小升初数学专题训练行程问题之流水行船问题

合集下载

小升初数学付专题3《流水行船问题》

小升初数学付专题3《流水行船问题》

2022-2023学年专题卷小升初数学行程问题精选真题汇编强化训练(提高)专题03 流水行船问题考试时间:100分钟;试卷满分:100分姓名:___________班级:___________考号:___________题号一二三四总分得分评卷人得分一.选择题(共5小题,满分5分,每小题1分)1.(1分)轮船往返于一条河的两个码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多B.减少C.不变D.增多、减少都有可能2.(1分)甲、乙两地相距280千米,一艘轮船从甲地到乙地是顺水航行,船在静水中的速度是每小时行17千米,水速是每小时3千米,这艘轮船在甲、乙两地往返一次。

共需()小时。

A.33 B.36 C.34 D.以上都错3.(1分)—艘客轮在静水中航行,每小时航行13千米,如果这艘客轮在水速为7千米/时的水中顺水航行140千米,那么需要()小时。

A.5 B.6 C.7 D.84.(1分)一轮船往返A,B两港之间,逆水水航行需要3h,顺水航行需2h,水速是3km/h,则轮船在静水中的速度是()A.18km/h B.15km/h C.12km/h D.20km/h5.(1分)轮船从A城到B城匀速行驶需行3天,而从B城到A城匀速行驶需行4天,从A 城放一个无动力的木筏,它漂到B城需()天.A.24 B.25 C.26 D.27评卷人得分二.填空题(共8小题,满分16分,每小题2分)6.(2分)一条河水流速度恒为每小时3公里,一只汽船用恒定的速度顺流4公里再返回原地,恰好用1小时(不计船掉头时间),则汽船顺流速度与逆流速度的比是.7.(2分)A、B是两个港口,A在上游,B在下游,一艘货船从A出发,6小时能到达B.而这艘货船从B返回A需要8小时.现在一艘客船从A出发到达B需要12小时,那么这艘客船从B返回A需要小时.8.(2分)乙船顺水航行2小时,行了120千米,返回原地用了4小时。

小升初数学专题 流水行船问题

小升初数学专题 流水行船问题

1.一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行.已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A 地到B地所用时间的1.5倍,求水流速度.解:设水流速度是每小时x千米(20+x)×6=(20-x)×6×1.5120+6x=180-9x15x=60x=4答:水流速度是每小时4千米.2.水流速度是每小时15千米.现在有船顺水而行,8小时行480千米.若逆水行360千米需几小时?解:顺水船速:480÷8=60(千米)静水中的速度:60-15=45(千米)逆水船速:45-15=30(千米)逆水时间:360÷30=12(小时)答:逆水行360千米需12小时3.有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。

解:逆流速:120÷10=12(千米/时)顺流速:120÷6=12(千米/时)船速:(20+12)÷2=16(千米/时)水速:(20—12)÷2=4(千米/时)答:船速是每小时行16千米,水速是每小时行4千米。

4.一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时.已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?解:(15+3×2)×18=21×18=378(千米)答:甲乙两港相距378千米.5.一艘船在河里航行,顺流而下每小时行16千米.已知这艘船下行3小时恰好与上行4小时所行的路程相等,求静水船速和水速?解:逆水速度:16×3÷4=12(千米/时)则船速:(12+16)÷2=14(千米/时)水速:(16-12)÷2=2(千米/时)答:船速为14千米/时;水速为2千米/时.6.一海轮在海中航行.顺风每小时行45千米,逆风每小时行31千米.求这艘海轮每小时的划速和风速各是多少?解:(45+31)÷2=76÷2=38(千米/小时)45-38=7(千米/小时)答:这艘海轮每小时的划速是38千米,风速是每小时7千米.7.轮船以同一速度往返于两码头之间.它顺流而下,行了8小时;逆流而上,行了10小时.如果水流速度是每小时3千米,求两码头之间的距离.解:(3×2)÷(18-110)=6÷1 40=240(千米)答:两码头之间的距离是240千米.8.有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行。

奥数之复习八:行程问题——流水行船问题及答案

奥数之复习八:行程问题——流水行船问题及答案

复习八:行程问题——流水行船问题1.甲、乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时。

从乙港返回甲港,需要24小时,求船在静水中的速度和水流速度。

2.一艘船在静水中的速度为每小时15千米,它从上游甲地开往下游乙地共花去了8小时,已知水速为每小时3千米,那么从乙地返回甲地需多少小时?3.一艘轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?4.一条大河,河中间(主航道)水的流速为每小时8千米,沿岸边水的速度为每小时6千米。

一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原地需要多少小时?5.有人在河中游泳逆流而上,丢失了水壶,水壶顺流而下,经30分钟才发觉此事,他立即返回寻找。

结果在离丢失地点下游6千米处找到水壶,他返回寻找用了多少时间?水流速度是多少?6.一艘货轮顺流航行36千米,逆流航行12千米,共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时,顺流航行12千米,又逆流航行24千米要用多少小时?7.一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米。

问这只船顺水航行50千米需要多少小时?8.一艘轮船在静水中的速度是每小时15千米,它逆水航行88千米用了11小时,问这艘船返回原地需用几小时?9.一只船往返于一段长120千米的航道,上行时用了10小时,下行时用了6小时。

船在静水中航行的速度与水速各是多少?10.两港口相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米。

问行驶这段路程逆水比顺水多用几小时?11.一艘轮船往返于相距198千米的甲、乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺流而下需要9小时。

这艘船往返于甲、乙两码头共需几小时?12.一条船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这是按原路返回,每小时要行多少千米?13.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时。

专题07 流水行船问题(一)-小升初数学(通用版)

专题07 流水行船问题(一)-小升初数学(通用版)

专题07 流水行船问题(一)2022-2023学年小升初数学行程问题高频常考易错真题专项汇编一.解答题1.两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米,往返两地的平均速度是每小时多少千米?2.一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后.又从乙地返回甲地,比逆水航行提前2.5小时到达.已知水流速度是每小时3千米,甲、乙两地间的距离是多少千米?3.一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行.已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的1.5倍,求水流速度.4.甲、乙两港间的水路长360千米,一艘船从甲港开往乙港顺水行驶10时到达,从乙港返回甲港,逆水行驶12时到达。

求船在静水中的速度和水流的速度。

5.一艘轮船带的燃料最多可以用6小时。

去时顺风每小时航行60km;返回时逆风,每小时航行40km。

轮船最多航行多少千米就立即返回?6.假日里,小明一家驾着游艇去航行,返回时,因逆风速度要减慢20%.已知游艇的动力能源一次只能用5.4小时,问游艇最多开出几小时后就应该返回?7.沿河有上、下两个市镇,相距85千米.有一只船往返两市镇之间,船的速度是每小时18.5千米,水流速度每小时1.5千米.求往返依次所需的时间.8.一艘船在静水中每小时行18千米,水流速度是每小时2千米,这船从甲地顺水航行.到乙地需8小时,船从乙地返回甲地需几小时?9.有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行.甲船行4小时后与漂流物相距100千米,乙船行12小时后与漂流物相遇,两船的划速相同,河长多少千米?10.游船顺流而下每小时行10千米,逆流而上每小时行8千米,甲、乙两船同时从A、B 两地出发,甲船顺流而下,然后返回,乙船逆流而上,然后返回,经过5小时同时回到出发点,在这5小时中有多少时间两船的航行方向相同.11.古时候,一个楚国人乘坐木船顺流而下欣赏美景,行至某处不慎将宝剑的掉落水中,他马上在船上作下记号,已知木船在静水中行驶的速度为60米/分钟,水流速度为30米/分钟,又前行半个时辰后(一个时辰为两个小时),经高人点拨,他立刻按原路返回.他经过多少时间可以找回宝剑?(写出计算过程)12.某人在河里游泳,逆流而上,他在A处丢失一只水壶,向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A处2千米的地方追到。

(完整版)小升初奥数行程问题--流水行船

(完整版)小升初奥数行程问题--流水行船
第十六讲 行程问题--流水行船
知识点梳理
(一)基本概念 船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情 况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。 古语:“逆水行舟不进则退”
船速:是指船本身的速度,也就是在静水中单位时间里所走过的路程 。 水速:是指水在单位时间里流过的路程 。 顺水速度和逆水速度:分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
水上追及问题
车辆同向:路程差=速度差×时间
如果两船逆向追赶时,也有:
两船同向:路程差=船速差×时间
甲船逆水速度-乙船逆水速度
推导:甲船顺水速度-乙船顺水速度
=(甲船速-水速)-(乙船速-水速)
=甲船速-乙船速。
=(甲船速+水速)-(乙船速+水速)
=甲船速-乙船速。
结论:水中追及问题与在静水中追及问题及两车在陆地上追及问题一样。
例6.一只小船从A地到B地往返一 次共用2小时,回来时顺水,比 去时的速度每小时多行驶8千米, 因此第二小时比第一小时多行 驶6千米,求AB两地间的距离。
看图解析
水速=(顺-逆)÷2=8÷2=4千米

A
B
每小时多行8千米

第二小时比第一小时多行6千米
解析
顺水比逆水每小时多行驶8千米,可知水流速度每小时4千米,
T逆=9÷(1+5)×5=7.5小时, 8/3× 7.5=20千米 答:甲乙两港相距20km。
例8. 有甲、乙两船,甲船和漂流物 同时从河西向东而行,乙船也同 时从河东向西而行。甲船行4小 时后与漂流物相距100千米,乙 船行12小时后与漂流物相遇, 两船的划速相同,河长多少千米?
船速:(26+16)÷2=21(千米/小时) 水速:(26—16)÷2=5(千米/小时)

行程问题之流水行船问题

行程问题之流水行船问题

行程问题之流水行船问题四个速度:⑴顺水速度=船速+水速,V顺=V船+V水;⑵逆水速度=船速-水速,V逆=V船-V水;⑶船速=(顺水速度+逆水速度)÷2;⑷水速=(顺水速度-逆水速度)÷2。

重要结论:同一条河中两船的相遇与追及和水速无关。

丢物品与追物品用的时间一样。

【例1】(★★)平时轮船从A地顺流而下到B地要行20小时,从B地逆流而上到A 地要行28小时. 现正值雨季,水流速度为平时的2倍,那么,从A到B再回A共需_____小时.【例2】(★★★)一只轮船从甲港顺水而下到乙港,马上又从乙港逆水行回甲港,共用了8小时.已知顺水每小时比逆水多行20千米,又知前4小时比后4小时多行60千米.那么,甲、乙两港相距多少千米【例3】(★★★★)一条河上有甲、乙两个码头,甲在乙的上游50 千米处.客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变.客船出发时有一物品从船上落入水中,10 分钟后此物距客船5 千米.客船在行驶20 千米后折向下游追赶此物,追上时恰好和货船相遇.求水流的速度.【例4】(★★★★)A、B两地相距100千米,甲乙两艘静水速度相同的船同时从A、B两地出发,相向而行,相遇后继续前进,到达B、A后再沿原路返回。

已知第一次和第二次相遇地点相距20千米,水流速度为每秒2米,那么船的静水速度是每小时多少千米行程问题之扶梯问题三个公式:(1)顺行速度=人速+电梯速度(2)逆行速度=人速-电梯速度(3)电梯级数=可见级数=路程注意路程和时间的转化【例5】(★★★)某城市火车站中,从候车室到大厅有一架向上的自动扶梯.海海想逆行从上到下,如果每秒向下迈两级台阶,那么他走过80 级台阶后到达站台;如果每秒向下迈三级台阶,那么走过60级台阶到达站台.自动扶梯有多少级台阶【例6】(★★★)小丁在捷运站搭一座电扶梯下楼.如果他向下走14阶,则需时30秒即可由电扶梯顶到达底部;如果他向下走28阶,则需时18秒即可由电扶梯顶到达底部.请问这座电扶梯有几阶行程问题之环形路线问题两人同时同地出发(1)相向而行:相遇一次合走一圈(2)同向而行:追上一次多走一圈【例7】(★★★)有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是400米的圆形跑道行走,【例8】(★★★)甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米【例9】(★★★★★)二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈后,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。

小升初数学冲刺打卡训练-流水行船问题 人教版(教师版)

小升初数学冲刺打卡训练-流水行船问题 人教版(教师版)

【小升初冲刺】打卡训练--流水行船问题流水行船问题1.基本公式:顺水速度=船速+水速,即V顺=V船+V水;逆水速度=船速-水速,即V逆=V船-V水;船速=(顺水速度+逆水速度)÷2,即V船=(V顺+V逆)÷2:水速=(顺水速度-逆水速度)÷2;即V水=(V顺-V逆)÷2;漂浮物速度=水流速度两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

2.要点注意:(1)从上游到下游为顺水而行,从下游到上游为逆水而行(2)暴雨只改变水速,不改变船速;船的性能变化只改变船速,不改变水速(3)顺流而下返回时是逆水,逆流而上返回时是顺水3.流水行船中的相遇与追及流水行船中的相遇与追及问题,不考虑水速的影响1、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?正确答案: 10分析:求时间的问题,先找相应的路程和速度。

解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时)答:行驶这段路程逆水比顺水需要多用10小时。

2、一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流要8小时,水流速度为每小时2.5千米,求船在静水中的速度。

正确答案: 17.5分析:顺流船速是静水船速与水流速度之和,而逆流船速是两者之差,由此可见,顺流与逆流船速之差是水流速的2倍,这就是关键。

解答:设船在静水中速度为U千米/时,则:(U+2.5)×6=(U-2.5)×8,解得U=17.5,即船在静水中速度为17.5千米/时。

评注:行船问题是行程问题中常见的一种,解这些题时注意船速、水流之间的关系。

小升初数学行程问题:流水行船十大例题解读

小升初数学行程问题:流水行船十大例题解读

小升初数学行程问题:流水行船十大例题解读流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。

因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)2 (7)水速=(顺水速度-逆水速度)2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。

此船在静水中的速度是多少?(适于高年级程度) 解:此船的顺水速度是:255=5(千米/小时)因为顺水速度=船速+水速,所以,此船在静水中的速度是顺水速度-水速。

5-1=4(千米/小时)综合算式:255-1=4(千米/小时)答:此船在静水中每小时行4千米。

*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。

水流的速度是每小时多少千米?(适于高年级程度) 解:此船在逆水中的速度是:124=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传
播知识。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累
专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积
累足够的“米”。

流水行船问题
例1 甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度?
例2 某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,①如果水速每小时3千米,问从乙地返回甲地需要多少时间?②如果甲乙两地相距144千米,那么从乙地返回甲地需要多少小时?
例3 甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一艘帆船,静水中速度是每小时12千米,这艘帆船往返两港要多少小时?
例4 一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速。

例5 轮船以同一速度往返于两码头之间。

它顺流而下,行了8小时;逆流而上,行了10小时。

如果水流速度是每小时3千米,求两码头之间的距离是多少?
例6 一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行。

已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B 地所用时间的1.5倍,求水流速度是多少?
例7(外国语小升初真题)一条船往返于甲、乙两港之间,由甲至乙
是顺水行驶;由乙至甲是逆水行驶,已知船在静水中的速度为每小时8公里,平时逆行与顺行所用时间的比为2:1。

某天伺逢暴雨,水流速度变为原来的2倍,这条船往返共用9小时,那么甲乙两港相距多少公里?
小学数学思维训练之流水行船问题练习
试卷简介:精选小升初考试行程问题中常考类型流水行船问题试题,组成试卷,帮助学生巩固行程问题的知识及应用。

学习建议:理解行程问题中三个量之间的对应关系以及流水行船问题中的公式,加强对公式的理解和应用。

一、单选题(共5道,每道20分)
1.一只船在河里航行,顺流而下每小时行24千米.已知这只船下行5小时恰好与上行6小时所行的路程相等.求船速是()千米/时?
A.2
B.22
C.20
D.24
2.一条轮船往返于甲乙两地之间,已知船在静水中的速度是每小时11
千米,从甲地到乙地顺行用了5小时,从乙地到甲地逆行用了6小时,求甲乙两地距离是()千米?
A.1
B.55
C.60
D.66
3.当一机动船在水流每小时3千米的河中逆流而上时,8小时行48千米。

返回时需()小时行216千米?
A.6
B.12
C.18
D.24
4.一艘客轮,在静水中的速度是每小时行25千米。

已知这艘客轮在大运河中顺水航行308千米,水速是每小时3千米,需要行()个小时?
A.12.32
B.11
C.14
D.22
5.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问水速为每小时()千米?
A.4
B.8
C.16
D.22。

相关文档
最新文档