扩散与相变练习题
合金中的扩散与相变习题(相变部分)

合金中的扩散与相变习题(相变部分)1. 名词解释形核驱动力、相变驱动力,调幅分解、惯析面、连续脱溶、不连续脱溶、热弹性马氏体。
2(1)如果不考虑畸变能,第二相粒子在晶内析出是何形态?在晶界析出呢?(2)如果不考虑界面能,析出物为何种形态?是否会在晶界优先析出呢?3 已知α、β、γ、δ相的自由能-成分曲线如图所示, 从热力学角度判断浓度为C 0的γ相及δ相应析出的相,并说明理由,同时指出在所示温度下的平衡相(稳定相) 及其浓度。
4 指出固溶体调幅分解与形核分解两之间的的主要区别。
5 假设将0.4%C 的铁碳合金从高温的单相γ状态淬到750℃时,从过冷γ中析出了一个很小的α晶核.试回答:(1) 在Fe-Fe 3C 相图下方,作出α、γ、Fe 3C 在750℃的自由能-成分曲线。
(2) 用作图法求出最先析出晶核的成分,并说明之。
6 沉淀相θ‘’呈圆盘状,厚度为2.0 nm ,其失配度δ约为10%。
已知弹性模量E=7×1010Pa ,共格界面因失配而造成的一个原子应变能为223δεVE V =(V 为一个原子所占体积)。
今假设共格破坏后的非共格界面能为0.5J/m 2,求共格破坏时θ‘’圆盘的直径。
7 假定在Al (面心立方,原子间距d=0.3 nm )基固溶体中,空位的平衡浓度(N n )在550℃时为2×10-4,而在130℃时可以忽略不计:(1)如果所有空位都构成G .P 区的核心,求单位体积中的核心数目;(2)计算这些核心的平均距离。
8 Al-2at.%Cu 合金进行时效硬化,先从520℃淬至27℃,3小时后,在此温度形成平均间距为1.5×10-6cm 的G .P.区。
已知27℃铜在铝中的扩散系数D=2.3×10-25cm 2/s ,假定过程为扩散控制,试估计该合金的空位形成能(假设淬火过程中无空位衰减)。
9 假设在固态相变过程中新相形核率N 及长大速率G 均为常数,则经t 时间后所形成新相的体积分数x 可用Johnson-Mehl 方程得到,即)3exp(143t NG x π--=已知形核率N=1000/cm 3.s ,G=3×10-5cm/s ,试计算:(1)发生相变速度最快的时间;过程中的最大相变速度;(2)获得50%转变量所需的时间。
固体的扩散习题与答案

固体的扩散习题与答案固体的扩散习题与答案扩散是指物质在空间中自发的、无宏观流动的传递过程。
在固体中,扩散现象常常发生,它对于材料的性能和应用具有重要影响。
下面将介绍一些固体扩散的习题和答案,帮助读者更好地理解和掌握这一概念。
习题一:某金属材料的扩散系数为2.5×10^-5 cm^2/s,温度为800℃。
若在1小时内,该金属材料中某种元素的浓度从表面向内部下降了0.1%,求该元素在1小时内的扩散深度。
解答:根据扩散定律,扩散深度可以用以下公式计算:L = √(D × t)其中,L表示扩散深度,D表示扩散系数,t表示时间。
代入已知数据,得到:L = √(2.5×10^-5 cm^2/s × 3600 s)计算结果约为0.3 cm。
所以,在1小时内,该元素的扩散深度约为0.3 cm。
习题二:某金属材料的扩散系数为1.8×10^-6 m^2/s,温度为900K。
若在10小时内,该金属材料中某种元素的扩散深度为0.5 mm,求该金属材料的扩散系数。
解答:根据扩散定律,扩散系数可以用以下公式计算:D = (L^2)/(4t)其中,D表示扩散系数,L表示扩散深度,t表示时间。
代入已知数据,得到:D = (0.5×10^-3 m)^2 / (4 × 10 × 3600 s)计算结果约为2.08×10^-7 m^2/s。
所以,该金属材料的扩散系数约为2.08×10^-7 m^2/s。
习题三:某金属材料的扩散系数为1.2×10^-9 cm^2/s,温度为500℃。
若在5小时内,该金属材料中某种元素的扩散深度为0.2 mm,求该元素的扩散时间。
解答:根据扩散定律,扩散时间可以用以下公式计算:t = (L^2)/(4D)其中,t表示扩散时间,L表示扩散深度,D表示扩散系数。
代入已知数据,得到:t = (0.2 mm)^2 / (4 × 1.2×10^-9 cm^2/s)计算结果约为2.78×10^7 s。
扩散相变解答

材料的扩散与相变考试参考解答名词解释扩散激活能:在扩散过程中,原子从原始平衡位置跳动迁移到新的平衡位置,所必须越过的能垒值或称所必须增加的最低能量。
空位扩散:和空位相邻的原子比较容易进入空位位置而使其原来占据的位置变为空位,如此不断就可以实现原子迁移。
化学扩散:由于浓度梯度所引起的扩散。
扩散通量:单位时间内通过垂直于X 轴的单位平面的原子数量,单位为mol/cm 2s, 1/cm 2s, g/cm 2s 非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外表面形核。
反应扩散:由扩散造成的浓度分布以及由合金系统决定的不同相所对应的固溶度势必在扩散过程中产生中间相,这种通过扩散而形成新相的现象称为反应扩散。
惯析面:马氏体总是在母相的特定的晶面上析出,伴随着马氏体相变的切变,一般与此晶面平行,此晶面为基体与马氏体相所共有,称为惯析面。
TTT 图:过冷奥氏体等温转变动力学图,又称C 曲线。
溶质原子贫化区:由于空位的存在,促使溶质原子向晶界迁移的偏聚,辐射或加热时产生大量空位在冷却时向晶界迁移并消失,同时拖着溶质原子运动,溶质原子富集在晶界。
偏聚范围大,在晶界上形成一定宽度偏聚带,达几微米,偏聚带两侧有溶质原子贫化区。
解答题:(27分)1.在一维稳态扩散情况下,试推导出扩散物质的浓度与坐标的分布函数。
稳态扩散:220,0C C CD t t x∂∂∂===∂∂∂ 从而:,C(x)Ax+B Cconst A x∂===∂积分可得 设:得:211211121(),()C C C x C C C x B C A C x x C L C C L L---==⇒=⇒=+-2.将一根Fe-0.4%C-4%Si 合金棒与一根Fe-0.4%C 合金棒焊接在一起,经1015℃×10天扩散退火会产生什么现象?并说明产生这种现象的原因。
见上交材基3.公式2D P α=Γ的物理意义是什么?简述在间隙扩散与空位扩散机制中D 表达式的区别? D 表示单位梯度下的通量,即为扩散系数,单位为2/cm s 或2/m s 间隙扩散机制中D 的表达式:2**exp()exp()S H D a R RTαν∆∆=- 20*exp()S D a Rαν∆=为频率因子,*S ∆激活熵,*H ∆激活焓 空位扩散机制中D 的表达式:**2exp()exp()v vS S H H D a R RT αν∆+∆∆+∆=- *20exp()vS S D a Rαν∆+∆=频率因子可见,空位机制比间隙机制需要更大的扩散激活能。
合金中的扩散与相变习题(相变部分

合金中的扩散与相变习题(相变部分)1. 名词解释形核驱动力、相变驱动力,调幅分解、惯析面、连续脱溶、不连续脱溶、热弹性马氏体。
2(1)如果不考虑畸变能,第二相粒子在晶内析出是何形态?在晶界析出呢?(2)如果不考虑界面能,析出物为何种形态?是否会在晶界优先析出呢?3 已知α、β、γ、δ相的自由能-成分曲线如图所示, 从热力学角度判断浓度为C 0的γ相及δ相应析出的相,并说明理由,同时指出在所示温度下的平衡相(稳定相) 及其浓度。
4 指出固溶体调幅分解与形核分解两之间的的主要区别。
5 假设将0.4%C 的铁碳合金从高温的单相γ状态淬到750℃时,从过冷γ中析出了一个很小的α晶核.试回答:(1) 在Fe-Fe 3C 相图下方,作出α、γ、Fe 3C 在750℃的自由能-成分曲线。
(2) 用作图法求出最先析出晶核的成分,并说明之。
6 沉淀相θ‘’呈圆盘状,厚度为2.0 nm ,其失配度δ约为10%。
已知弹性模量E=7×1010Pa ,共格界面因失配而造成的一个原子应变能为223δεVE V =(V 为一个原子所占体积)。
今假设共格破坏后的非共格界面能为0.5J/m 2,求共格破坏时θ‘’圆盘的直径。
7 假定在Al (面心立方,原子间距d=0.3 nm )基固溶体中,空位的平衡浓度(N n )在550℃时为2×10-4,而在130℃时可以忽略不计:(1)如果所有空位都构成G .P 区的核心,求单位体积中的核心数目;(2)计算这些核心的平均距离。
8 Al-2at.%Cu 合金进行时效硬化,先从520℃淬至27℃,3小时后,在此温度形成平均间距为1.5×10-6cm 的G .P.区。
已知27℃铜在铝中的扩散系数D=2.3×10-25cm 2/s ,假定过程为扩散控制,试估计该合金的空位形成能(假设淬火过程中无空位衰减)。
9 假设在固态相变过程中新相形核率N 及长大速率G 均为常数,则经t 时间后所形成新相的体积分数x 可用Johnson-Mehl 方程得到,即)3exp(143t NG x π--=已知形核率N=1000/cm 3.s ,G=3×10-5cm/s ,试计算:(1)发生相变速度最快的时间;过程中的最大相变速度;(2)获得50%转变量所需的时间。
第七章 扩散习题

应变能Ee产生的原因是,在母相中产生新相时,由于两者 的比体积不同,会引起体积应变,这种体积应变通常是通 过新相与母相的弹性应变来调节,结果产生体积应变能。
高于727℃,为什么? 2) 渗碳温度高于1100℃会出现什么问题?
4:假定T12钢工件在927℃的空气中加热退火时表面脱碳至Wc=0, 退火后需将工件表层Wc≤0.6%的部分车削掉。如果工件保温1小时后随炉 冷却过程中碳含量不发生变化。问退火后工件表层需要车削掉多少? 设碳在该温度下的扩散系数D=1.28×10-11m2/s。 误差函数表如书本所示。
2:调幅分解是指过饱和固熔体在一定温度下分解成结构相同、成分和点阵常 数不同的两个相。调幅分解的主要特征是不需要形核过程。调幅分解与形核、 长大脱熔方式的比较如附表2 成分曲 线特点
凸
形核长大 凹
条件
自发涨 落
过冷度 及临界 形核功
形核特 点
非形核
形核
界面特 点
宽泛
5:选用Al-WCu4%合金,加热至550℃,Cu原子全部溶入α固溶体中,冷却 进行人工时效时效处理 。试对人工时效析出顺序进行解释。
6:Cu-Al组成互扩散偶发生扩散时,标志面会向哪一个方向移动
1.分析固态相变的阻力。 2.试比较调幅分解和形核长达脱熔方式 3. 试述无扩散型相变有何特点。
1:固态相变时形核的阻力,来自新相晶核与基体间形成界面 所增加的界面能Eγ,以及体积应变能(即弹性能)Ee。
第七章 扩散及固态相变习题
合金中的扩散与相变习题(相变部分

合金中的扩散与相变习题(相变部分)1. 名词解释形核驱动力、相变驱动力,调幅分解、惯析面、连续脱溶、不连续脱溶、热弹性马氏体。
2(1)如果不考虑畸变能,第二相粒子在晶内析出是何形态?在晶界析出呢?(2)如果不考虑界面能,析出物为何种形态?是否会在晶界优先析出呢?3 已知α、β、γ、δ相的自由能-成分曲线如图所示, 从热力学角度判断浓度为C 0的γ相及δ相应析出的相,并说明理由,同时指出在所示温度下的平衡相(稳定相) 及其浓度。
4 指出固溶体调幅分解与形核分解两之间的的主要区别。
5 假设将0.4%C 的铁碳合金从高温的单相γ状态淬到750℃时,从过冷γ中析出了一个很小的α晶核.试回答:(1) 在Fe-Fe 3C 相图下方,作出α、γ、Fe 3C 在750℃的自由能-成分曲线。
(2) 用作图法求出最先析出晶核的成分,并说明之。
6 沉淀相θ‘’呈圆盘状,厚度为2.0 nm ,其失配度δ约为10%。
已知弹性模量E=7×1010Pa ,共格界面因失配而造成的一个原子应变能为223δεVE V =(V 为一个原子所占体积)。
今假设共格破坏后的非共格界面能为0.5J/m 2,求共格破坏时θ‘’圆盘的直径。
7 假定在Al (面心立方,原子间距d=0.3 nm )基固溶体中,空位的平衡浓度(N n )在550℃时为2×10-4,而在130℃时可以忽略不计:(1)如果所有空位都构成G .P 区的核心,求单位体积中的核心数目;(2)计算这些核心的平均距离。
8 Al-2at.%Cu 合金进行时效硬化,先从520℃淬至27℃,3小时后,在此温度形成平均间距为1.5×10-6cm 的G .P.区。
已知27℃铜在铝中的扩散系数D=2.3×10-25cm 2/s ,假定过程为扩散控制,试估计该合金的空位形成能(假设淬火过程中无空位衰减)。
9 假设在固态相变过程中新相形核率N 及长大速率G 均为常数,则经t 时间后所形成新相的体积分数x 可用Johnson-Mehl 方程得到,即)3exp(143t NG x π--=已知形核率N=1000/cm 3.s ,G=3×10-5cm/s ,试计算:(1)发生相变速度最快的时间;过程中的最大相变速度;(2)获得50%转变量所需的时间。
扩散与相变练习题

1.对于A-B二元置换式固溶体。
讨论自扩散系数、本征扩散系数(化学扩散系数)和互扩散系数的物理意义及其相互关系。
(18分)2.在缓慢冷却过程中刚中产生了所谓的带状组织(α与珠光体交替分布),为了消除这种带状组织需要进行扩散退火。
已知厚度为25mm的钢板在900℃经2天扩散处理可以消除这种带状组织。
问:如果把这种钢板轧制成5mm厚,并在1200℃下进行扩散处理需要多长时间?(D=D0exp(-286000/8.314T))(18分)3.硅表面涂覆一层硼,在1100℃保温250秒,测得距离硅表面0.2μm处硼的浓度为8×103mol/m3。
求:(1)硅表面单位面积硼的涂覆量;(2)距离硅表面0.2μm处硼的最大浓度。
D B(1100℃)=4.0×10-12m2/s (20分)4.18Cr-8Ni不锈钢加热到700℃保温10分钟,表面层发生了脱铬现象。
当铬含量小于11%时,不锈钢将丧失不锈性。
假定脱铬过程中不锈钢表面铬含量为零。
(1)计算丧失不锈性的表层厚度。
(2)在10分钟后排除了脱铬故障,不锈钢与环境之间再也没有铬的交换。
在700℃继续保温,问至少需要保温多长时间才能消除前10分钟脱铬的有害作用(D Cr= 3.5exp(-286000/8.314T))cm2/s)?【提示】:如有必要,可以进行合理的近似处理。
(24分)5.一共析碳素钢在A1温度于湿氢中进行脱碳处理,在钢的表面会形成一铁素体层。
该铁素体层将以一定速度长厚。
长厚速度由通过铁素体层的碳的扩散所控制。
(1)建立一个合理的模型。
导出铁素体厚度与时间的关系;(2)该铁素体层长到1mm厚需要多长时间?(在A1温度DαC=109cm2/s)。
石德珂《材料科学基础》配套题库-名校考研真题(扩散与固态相变)【圣才出品】

第7章扩散与固态相变一、选择题1.离子化合物中,阳离子比阴离子扩散能力强的原因在于()。
[上海交通大学2005研]A.阴离子的半径较大B.阳离子更容易形成电荷缺陷C.阳离子的原子价与阴离子不同【答案】A2.材料中能发生扩散的根本原因是()。
[华中科技大学2006研]A.温度的变化B.存在浓度梯度C.存在化学势梯度【答案】C3.在低温下,一般固体材料中发生的扩散是()。
[南京工业大学2009研]A.本征扩散B.非本征扩散C.无序扩散【答案】B【解析】固体材料在温度较高时,发生本征扩散;在低温下,则发生非本征扩散。
二、填空题散机制主要有______和______;前者是原子通过______进行迁移,后者是原子通过______进行迁移,因此前者的扩散激活能比后者______;扩散系数比后者______。
[合肥工业大学2006研]【答案】化学势梯度;化学位降低;空位扩散机制;间隙机制;空位扩散;晶格间隙;小;大2.上坡扩散是指______。
扩散的驱动力是______。
[江苏大学2005研]【答案】由低浓度向高浓度方向的扩散;化学势的改变3.扩散系数越______,结构缺陷越多,扩散速度越______。
[沈阳大学2009研]【答案】小;快4.马氏体相变具有以下的一些特征: 、 、 和 等。
[南京工业大学2009研]【答案】存在习性平面;取向关系;无扩散性;速度快(或没有特定的相变温度)【解析】马氏体相变具有热效应和体积效应,相变过程是形成核心和长大的过程。
马氏体相变是无扩散相变之一,相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。
惯习(析)面是指马氏体相变时在一定的母相面上形成新相马氏体。
三、简答题1.解释名词扩散系数。
[东北大学2004研]答:根据菲克第一定律,在单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(称为扩散通量,用J 表示)与该截面处的浓度梯度成正比,也就是说,浓度梯度越大,扩散通量越大,相应的数学表达式为:d d C J D x=- 式中,D 为扩散系数,m 2/s ;C 为扩散物质(组元)的体积浓度,原子数/m 或kg/m ;d C /d x 为浓度梯度;“-”号表示扩散方向为浓度梯度的反方向,即扩散组元由高浓度区向2扩散系数D 是描述扩散速度的重要物理量,它相当于浓度梯度为1时的扩散通量,D 值越大则扩散越快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.对于A-B二元置换式固溶体。
讨论自扩散系数、本征扩散系数(化学扩散系数)和互扩散系数的物理意义及其相互关系。
(18分)
2.在缓慢冷却过程中刚中产生了所谓的带状组织(α与珠光体交替分布),为了消除这种带状组织需要进行扩散退火。
已知厚度为25mm的钢板在900℃经2天扩散处理可以消除这种带状组织。
问:如果把这种钢板轧制成5mm厚,并在1200℃下进行扩散处理需要多长时间?(D=D0exp(-286000/8.314T))(18分)
3.硅表面涂覆一层硼,在1100℃保温250秒,测得距离硅表面0.2μm处硼的浓度为8×103mol/m3。
求:(1)硅表面单位面积硼的涂覆量;
(2)距离硅表面0.2μm处硼的最大浓度。
D B(1100℃)=4.0×10-12m2/s (20分)
4.18Cr-8Ni不锈钢加热到700℃保温10分钟,表面层发生了脱铬现象。
当铬含量小于11%时,不锈钢将丧失不锈性。
假定脱铬过程中不锈钢表面铬含量为零。
(1)计算丧失不锈性的表层厚度。
(2)在10分钟后排除了脱铬故障,不锈钢与环境之间再也没有铬的交换。
在700℃继续保温,问至少需要保温多长时间才能消除前10分钟脱铬的有害作用(D Cr= 3.5exp(-286000/8.314T))cm2/s)?
【提示】:如有必要,可以进行合理的近似处理。
(24分)
5.一共析碳素钢在A1温度于湿氢中进行脱碳处理,在钢的表面会形成一铁素体层。
该铁素体层将以一定速度长厚。
长厚速度由通过铁素体层的碳的扩散所控制。
(1)建立一个合理的模型。
导出铁素体厚度与时间的关系;
(2)该铁素体层长到1mm厚需要多长时间?(在A1温度DαC=109cm2/s)。