机械原理课程设计凸轮设计
机械原理课程设计偏置直动滚子从动杆盘型凸轮机构

机械原理课程设计--偏置直动滚子从动杆盘型凸轮机构目录(一)机械原理课程设计的目的和任务 (2)(二)设计题目及设计思路 (3)(三)凸轮基圆半径及滚子尺寸的确定 (5)(四)从动杆的运动规律及凸轮轮廓线方程 (7)(五)计算程序框图 (8)(六)计算机源程序 (11)(七)计算机程序结果及分析 (14)(八)凸轮机构示意简图 (20)(九)体会心得 (20)(十)参考资料 (21)(一)机械原理课程设计的目的和任务一、机械原理课程设计的目的:1、机械原理课程设计是一个重要实践性教学环节。
其目的在于:进一步巩固和加深所学知识;2、培养学生运用理论知识独立分析问题、解决问题的能力;3、使学生在机械的运动学和动力分析方面初步建立一个完整的概念;4、进一步提高学生计算和制图能力,及运用电子计算机的运算能力。
二、机械原理课程设计的任务:1、偏置直动滚子从动杆盘型凸轮机构2、采用图解法设计:凸轮中心到摆杆中心A的距离为160mm,凸轮以顺时针方向等速回转,摆杆的运动规律如表:3、设计要求:①升程过程中,限制最大压力角αmax≤30º,确定凸轮基园半径r0②合理选择滚子半径rr③选择适当比例尺,用几何作图法绘制从动件位移曲线,并画于图纸上;④用反转法绘制凸轮理论廓线和实际廓线,并标注全部尺寸(用A2图纸)⑤将机构简图、原始数据、尺寸综合方法写入说明书4、用解析法设计该凸轮轮廓,原始数据条件不变,要写出数学模型,编制程序并打印出结果备注:凸轮轮廓曲率半径与曲率中心理论轮廓方程()()x xy yϕϕ=⎧⎨=⎩,其中2222////x dx d x d x dy dy d x d y dϕϕϕϕ⎧==⎪⎨==⎪⎩其曲率半径为:3 222 () x y xy xyρ+=--;曲率中心位于:2222()()y x yx xxy xyx x yy xxy xyρρ⎧+=-⎪-⎪⎨+⎪=-⎪-⎩三、课程设计采用方法:对于此次任务,要用图解法和解析法两种方法。
机械原理课程设计--偏置直动滚子从动件盘形凸轮机构的设计

课程设计(论文)课程名称机械原理题目名称偏置直动滚子从动件盘形凸轮机构的设计学生学部(系)机电工程学部2012年6月27日目录课程设计(论文)任务书 (3)摘要 ............................................................................................................................. 错误!未定义书签。
一、根据已知尺寸做出基圆.......................................................................................... 错误!未定义书签。
二、用反转法设计图轮廓线.......................................................................................... 错误!未定义书签。
三、绘制推杆的位移图线............................................................................................ 错误!未定义书签。
四、压力角是否满足许用压力角的要求...................................................................... 错误!未定义书签。
五、心得与体会 ............................................................................................................. 错误!未定义书签。
课程设计(论文)任务书一、课程设计(论文)的内容通过用autoCAD 软件绘图,利用图解法进行偏置直动滚子从动件盘形凸轮机构的设计,最后检验压力角是否满足许用压力角的要求。
机械原理课程设计-牛头刨床凸轮机构

机械原理课程设计-牛头刨床凸轮机构
牛头刨床凸轮机构是一种被广泛应用在机械加工中的机构。
它具有较高的效率,能够提供精确而又质量高的加工结果。
牛头刨床凸轮机构由三部分组成:刨床、刀具和传动机构。
刨床主要由主轴、轴类、滑块、变位器杆和机座等组成,其动作是:主轴通过电机传动,带动滑块、变位器杆和刀具同步运动,使加工物把后刀具推向前刀具,达到切削加工的目的。
要保证牛头刨床凸轮机构的良好运行,首先要正确的校正凸轮的定位。
精确的定位可以有效的提高机构的定位精度,从而保证工件的加工精度。
其次,要检查机构的传动装置和同步转向机构的运行状况,排除可能存在的故障。
最后,要定期检查加工质量,以确保良好的加工质量。
此外,在运行牛头刨床凸轮机构时,也需要遵守特定的安全操作规则,并且有一定的操作技巧,以避免出现事故。
出现危险时,需及时警醒,并采取有效的措施,以确保机构的安全运行。
牛头刨床凸轮机构是用于金属加工的一种高效率、高精度的机构,而且在机械加工中应用十分广泛。
当正确、安全地使用时,机构可获得较高的加工效果,同时也可以减少损失。
因此,使用该机构时应非常重视安全,并且要充分了解机构特性,以获得最佳的加工效果。
机械原理课程设计压床机构

机械原理课程设计压床机构机械原理课程设计说明书姓名:***学号:班级:指导老师:成绩:XXX2017年12月8日目录一、机构简介与设计数据1.1 机构简介本文介绍的机构是一个压床机构,用于压制金属材料。
该机构由凸轮机构和传动机构组成。
1.2 机构的动态静力分析在设计机构之前,需要进行动态静力分析,以确保机构的稳定性和可靠性。
1.3 凸轮机构构设计凸轮机构是压床机构的核心部分,它通过旋转运动来驱动压床。
在设计凸轮机构时,需要考虑凸轮的形状、尺寸和旋转速度等因素。
1.4 设计数据在设计压床机构时,需要确定各种参数,包括压力、速度、功率等。
这些参数将直接影响到机构的性能和效率。
二、压床机构的设计2.1 确定传动机构各杆的长度传动机构是指将凸轮机构的旋转运动转化为压床的线性运动的机构。
在设计传动机构时,需要确定各杆的长度,以确保机构的稳定性和准确性。
三、传动机构运动分析3.1 速度分析传动机构的速度分析是指对各杆的速度进行计算和分析。
这将有助于确定机构的速度和加速度。
3.1.1 确定凸轮的旋转速度凸轮的旋转速度是传动机构速度分析的重要参数。
在确定凸轮的旋转速度时,需要考虑机构的稳定性和效率。
3.1.2 确定压床的运动速度压床的运动速度是压床机构的重要参数之一。
在确定压床的运动速度时,需要考虑机构的稳定性和准确性。
3.2 加速度分析传动机构的加速度分析是指对各杆的加速度进行计算和分析。
这将有助于确定机构的加速度和动态性能。
EFDE14BS2BC12DS31DE2根据三角函数可得:$DF=\frac{y}{\sin\angle DFE}$,$FE=\frac{DF}{\tan\angle DFE}$,$DE=DF+FE$。
代入已知数值,计算得到$DF=230.94mm$,$FE=133.74mm$,$DE=364.68mm$。
因此,传动机构各杆的长度为:$AB=60mm$,$BC=182.26mm$,$CD=91.13mm$,$DE=364.68mm$,$EF=91.17mm$,$FG=170mm$。
机械原理课程设计凸轮程序

机械原理课程设计凸轮机构设计说明书

全面探究凸轮机构设计原理及方法凸轮机构是一种常用的机械传动装置,通过凸轮和摆杆的配合组成,具有可逆性、可编程性和高精度的特点。
本文将从设计原理、设计方法和优化策略三个方面探究凸轮机构设计的要点。
一、设计原理
凸轮机构的设计原理是在摆杆与凸轮配合时,摆杆可以沿凸轮轮廓实现规定的运动规律,如直线运动、往返运动和旋转运动等。
凸轮可以根据运动轨迹、运动频率和运动速度等要求,通过凸轮轮廓的设计来完成。
凸轮轮廓的设计包括了初步设计、动力学分析、运动规划等步骤。
二、设计方法
凸轮机构的设计方法包括手工绘图及设计软件辅助。
手工绘图是传统的凸轮轮廓设计方法,适用于简单的凸轮机构,如往复式转动机构、转动转动机构等;而对于复杂的凸轮机构,可以利用计算机辅助设计软件,如ProEngineer、CATIA、AutoCAD等,进行三维建模、运动模拟和优化设计。
此外,对于凸轮机构的设计还需要考虑到强度计算、可靠性分析等相关问题。
三、优化策略
凸轮机构的设计优化策略主要包括凸轮轮廓的形状优化、摆杆的长度优化和机构传动效率的优化等。
凸轮轮廓的形状优化通常是通过
Cycloid、Involute、Bezier等曲线的拟合来实现;摆杆的长度优化可以通过数学模型来建立,利用遗传算法、粒子群算法等优化算法进行
求解;传动效率的优化可以通过轮廓优化、材料优化、润滑优化等途
径来进行。
凸轮机构的设计是机械工业中非常重要的一环,它涉及到运动学、动力学、力学等多个学科的知识,需要学习者在多方面进行深入研究
和实践。
通过对凸轮机构的深入探究,我们可以更好地理解机械原理
的精髓,提高机械设计的水平和能力。
机械原理课程设计

机械原理课程设计说明书题目:运动轨迹为字母P的联动凸轮组合机构设计学生姓名:学号:专业:机械设计制造及其自动化学生姓名:学号:专业:机械设计制造及其自动化指导教师:2015 年7 月29 日目录一、机构简介……………………………………..…………………..…..…………………..2二、设计任务……………………………………..…………………..…..…………………..2三、设计方案内容3.1 联动凸轮机构基本要素的确定 (2)3.1.1 凸轮类型的选择 (2)3.1.2 推杆类型的选择 (2)3.1.3 凸轮基本尺寸的确定 (3)3.2 目标轨迹的设计 (3)3.3 运动轨迹各点凸轮转角与推杆位移的关系 (3)3.4 从动件推杆的运动规律 (4)3.5 运动轨迹的散点图以及X坐标和Y坐标的散点图 (4)3.6 凸轮推杆位移与凸轮转角关系图 (6)四、联动凸轮轮廓曲线的设计 (7)4.1 横向凸轮的设计 (7)4.2 纵向凸轮的设计 (7)五、联动凸轮组合机构机构简图 (9)六、课程设计总结 (9)运动轨迹为字母“P”的联动凸轮组合机构设计一、机构简介凸轮机构广泛应用于各类机械,特别是自动机和自动控制装置中。
如内燃机的配汽缸、自动机床的的进刀机构、电子机械、自动送料机构等等。
而凸轮机构的最大优点就是只要适当地设计出凸轮的轮廓曲线就可以使推杆得到各种预期的运动规律,而且响应快速,机构简单紧凑。
正因如此,凸轮机构不可能被数控和电控等装置所完全代替。
在许多生产设备中,为了实现预定的特殊运动轨迹,常采用由两个凸轮机构组成的能实现目标运动轨迹的组合机构,称之为联动凸轮组合机构。
二、设计任务联动凸轮组合机构由两个凸轮机构组成。
它利用两个凸轮的协调配合,或同步运动来控制从动件上点的方向运动,使其可以准确地实现预定的轨迹。
此次设计是利用联动凸轮可以准确实现预定轨迹的工作原理,设计出“会写字的组合机构”,即用两个凸轮联动配合,实现设定的轨迹,“写”出大写英文字母“P”。
机械原理凸轮课程设计

机械原理凸轮课程设计一、课程目标知识目标:1. 让学生理解凸轮的基本概念、分类及在机械原理中的应用;2. 掌握凸轮的运动规律、轮廓曲线的设计方法;3. 了解凸轮机构的设计与优化原则。
技能目标:1. 能够运用所学知识,分析并解决实际凸轮机构中的运动问题;2. 学会使用相关软件(如CAD)进行凸轮轮廓曲线的设计;3. 能够通过小组合作,完成一个简单的凸轮机构设计与制作。
情感态度价值观目标:1. 培养学生对机械原理学科的兴趣,激发其创新意识和探索精神;2. 培养学生的团队协作能力,使其认识到团队协作的重要性;3. 增强学生的环保意识,使其在设计过程中注重节能、减排。
课程性质:本课程为机械原理课程的实践环节,旨在让学生将理论知识应用于实际设计中,提高学生的实践能力。
学生特点:学生为高年级本科生,已具备一定的机械原理知识基础,具有较强的自学能力和动手能力。
教学要求:结合学生特点和课程性质,将课程目标分解为具体的学习成果,注重理论与实践相结合,提高学生的综合应用能力。
在教学过程中,注重启发式教学,引导学生主动探索、积极思考,培养学生的创新精神和实践能力。
同时,关注学生的情感态度价值观培养,使其成为具有全面素质的工程技术人才。
二、教学内容1. 凸轮基本概念及分类- 凸轮的定义、作用及分类方法;- 各类凸轮的特点和应用实例。
2. 凸轮运动规律及轮廓曲线设计- 凸轮运动规律的基本理论;- 常见凸轮轮廓曲线的设计方法;- 运用CAD软件进行凸轮轮廓曲线设计的操作步骤。
3. 凸轮机构设计与优化- 凸轮机构设计的基本原则;- 凸轮机构优化方法及案例分析;- 凸轮机构设计与制造过程中的注意事项。
4. 实践操作- 小组合作,设计并制作一个简单的凸轮机构;- 分析并解决实际凸轮机构运动问题;- 总结实践操作过程中的经验教训。
教材章节关联:本教学内容与教材第十章“凸轮机构”相关,涵盖凸轮的基本概念、运动规律、轮廓曲线设计、机构设计与优化等方面的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
circle(240,240,3);
circle(240+L*sin(50*K)+4*cos(240*K),240+L*cos(50*K)-4*sin(240*K),3);
moveto(240,240);
lineto(240+20*cos(240*K),240-20*sin(240*K));
Q_Q[2]=-4*Q_max/(Q_t*Q_t);
}
if(Q>Q_t&&Q<=Q_t+Q_s)
{
Q_Q[0]=K*Q_max;
Q_Q[1]=0;
Q_Q[2]=0;
}
if(Q>Q_t+Q_s&&Q<=Q_t+Q_s+Q_h/2)
{
Q_Q[0]=K*(Q_max-2*Q_max*(Q-Q_t-Q_s)*(Q-Q_t-Q_s)/(Q_h*Q_h));
3)编写出计算说明书。
指导教师:
开始日期:2010年07月10日完成日期:2010年07月16日
一设计任务及要求-----------------------------------------------2
二数学模型的建立-----------------------------------------------2
因为实际轮廓线与理论轮廓线为等距离,即法向距离处处相等,都为滚半径 rT.故将理论廓线上的点沿其法向向内测移动距离rr即得实际廓线上的点B(x1,y1).由高等数学知,理论廓线B点处法线nn的斜率应为
根据上式有:
可得
实际轮廓线上对应的点B(x,y)的坐标为
此即为凸轮工作的实际廓线方程,式中“-”用于内等距线,“+”用于外等距线。
(1)要求:计算从动件位移、速度、加速度并绘制线图(用方格纸绘制),也可做动态显示。
(2)确定凸轮的基本尺寸,选取滚子半径,画出凸轮的实际廓线,并按比例绘出机构运动简图。
(3)编写计算说明书。
二机构的数学模型
1推程等加速区
当 时
角位移
角速度 角加速度
2推程等减速区
当 时
角位移
角速度 角加速度
3远休止区
doubleL,pr;
floate[1500],f[1500],g[1500];
voidCal(floatQ,doubleQ_Q[3])
{
Q_max=15,Q_t=70,Q_s=10,Q_h=70;
if(Q>=0&&Q<=Q_t/2)
{
Q_Q[0]=K*(2*Q_max*Q*Q/(Q_t*Q_t));
三程序框图
四程序清单及运行结果
#include<>
#include<>
#include<>
#include<>
#include<>
#definel
#defineAa40
#definer_b50
#definerr
#defineK180)
#definedt
floatQ_max,Q_t,Q_s,Q_h;
floatQ_a;
六参考文献-----------------------------------------------------15
一设计任务与要求
已知摆杆9为等加速等减速运动规律,其推程运动角φ=70,远休止角φs=10,回程运动角φ?=70,摆杆长度l09D=125,最大摆角φmax=15,许用压力角[α]=40,凸轮与曲线共轴。
当 时
角位移 角速度 角加速度
4回程等加速区
当 时
角位移
角速度 角加速度
5回程等减速区
当 时
角位移
角速度
角加速度
6近休止区
角位移 角速度 角加速度
如图选取xOy坐标系,B1点为凸轮轮廓线起始点。开始时推杆轮子中心处于B1点处,当凸轮转过角度时,摆动推杆角位移为,由反转法作图可看出,此时滚子中心应处于B点,其直角坐标为:
Q_Q[1]=4*Q_max*Q/(Q_t*Q_t);
Q_Q[2]=4*Q_max/(Q_t*Q_t);
}
if(Q>Q_t/2&&Q<=Q_t)
{
Q_Q[0]=K*(Q_max-2*Q_max*(Q-Q_t)*(Q-Q_t)/(Q_t*Q_t));
Q_Q[1]=4*Q_max*(Q_t-Q)/(Q_t*Q_t);
Q_Q[1]=-4*Q_max*(Q_h-Q+Q_t+Q_s)/(Q_h*Q_h);
Q_Q[2]=4*Q_max/(Q_h*Q_h);
}
if(Q>Q_t+Q_s+Q_h&&Q<=360)
{
Q_Q[0]=K*0;
Q_Q[1]=0;
Q_Q[2]=0;
}
}
voidDraw(floatQ_m)
{
floattt,x,y,x1,y1,x2,y2,x3,y3,x4,y4,dx,dy;
三程序框图--------------------------------------------------------5
四程序清单及运行结果-----------------------------------------6
五设计总结-------------------------------------------------------14
:摆杆9为等加速等减速运动规律,其推程运动角 ,远休止角 ,回程运动角 ,摆杆长度 ,最大摆角 ,许用压力角 (参见表2-1);凸轮与曲柄共轴。
四、原始数据
凸轮机构设计
°
°
15
125
40
70
10
70
五、要求:
1)计算从动件位移、速度、加速度并绘制线图。
2)确定凸轮机构的基本尺寸,选取滚子半径,画出凸轮实际廓线,并按比例绘出机构运动简图。以上内容作在A2或A3图纸上。
lineto(260+20*cos(240*K),240-20*sin(240*K));
机械原理课程设计
编程说明书
设计题目:牛头刨床凸轮机构
指导教师:王琦王春华
设计者:雷选龙
学号:0807100309
班级:机械08-3
2010年7月15日
辽宁工程技术大学
机械原理课程设计任务书(二)
姓名雷选龙专业机械工程及自动化班级机械08-3班学号0807100309
一、设计题目:牛头刨床凸轮机构设计
Q_Q[1]=-4*Q_max*(Q-Q_t-Q_s)/(Q_h*Q_h);
Q_Q[2]=-4*Q_max/(Q_h*Q_h);
}
if(Q>Q_t+Q_s+Q_h/2&&Q<=Q_t+Q_s+Q_h)
{
Q_Q[0]=K*(2*Q_max*(Q_h-Q+Q_t+Q_s)*(Q_h-Q+Q_t+Q_s)/(Q_h*Q_h));