸则是一种阴离子高分子,它在水中以带负电的形式存在。

这使得聚丙烯酸具有较好的亲水性和膨胀性,可以吸附水分子并形成水凝胶。

因此,聚丙烯酸在湿敷剂、润滑剂等领域有着广泛的应用。

除了溶解性和荷电性外,壳聚糖和聚丙烯酸在机械性能方面也存在差异。

壳聚糖具有相对较高的机械强度和刚性,能够形成稳定的凝胶结构。

这使得壳聚糖在支架材料、薄膜等领域具有独特的应用潜力。

聚丙烯酸则具有较好的柔韧性和拉伸性,使其适用于胶粘剂、涂料等领域。

因此,在机械性能方面,壳聚糖和聚丙烯酸各有其优势,可以根据具体需求进行选择。

此外,壳聚糖和聚丙烯酸的生物相容性也有所差异。

壳聚糖是天然产物,具有良好的生物可降解性和生物相容性,不易引起免疫反应。

因此,在药物传递、组织工程等医药领域有广泛的应用。

聚丙烯酸在一定程度上也具有生物可降解性,但其生物相容性较弱。

它的酸性特征可能引起刺激,因此在医药领域中的应用需要进一步的改进和研究。

壳聚糖抗菌喷剂原理

壳聚糖抗菌喷剂原理

壳聚糖抗菌喷剂原理
壳聚糖(Chitosan)是从甲壳贝类壳中提取的多糖类化合物,具有多种生物活性,其中包括抗菌性质。

壳聚糖抗菌喷剂的原理涉及壳聚糖与细菌或真菌相互作用的多个层面。

以下是壳聚糖抗菌喷剂的一些原理:
1.抑制细菌细胞膜的功能:壳聚糖可以与细菌表面的带负电的细菌细胞膜结合,破坏细菌细胞膜的完整性。

这可能导致细菌细胞内部物质的渗漏,从而影响细胞的正常功能。

2.改变细菌的表面电荷:壳聚糖具有多个胺基和羟基官能团,使其具有正电荷。

这种正电荷的壳聚糖可以与带负电的细菌表面结合,改变细菌表面电荷,阻碍其与其他细胞或表面的黏附。

3.抑制生物膜形成:细菌通常通过形成生物膜来附着在表面并形成感染。

壳聚糖可以影响生物膜的形成,减缓或阻止细菌在生物膜上的生长和繁殖。

4.诱导凋亡:壳聚糖可能通过一些机制诱导细菌的凋亡(程序性细胞死亡)。

这可以减少细菌数量,从而降低细菌感染的风险。

5.抗氧化性:壳聚糖本身具有抗氧化性,可以帮助减少由于氧化反应产生的自由基,有助于细胞的保护和修复。

壳聚糖抗菌喷剂通常应用于农业、食品工业、医疗领域等。

在农业中,壳聚糖抗菌喷剂可用于作物保护,减少病原菌的感染。

在食品工业中,壳聚糖抗菌喷剂可以用于食品的防腐和保鲜。

在医疗领域,壳聚糖抗菌喷剂可能用于一些外科手术器械的消毒和预防感染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chitosan1Nonproprietary Names BP:Chitosan Hydrochloride PhEur:Chitosan Hydrochloride2Synonyms2-Amino-2-deoxy-(1,4)-b -D -glucopyranan;chitosani hydrochlori-dum;deacetylated chitin;deacetylchitin;b -1,4-poly-D -glucosamine;poly-D -glucosamine;poly-(1,4-b -D -glucopyranosamine).3Chemical Name and CAS Registry Number Poly-b -(1,4)-2-Amino-2-deoxy-D -glucose [9012-76-4]4Empirical Formula and Molecular WeightPartial deacetylation of chitin results in the production of chitosan,which is a polysaccharide comprising copolymers of glucosamine and N -acetylglucosamine.Chitosan is the term applied to deacety-lated chitins in various stages of deacetylation and depolymeriza-tion and it is therefore not easily defined in terms of its exact chemical composition.A clear nomenclature with respect to the different degrees of N -deacetylation between chitin and chitosan has not been defined,(1–3)and as such chitosan is not one chemical entity but varies in composition depending on the manufacturer.In essence,chitosan is chitin sufficiently deacetylated to form soluble amine salts.The degree of deacetylation necessary to obtain a soluble product must be greater than 80–85%.Chitosan is commercially available in several types and grades that vary in molecular weight by 10000–1000000,and vary in degree of deacetylation and viscosity.(4)5StructuralFormula6Functional CategoryCoating agent;disintegrant;film-forming agent;mucoadhesive;tablet binder;viscosity increasing agent.7Applications in Pharmaceutical Formulation or TechnologyChitosan is used in cosmetics and is under investigation for use in a number of pharmaceutical formulations.The suitability and performance of chitosan as a component of pharmaceutical formulations for drug delivery applications has been investigated in numerous studies.(3,5–8)These include controlled drug delivery applications,(9–14)use as a component of mucoadhesive dosage forms,(15,16)rapid release dosage forms,(17,18)improved peptide delivery,(19,20)colonic drug delivery systems,(21,22)and use for gene delivery.(23)Chitosan has been processed into several pharmaceu-tical forms including gels,(24,25)films,(11,12,26,27)beads,(28,29)micro-spheres,(30,31)tablets,(32,33)and coatings for liposomes.(34)Furthermore,chitosan may be processed into drug delivery systems using several techniques including spray-drying,(15,16)coacerva-tion,(35)direct compression,(32)and conventional granulation processes.(36)8DescriptionChitosan occurs as odorless,white or creamy-white powder or flakes.Fiber formation is quite common during precipitation and the chitosan may look ‘cottonlike ’.9Pharmacopeial Specifications See Table I.Table I:Pharmacopeial specifications for chitosan.TestPhEur 6.5Identification þCharactersþAppearance of solution þMatter insoluble in water 40.5%pH (1%w/v solution) 4.0–6.0ViscosityþDegree of deacetylation þChlorides 10.0–20.0%Heavy metals 440ppm Loss on drying 410%Sulfated ash41.0%10Typical PropertiesChitosan is a cationic polyamine with a high charge density at pH <6.5,and so adheres to negatively charged surfaces and chelates metal ions.It is a linear polyelectrolyte with reactive hydroxyl and amino groups (available for chemical reaction and salt forma-tion).(7)The properties of chitosan relate to its polyelectrolyte and polymeric carbohydrate character.The presence of a number of amino groups allows chitosan to react chemically with anionic systems,which results in alteration of physicochemical character-istics of such combinations.The nitrogen in chitosan is mostly in the form of primary aliphatic amino groups.Chitosan therefore undergoes reactions typical of amines:for example,N -acylation and Schiff reactions.(3)Almost all functional properties of chitosan depend on the chain length,charge density,and charge distribu-tion.(8)Numerous studies have demonstrated that the salt form,molecular weight,and degree of deacetylation as well as pH at which the chitosan is used all influence how this polymer is utilized in pharmaceutical applications.(7)Acidity/alkalinity pH =4.0–6.0(1%w/v aqueous solution)Density 1.35–1.40g/cm 3Glass transition temperature 2038C (37)Moisture content Chitosan adsorbs moisture from the atmo-sphere,the amount of water adsorbed depending upon the initial moisture content and the temperature and relative humidity of the surrounding air.(38)Particle size distribution <30m mSolubility Sparingly soluble in water;practically insoluble in ethanol (95%),other organic solvents,and neutral or alkali solutions at pH above approximately 6.5.Chitosan dissolves readily in dilute and concentrated solutions of most organic 159acids and to some extent in mineral inorganic acids(except phosphoric and sulfuric acids).Upon dissolution,amine groups of the polymer become protonated,resulting in a positively charged polysaccharide(RNH3þ)and chitosan salts(chloride, glutamate,etc.)that are soluble in water;the solubility is affected by the degree of deacetylation.(7)Solubility is also greatly influenced by the addition of salt to the solution.The higher the ionic strength,the lower the solubility as a result of a salting-out effect,which leads to the precipitation of chitosan in solution.(39) When chitosan is in solution,the repulsions between the deacetylated units and their neighboring glucosamine units cause it to exist in an extended conformation.Addition of an electrolyte reduces this effect and the molecule possesses a more random,coil-like conformation.(40)Viscosity(dynamic)A wide range of viscosity types is commer-cially available.Owing to its high molecular weight and linear, unbranched structure,chitosan is an excellent viscosity-enhan-cing agent in an acidic environment.It acts as a pseudo-plastic material,exhibiting a decrease in viscosity with increasing rates of shear.(7)The viscosity of chitosan solutions increases with increasing chitosan concentration,decreasing temperature,and increasing degree of deacetylation;see Table II.(40)Table II:Typical viscosity(dynamic)values for chitosan1%w/v solutions in different acids.(40)Acid1%acidconcentration 5%acidconcentration10%acidconcentrationViscosity (mPa s)pH Viscosity(mPa s)pH Viscosity(mPa s)pHAcetic260 4.1260 3.3260 2.9 Adipic190 4.1————Citric35 3.0195 2.3215 2.0 Formic240 2.6185 2.0185 1.7 Lactic235 3.3235 2.7270 2.1 Malic180 3.3205 2.3220 2.1 Malonic195 2.5————Oxalic12 1.8100 1.11000.8 Tartaric52 2.8135 2.0160 1.711Stability and Storage ConditionsChitosan powder is a stable material at room temperature,although it is hygroscopic after drying.Chitosan should be stored in a tightly closed container in a cool,dry place.The PhEur6.5specifies that chitosan should be stored at a temperature of2–88C.12IncompatibilitiesChitosan is incompatible with strong oxidizing agents.13Method of ManufactureChitosan is manufactured commercially by chemically treating the shells of crustaceans such as shrimps and crabs.The basic manufacturing process involves the removal of proteins by treatment with alkali and of minerals such as calcium carbonate and calcium phosphate by treatment with acid.(3,40)Before these treatments,the shells are ground to make them more accessible.The shells are initially deproteinized by treatment with an aqueous sodium hydroxide3–5%solution.The resulting product is neutralized and calcium is removed by treatment with an aqueous hydrochloric acid3–5%solution at room temperature to pre-cipitate chitin.The chitin is dried so that it can be stored as a stable intermediate for deacetylation to chitosan at a later stage.N-Deacetylation of chitin is achieved by treatment with an aqueous sodium hydroxide40–45%solution at elevated temperature (1108C),and the precipitate is washed with water.The crude sample is dissolved in acetic acid2%and the insoluble material is removed.The resulting clear supernatant solution is neutralized with aqueous sodium hydroxide solution to give a purified white precipitate of chitosan.The product can then be further purified and ground to a fine uniform powder or granules.(1)The animals from which chitosan is derived must fulfil the requirements for the health of animals suitable for human consumption to the satisfaction of the competent authority.The method of production must consider inactivation or removal of any contamination by viruses or other infectious agents.14SafetyChitosan is being investigated widely for use as an excipient in oral and other pharmaceutical formulations.It is also used in cosmetics. Chitosan is generally regarded as a nontoxic and nonirritant material.It is biocompatible(41)with both healthy and infected skin.(42)Chitosan has been shown to be biodegradable.(3,41) LD50(mouse,oral):>16g/kg(43)15Handling PrecautionsObserve normal precautions appropriate to the circumstances and quantity of material handled.Chitosan is combustible;open flames should be avoided.Chitosan is temperature-sensitive and should not be heated above2008C.Airborne chitosan dust may explode in the presence of a source of ignition,depending on its moisture content and particle size.Water,dry chemicals,carbon dioxide, sand,or foam fire-fighting media should be used.Chitosan may cause skin or eye irritation.It may be harmful if absorbed through the skin or if inhaled,and may be irritating to mucous membranes and the upper respiratory tract.Eye and skin protection and protective clothing are recommended;wash thoroughly after handling.Prolonged or repeated exposure (inhalation)should be avoided by handling in a well-ventilated area and wearing a respirator.16Regulatory StatusChitosan is registered as a food supplement in some countries.17Related SubstancesSee Section18.18CommentsChitosan derivatives are easily obtained under mild conditions and can be considered as substituted glucens.(3)The PubChem Compound ID(CID)for chitosan includes 439300and3086191.19Specific References1Muzzarelli RAA,ed.Natural Chelating Polymers.New York: Pergamon Press,1973;83–227.2Zikakis JP,ed.Chitin,Chitosan and Related Enzymes.New York: Academic Press,1974.3Kumar MNVR.A review of chitin and chitosan applications.React Funct Polym2000;46:1–27.4Genta I et al.Different molecular weight chitosan microspheres: influence on drug loading and drug release.Drug Dev Ind Pharm 1998;24:779–784.5Illum L.Chitosan and its use as a pharmaceutical excipient.Pharm Res 1998;15:1326–1331.6Paul W,Sharma CP.Chitosan,a drug carrier for the21st century:a review.STP Pharma Sci2000;10:5–22.7Singla AK,Chawla M.Chitosan:some pharmaceutical and biological aspects–an update.J Pharm Pharmacol2001;53:1047–1067.8Dodane V,Vilivalam VD.Pharmaceutical applications of chitosan.Pharm Sci Technol Today1998;1:246–253.9Muzzarelli RAA,ed.Chitin.London:Pergamon Press,1977;69.160Chitosan10Nakatsuka S,Andrady LA.Permeability of vitamin-B-12in chitosan membranes:effect of crosslinking and blending with poly(vinyl alcohol) on permeability.J Appl Polym Sci1992;44:7–28.11Kubota N et al.Permeability properties of glycol chitosan membrane modified with thiol groups.J Appl Polym Sci1991;42:495–501.12Li Q et al.Application and properties of chitosan.J Bioact Compat Polym1992;7:370–397.13Miyazaki S et al.Sustained release and intragastric floating granules of indomethacin using chitosan in rabbits.Chem Pharm Bull1988;36: 4033–4038.14Sawayangi Y et e of chitosan for sustained-release preparations of water soluble drugs.Chem Pharm Bull1982;30:4213–4215.15He P et al.In vitro evaluation of the mucoadhesive properties of chitosan microspheres.Int J Pharm1998;166:75–88.16He P et al.Sustained release chitosan microsphere produced by novel spray drying methods.J Microencapsul1999;16:343–355.17Sawayanagi Y et al.Enhancement of dissolution properties of griseofulvin from ground mixtures with chitin or chitosan.Chem Pharm Bull1982;30(12):4464–4467.18Shirashi S et al.Enhancement of dissolution rates of several drugs by low molecular weight chitosan and alginate.Chem Pharm Bull1990;38:185–187.19Luessen HL et al.Bioadhesive polymers for the peroral delivery of drugs.J Control Release1994;29:329–338.20Luessen HL et al.Mucoadhesive polymers in peroral peptide drug delivery,IV:polycarbophil and chitosan are potent enhancers of peptide transport across intestinal mucosae in vitro.J Control Release1997;45: 15–23.21Tozaki H et al.Validation of a pharmacokinetic model of colon-specific drug delivery and the therapeutic effects of chitosan capsules containing 5-aminosalicylic acid on2,4,6-trinitrobenzene sulphonic acid-induced ulcerative colitis in rats.J Pharm Pharmacol1999;51:1107–1112. 22Tozaki H et al.Colon specific delivery of R68070,a new thromboxane synthase inhibitor using chitosan capsules:therapeutic effects against 2,4,6-trinitrobenzene sulphonic acid-induced ulcerative colitis in rats.Life Sci1999;64:1155–1162.23Leong KW et al.DNA-polycation nanospheres as non-viral gene delivery vehicles.J Control Release1998;53:183–193.24Kristl J et al.Hydrocolloids and gels of chitosan as drug carriers.Int J Pharm1993;99:13–19.25Tasker RA et al.Pharmacokinetics of an injectable sustained-release formulation of morphine for use in dogs.J Vet Pharmacol Ther1997;20:362–367.26Remunan-Lopez C et al.Design and evaluation of chitosan/ethylcellu-lose mucoadhesive bilayered devices for buccal drug delivery.J Control Release1998;55:143–152.27Senel S et al.Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery.Int J Pharm2000;193:197–203.28Kofuji K et al.Preparation and drug retention of biodegradable chitosan gel beads.Chem Pharm Bull1999;47:1494–1496.29Sezer AD,Akbuga J.Release characteristics of chitosan-treated alginate beads,II:sustained release of a macromolecular drug from chitosan treated alginate beads.J Microencapsul1999;193:197–203.30Ganza-Gonzalez A et al.Chitosan and chondroitin microspheres for oral administration controlled release of metoclopromide.Eur J Pharm Biopharm1999;48:149–155.31Huang RG et al.Microencapsulation of chlorpheniramine maleate-resin particles with crosslinked chitosan for sustained release.Pharm Dev Technol1999;4:107–115.32Yomota C et al.Sustained-release effect of the direct compressed tablet based on chitosan and Na alginate.Yakugaku Zasshi1994;114:257–263.33Sabnis S et e of chitosan in compressed tablets of diclofenac sodium:inhibition of drug release in an acidic environment.Pharm Dev Technol1997;2:243–255.34Takeuchi H et al.Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes.Pharm Res1996;13:896–901.35Bayomi MA et al.Preparation of casein-chitosan microspheres containing diltiazem hydrochloride by an aqueous coacervation technique.Pharma Acta Helv1998;73:187–192.36Miyazaki S et al.Drug release from oral mucosal adhesive tablets of chitosan and sodium alginate.Int J Pharm1995;118:257–263.37Sakurai K et al.Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone)blends.Polymer2000;41:7051–7056.38Gocho H et al.Effect of polymer chain end on sorption isotherm of water by chitosan.Carbohydr Polym2000;41:87–90.39Errington N et al.Hydrodynamic characterization of chitosans varying in degree of acetylation.Int J Biol Macromol1993;15:113–117.40Skaugrud O.Chitosan–new biopolymer for cosmetics and drugs.Drug Cosmet Ind1991;148:24–29.41Gebelein CG,Dunn RL,eds.Progress in Biomedical Polymers.New York:Plenum Press,1990;283.42Gooday GW et al,ed.Chitin in Nature and Technology.New York: Plenum Press,1986;435.43Arai K et al.Toxicity of chitosan.Bull Tokai Reg Fish Res Lab1968;43: 89–94.20General ReferencesBrine CJ et al,ed.Advances in Chitin and Chitosan.London:Elsevier Applied Science,1992.Skjak-Braek G et al,ed.Chitin and Chitosan:Sources,Chemistry, Biochemistry,Physical Properties and Applications.Amsterdam:Else-vier,1992.21AuthorDS Jones.22Date of Revision12February2009.Chitosan161Chlorhexidine1Nonproprietary NamesBP:Chlorhexidine AcetateChlorhexidine Gluconate Solution Chlorhexidine HydrochlorideJP:Chlorhexidine Gluconate SolutionChlorhexidine HydrochloridePhEur:Chlorhexidine DiacetateChlorhexidine Digluconate Solution Chlorhexidine DihydrochlorideUSP:Chlorhexidine Gluconate SolutionChlorhexidine is usually encountered as the acetate,gluconate,or hydrochloride salt,and a number of pharmacopeias contain monographs for such materials.See Sections 9and 17.2Synonyms1,6-bis[N 0-(p -Chlorophenyl)-N 5-biguanido]hexane;N ,N 00-bis(4-chlorophenyl)-3,12-diimino-2,4,11,13-tetraazatetradecanediimida-mide;chlorhexidini diacetas;chlorhexidini digluconatis solutio;chlorhexidini dihydrochloridum;1,6-di(40-chlorophenyldiguani-do)hexane;1,1’-hexamethylene-bis[5-(p -chlorophenyl)biguanide].3Chemical Name and CAS Registry Number1E -2-[6-[[amino-[[amino-[(4-chlorophenyl)amino]methylidene]a-mino]methylidene]amino]hexyl]-1-[amino-[(4-chlorophenyl)ami-no]methylidene]guanidine [55-56-1]4Empirical Formula and Molecular Weight C 22H 30Cl 2N 10505.485StructuralFormula6Functional CategoryAntimicrobial preservative;antiseptic.7Applications in Pharmaceutical Formulation or TechnologyChlorhexidine salts are widely used in pharmaceutical formulations in Europe and Japan for their antimicrobial properties.(1,2)Although mainly used as disinfectants,chlorhexidine salts are also used as antimicrobial preservatives.As excipients,chlorhexidine salts are mainly used for the preservation of eye-drops at a concentration of 0.01%w/v;generally the acetate or gluconate salt is used for this purpose.Solutions containing 0.002–0.006%w/v chlorhexidine gluconate have also been used for the disinfection of hydrophilic contact lenses.For skin disinfection,chlorhexidine has been formulated as a 0.5%w/v solution in 70%v/v ethanol and,in conjunction with detergents,as a 4%w/v surgical scrub.Chlorhexidine salts may also be used in topical antiseptic creams,mouthwashes,dental gels,and in urology for catheter sterilization and bladder irrigation.(1–4)Chlorhexidine salts have additionally been used as constituents of medicated dressings,dusting powders,sprays,and creams.8DescriptionChlorhexidine occurs as an odorless,bitter tasting,white crystalline powder.See Section 17for information on chlorhexidine salts.9Pharmacopeial Specifications See Table I.See also Section 17.10Typical PropertiesAntimicrobial activity Chlorhexidine and its salts exhibit anti-microbial activity against Gram-positive and Gram-negativeSEM 1:Excipient:chlorhexidine;manufacturer:SST Corp.;magnification:600Â.SEM 2:Excipient:chlorhexidine;manufacturer:SST Corp.;magnification:2400Â.162。

相关文档
最新文档