角平分线模型
第06讲 三角形中角平分线模型

第06讲 三角形中角平分线模型【应对方法与策略】一、角平分线垂两边角平分线+外垂直当已知条件中出现OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题. 二、角平分线垂中间 角平分线+内垂直当已知条件中出现OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可.即有OMN ∆是等腰三角形、OP 是三线等,利用相关结论解决问题.三、角平分线构造轴对称角平分线+截线段等当已知条件中出现OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.四、角平分线加平行线等腰现角平分线+平行线∠的角平分线,点P角平分线上任一点时,辅助线的作法大都为过点当已知条件中出现OP为AOB∆是等腰三角形,利用相关结论解决问题.P作PM//OB或PM//OA即可.即有OMP【多题一解】一.选择题(共2小题)1.(2022秋•辉县市校级期末)如图,在Rt△ABC中,∠C=90°,以△ABC的三边为边向外做正方形ACDE,正方形CBGF,正方形AHIB,连结EC,CG,作CP⊥CG交HI于点P,记正方形ACDE和正方形AHIB的面积分别为S1,S2,若S1=4,S2=7,则S△ACP:S△BCP等于()A.2:B.4:3C.:D.7:42.(2023•惠阳区校级开学)如图,△ABC中,AB=6,AC=8,∠ABC、∠ACB的平分线BD、CD交于点D.过点D作EF∥BC,分别交AB、AC于点E、F,则△AEF的周长为()A.12B.13C.14D.15二.填空题(共5小题)3.(2022秋•汤阴县期中)如图,AD平分∠CAB,若S△ACD:S△ABD=4:5,则AB:AC=.4.(2022秋•安陆市期中)如图△ABC中,∠ABC与∠ACB的平分线相交于H,过点H作EF∥BC交AB 于E,交AC于F,HD⊥AC于D,以下四个结论①∠BHC=90°+∠A;②EF﹣BE=CF;③点H到△ABC各点的距离相等;④若B,H,D三点共线时,△ABC一定为等腰三角形.其中正确结论的序号为.5.(2022秋•武昌区校级期中)如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线相交于点O,OD⊥OA交AC于D,OE⊥OB交BC于E,BC=4,AC=3,AB=5,则△CDE的周长为.6.(2022秋•长兴县月考)如图,在△ABC中,∠A=64°,OB和OC分别平分∠ABC和∠ACB,则∠BOC=°.7.(2022•渠县二模)如图,AC、BD是四边形ABCD的对角线,BD平分∠ABC,2∠ACD=∠ABC+∠BAC,已知∠CAD=43°,则∠BDC=.三.解答题(共8小题)8.(2023•惠城区校级开学)如图,在△ABC中,∠ABC=82°,∠C=58°,BD⊥AC于D,AE平分∠CAB,BD与AE交于点F,求∠AFB.9.(2022秋•新乡期末)如图1,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于F.(1)当BE=5,CF=3,则EF=;(2)当BE>CF时,若CO是∠ACB的外角平分线,如图2,它仍然和∠ABC的角平分线相交于点O,过点O作EF∥BC,交AB于E,交AC于F,试判断EF,BE,CF之间的关系,并说明理由.10.(2022秋•运城期末)一个三角形纸片ABC沿DE折叠,使点A落在点A′处.(点A′在△ABC的内部)(1)如图1,若∠A=45°,则∠1+∠2=°.(2)利用图1,探索∠1,∠2与∠A之间的数量关系,并说明理由.(3)如图2,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中得出的结论求∠BA′C的度数.11.(2023•鼓楼区校级一模)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC 于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)求证:AP平分∠CAB;(2)若∠ACD=114°,求∠MAB的度数.12.(2021春•金川区校级期末)如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.13.(2022秋•东昌府区校级期末)如图1,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)猜想:EF与BE、CF之间有怎样的关系.(2)如图2,若AB≠AC,其他条件不变,在第(1)问中EF与BE、CF间的关系还存在吗?并说明理由.(3)如图3,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.14.(2023•鼓楼区校级一模)在四边形ABCD中,AC平分∠DAB,∠ABC=α,∠ADC=180°﹣α.(1)若α=90°时,直接写出CD与CB的数量关系为;(2)如图1,当α≠90°时,(1)中结论是否还成立,说明理由;(3)如图2,O为AC中点,M为AB上一点,BM=AD,求的值.15.(2021•商河县校级模拟)如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=54°,∠C=66°,求∠DAC、∠BOA的度数.。
角平分线的几种辅助线作法与三种模型

一、角平分线的三种“模型”模型一:角平分线+平行线→等腰三角形如图1,过∠AOB平分线OC上的一点P,作PE∥OB,交OA于点E,则EO=EP.A A AE P C E CD FE PO B B C O F B图1 图2 图3例1如图2,∠ABC,∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.求证:BD+EC=DE.模型二:角平分线+垂线→等腰三角形如图3,过∠AOB平分线OC上的一点P,作EF⊥OC,交OA于点E,交OB于点F,则OE=OF,PE=PF.例2如图4,BD是∠ABC的平分线,AD⊥BD,垂足为D,求证:∠BAD=∠DAC+∠C.模型三:角平分线+翻折→全等三角形在△ABC中,AD是∠BAC的平分线,沿角平分线AD将△ABD往右边折叠就得到如图5的图形.此时有:△ABD≌△AB/D.此翻折相当于在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段.用此方法可解决一些不相等的线段和差类问题.DA EA P/ B CD B/ B C图5 图6例3如图6,点P是△ABC的外角∠CAD的平分线上的一点.求证:PB+PC>AB+AC.二、角平分线定理使用中的几种辅助线作法一、已知角平分线,构造三角形1、如图所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。
求证:1()2BE AC AB=-2、在△ABC中,AD平分∠BAC,CE⊥AD 于E.求证:∠ACE=∠B+∠ECD.21FED CBAABDCEF图1 / 22 / 2二、已知一个点到角的一边的距离,过这个点作另一边的垂线段1、如图所示,∠1=∠2,P 为BN 上的一点,并且PD ⊥BC于D ,AB +BC=2BD 。
求证:∠BAP +∠BCP=180°。
三、已知角平分线和其上面的一点,过这一点作角的两边的垂线段1、如图所示,在△ABC 中,PB 、PC 分别是∠ABC 的外角的平分线,求证:∠1=∠22、2、 如图2,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD .求证:AE=ED3、(四(2))四、以角的平分线为对称轴构造对称图形例1 如图1,在△ABC 中,AD 平分∠BAC ,∠C=2∠B .求证:AB=AC+CD .2、例题:如图2,BC >AB ,BD 平分∠ABC ,且∠A+∠C=1800,求证:AD=DC .五、利用角的平分线构造等腰三角形1、 如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .求证:CD=21BE .N P EDC B AG21P F EC B AA G C H D E F图2B ACDE 图1 ABDE CB ACDE 图2。
初中数学常见模型之角平分线四大模型

角平分线四大模型模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。
结论:PB=PA 。
模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
模型实例(1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。
求证:AP 平分∠BAC 。
热搜精练1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。
求证:∠BAD+∠BCD=180°。
2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。
N M OAB P 2图4321A CP B D AB C图1A B DC模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。
结论:△OPB ≌△OPA 。
模型分析利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。
利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
模型实例(1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由;(2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。
热搜精练1.已知,在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,AC=16,AD=8。
求线段BC 的长。
A B DCPP O N M B A 图2DP AB C D C 1图P B A ABCD2.已知,在△ABC 中,AB=AC ,∠A=108°,BD 平分∠ABC 。
角平分线四大模型总结+习题+解析(最全版)

⾓平分线四⼤模型总结+习题+解析(最全版)⾓平分线四⼤辅助线模型⾓平分线的性质为证明线段或⾓相等开辟了新的途径,同时也是全等三⾓形知识的延续,⼜为后⾯⾓平分线的判定定理的学习奠定了基础.涉及到⾓平分线的考点主要是性质、判定以及四⼤辅助线模型,在初⼆上期中、期末考试中都是经常考察的⽅向。
⾓平分线性质:⾓平分线上的点到⾓两边的距离相等.⾓平分线判定:到⾓的两边距离相等的点在⾓的⾓平分线上.四⼤模型1、⾓平分线+平⾏线,等腰三⾓形必出现已知:OC平分∠AOB,CD∥OB交OA于D.则△ODC为等腰三⾓形,OD=CD.2、⾓平分线+两垂线,线等全等必出现已知:OC平分∠AOB.辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.3、⾓平分线+⼀垂线,中点全等必出现已知:OC平分∠AOB,DC垂直OC于点C.辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、⾓平分线+截长补短线,对称全等必出现已知:OC平分∠AOB,截取OE=OD,连接CD、CE.则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.【核⼼考点⼀】⾓平分线的性质与判定1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:163.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB ,另⼀把直尺压住射线OA 并且与第⼀把直尺交于点P ,⼩明说:“射线OP 就是BOA ∠的⾓平分线.”他这样做的依据是( )A .⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B .⾓平分线上的点到这个⾓两边的距离相等C .三⾓形三条⾓平分线的交点到三条边的距离相等D .以上均不正确6.(2019秋?梁平区期末)如图,若BD AE ⊥于B ,DC AF ⊥于C ,且DB DC =,40BAC ∠=?,130ADG ∠=?,则DGF ∠=.7.(2018春?开江县期末)如图,在Rt ABC ?中,90C ∠=?,以顶点A 为圆⼼,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆⼼,⼤于12MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( ) A .CAD BAD ∠=∠B .若2CD =,则点D 到AB 的距离为2C .若30B ∠=?,则CDA CAB ∠=∠D .2ABD ACD S S ??=8.(2014秋?西城区校级期中)如图,点E 是AOB ∠的平分线上⼀点,EC OA ⊥,ED OB ⊥,垂⾜分别是C ,D .下列结论中正确的有( )(1)ED EC =;(2)OD OC =;(3)ECD EDC ∠=∠;(4)EO 平分DEC ∠;(5)OE CD ⊥;(6)直线OE 是线段CD 的垂直平分线.A .3个B .4个C .5个D .6个9.(2019春?杜尔伯特县期末)如图:在ABC ?中,90C ∠=?,AD 是BAC ∠的平分线,DE AB ⊥于E ,F 在AC 上,BD DF =,证明:(1)CF EB =.(2)2AB AF EB =+.10.(2019秋?垦利区期中)如图,ABC⊥⊥且平分BC,DE AB中,AD平分BAC∠,DG BC于E,DF AC⊥于F.(1)判断BE与CF的数量关系,并说明理由;(2)如果8AB=,6AC=,求AE、BE的长.11.(2017秋?遂宁期末)某地区要在区域S内(即COD∠内部)建⼀个超市M,如图所⽰,按照要求,超市M到两个新建的居民⼩区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)【核⼼考点⼆】⾓平分线+⾓两边垂线12.(2019秋?肥城市期末)如图,//AB CD ,BP 和CP 分别平分ABC ∠和DCB ∠,AD 过点P ,且与AB 垂直,垂⾜为A ,交CD 于D ,若8AD =,则点P 到BC 的距离是.13.(2015?湖州)如图,已知在ABC ?中,CD 是AB 边上的⾼线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE ?的⾯积等于( )A .10B .7C .5D .414.(2010秋?涵江区期末)如图所⽰,在Rt ABC ?中,90C ∠=?,BC AC =,AD 平分BAC ∠交BC 于D ,求证:AB AC CD =+.15.(2012秋?蓬江区校级期末)如图,已知90∠=∠=?,M是BC的中点,DM平分B C∠.求证:ADC(1)AM平分DAB∠;(2)DM AM⊥.16.(2016秋?西城区校级期中)已知:如图,12∠=∠,P为BN上的⼀点,PF BC⊥于F,=,PA PC(1)求证:180∠+∠=?;PCB BAP(2)线段BF、线段BC、线段AB之间有何数量关系?写出你的猜想及证明思路.【核⼼考点三】⾓平分线+垂线17.(2017秋?和平区校级⽉考)如图.在ABC ?中,BE 是⾓平分线,AD BE ⊥,垂⾜为D ,求证:21C ∠=∠+∠.18.(2013秋?昌平区期末)已知:如图,在ABC ?中,AD 平分BAC ∠,CD AD ⊥于点D ,DCB B ∠=∠,若10AC =,6AD=,求AB 的长.19.如图所⽰,ABC ?中,ACB ABC ∠>∠,AE 平分BAC ∠,CD AE ⊥于D ,求证:ACD B ∠>∠.20.已知:如图,在ABC ?中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21.(2019秋?下陆区期中)如图,BD 是ABC ∠的⾓平分线,AD BD ⊥,垂⾜为D ,20DAC ∠=?,38C ∠=?,则BAD ∠=.22.(2019秋?曲⾩市校级⽉考)如图,在ABC ?中,AB AC =,90BAC ∠=?,BD 平分ABC ∠交AC 于D ,过C 作CE BD ⊥交BD 延长线于E .求证:12CE BD =.23.(2019?沂源县⼀模)(1)如图(a)所⽰,BD、CE分别是ABC的外⾓平分线,过点A作AD BD⊥,AE CE⊥,垂⾜分别为D、E,连接DE,求证:1() 2DE AB BC AC=++;(2)如图(b)所⽰,BD、CE分别是ABC的内⾓平分线,其他条件不变,DE与ABC三边有怎样的数量关系?并证明这个数量关系;(3)如图(c)所⽰,BD为ABC的内⾓平分线,CE为ABC的外⾓平分线,其他条件不变,DE与ABC三边⼜有怎样的数量关系?并证明这个数量关系.24.(2017秋?夏⾢县期中)如图,在ABC ?中,ABC ∠、ACB ∠的平分线相交于F ,过F 作//DE BC ,交AB 于D ,交AC 于E ,那么下列结论:①BDF ?、CEF ?都是等腰三⾓形;②DE DB CE =+;③AD DE AE AB AC ++=+;④BF CF =.正确的有.25.(2019秋?垦利区期末)如图,平⾏四边形ABCD 中,3AB cm =,5BC cm =;,BE 平分ABC ∠,交AD 于点E ,交CD 延长线于点F ,则DE DF +的长度为.26.(2010秋?海淀区期末)如图,BD 是ABC ?的⾓平分线,//DE BC ,DE 交AB 于E ,若AB BC =,则下列结论中错误的是( )A .BD AC ⊥B .A EDA ∠=∠C .2AD BC =D .BE ED =27.如图,若BD 、CD 分别平分ABC ∠和ACB ∠,过D 作//DE AB 交BC 于E ,作//DF AC 交BC 于F ,求证:BC 的长等于DEF ?的周长.28.(2018秋?邳州市期中)如图,在四边形ABCD中,对⾓线AC平分BAD >,∠,AB AD 下列结论正确的是()A.AB AD CB CD->-B.AB AD CB CD-=-C.AB AD CB CD-<-D.AB AD-与CB CD-的⼤⼩关系不确定29.(2012?⿇城市校级模拟)在ABC∠的外⾓平分线,P是AD上的任意中,AD是BAC⼀点,试⽐较PB PC+与AB AC+的⼤⼩,并说明理由.30.(2018秋?万州区期中)已知:如图,在四边形ABCD中,AC平分BAD ∠,CE AB⊥于=+.E,且180B D∠+∠=?,求证:AE AD BE31.(2017秋?海淀区期中)如图,已知AD是BAC∠=?,C=+,31的⾓平分线,AC AB BD 求B∠的度数.32.(2019秋?平⼭县期中)如图,90∠=?,OM平分AOB∠,将直⾓三⾓板的顶点PAOB在射线OM上移动,两直⾓边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.33.(2016秋?丰宁县期中)如图,在ABC ?中,100A ∠=?,40ABC ∠=?,BD 是ABC ∠的平分线,延长BD ⾄E ,使DE AD =.求证:BC AB CE =+.34.(2018秋?丰城市期中)在ABC ?中,2ACB B ∠=∠,(1)如图1,当90C ∠=?,AD 为BAC ∠的⾓平分线时,在AB 上截取AE AC =,连接DE ,求证:AB AC CD =+;(2)如图2,当90C ∠≠?,AD 为BAC ∠的⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请直接写出你的结论,不需要证明;(3)如图3,当AD 为ABC ?的外⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请写出你的猜想,并说明理由.35.(2019春?利津县期末)如图,在ABC∠平分线,AD的垂直平分线分中,AD是BAC别交AB、BC延长线于F、E.求证:(1)EAD EDA∠=∠;(2)//DF AC;(3)EAC B∠=∠.36.(2014?西城区⼆模)在ABC>,AD平分BAC∠交BC于点∠为锐⾓,AB AC,BACD.(1)如图1,若ABC是等腰直⾓三⾓形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若60∠=?,判断AC,CE,AB之间有怎样的数量关系并加以证明;ABE②如图3,若AC AB+,求BAC∠的度数.⾓平分线四⼤辅助线模型--解析⼀.⾓平分线的性质与判定(共11⼩题)1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .【分析】⾸先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据⾓平分线的性质,即可求得PB 的值,⼜由垂线段最短,可求得PQ 的最⼩值.【解答】解:过点P 作PB OM ⊥于B , OP 平分MON ∠,PA ON ⊥,3PA =,3PB PA ∴==,PQ ∴的最⼩值为3.故选:C .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:16【分析】利⽤⾓平分线的性质,可得出ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼相等,估计三⾓形的⾯积公式,即可得出ABD ?与ACD ?的⾯积之⽐等于对应边之⽐.【解答】解:AD 是ABC ?的⾓平分线,∴设ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼分别为1h ,2h ,12h h ∴=,ABD ∴?与ACD ?的⾯积之⽐:8:64:3AB AC ===,故选:B .3.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm【分析】根据⾓平分线的性质得到ED EC =,计算即可.【解答】解:BE 平分ABC ∠,DE AB ⊥,90ACB ∠=?, ED EC ∴=,3AE DE AE EC AC cm ∴+=+==,故选:B .4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn【分析】过点D 作DE AB ⊥于E ,根据⾓平分线上的点到⾓的两边距离相等可得DE CD =,然后根据三⾓形的⾯积公式即可得到结论.【解答】解:如图,过点D 作DE AB ⊥于E ,BD 是ABC ∠的平分线,90C ∠=?,DE CD m ∴==,ABD ∴?的⾯积122n m mn =??=,故选:A.5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB,另⼀把直尺压住射线OA并且与第⼀把直尺交于点P,⼩明说:“射线OP就是BOA∠的⾓平分线.”他这样做的依据是()A.⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B.⾓平分线上的点到这个⾓两边的距离相等C.三⾓形三条⾓平分线的交点到三条边的距离相等D.以上均不正确【分析】过两把直尺的交点C作CE AO=,再根据⾓⊥,CF BO⊥,根据题意可得CE CF的内部到⾓的两边的距离相等的点在这个⾓的平分线上可得OP平分AOB∠;【解答】解:(1)如图所⽰:过两把直尺的交点P作PE AO⊥,⊥,PF BO两把完全相同的长⽅形直尺,PE PF∴=,∠(⾓的内部到⾓的两边的距离相等的点在这个⾓的平分线上),OP∴平分AOB故选:A.。
角平分线模型概览

角平分线模型概览
什么是角平分线模型?
角平分线模型是一个在几何学中常用的概念,用于描述平面上
的角度结构。
它是由角平分线所构成的几何图形。
角平分线的定义
角平分线是指从一个角的顶点出发,将该角分成两个相等的角
的直线。
在平面几何中,任意角都存在唯一的平分线。
角平分线的性质
角平分线具有以下性质:
- 角平分线将原角分成两个相等的角。
- 角平分线与角的两边相交,且相交点在角的顶点所在的直线上。
角平分线模型的应用
角平分线模型在几何学中有广泛的应用,它可以用于解决角度
相关的计算问题。
通过使用角平分线模型,我们可以求解角的大小、角的平分线的长度等。
如何找到角平分线?
要找到一个角的平分线,可以按照以下步骤进行操作:
1. 连接角的两边的端点,画出角的两边。
2. 以角的顶点为圆心,任意取一个半径,画一个圆。
3. 从圆上任意点画一条必须经过圆心的弧,此弧与两边相交于两个点。
4. 连接这两个点和角的顶点,即得到角的平分线。
总结
角平分线模型是几何学中的一个重要概念,用于描述角的平分线。
它具有很多重要性质,并在解决角度计算问题时发挥着重要作用。
找到角平分线的方法可以通过连接角的两边和画圆来实现。
角平分线的四大模型(Word版)

角平分线四大模型模型一:角平分线上的点向两边作垂线如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA.模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm(2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC.练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC.求证:∠BAD+∠C=180°练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()模型二:截取构造对称全等如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≅△OPA.模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.(2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由.练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。
练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.模型三:角平分线+垂线构造等腰三角形如图,P是∠MON的平分线上一点,AP⊥OP于P点,延长AP交ON于点B,则△AOB是等腰三角形。
(完整版)几何证明——角平分线模型(中级)

★初中几何证明专题★1、角平分线:(1 )角平分线性质定理:角平分线上的点到这个角的两边的距离相等(作用:(2)逆定理:在角的内部,到角的两边距离相等的点在这个角的角平分线上。
条射线是一个角的角平分线)。
2、角平分线常见用法(或辅助线作法)3、角平分线比例定理AB如图6, AD为ABC的角平分线,则——AC几何证明角平分线模型(中级)【知识要点】①垂两边: 如图1,已知BP平分ABC,过点P 作PA AB,PC BC,贝y PA PC。
②截两边: 如图2,已知BP平分MBN,点A BM上,在BN上截取BC BA,贝y ABP也CBP。
③角平分线+平行线7等腰三角形:如图3, 已知BP平分ABC , PA/ /AC ,则AB AP ;BP如图4, 已知(1)④三线合一(利用角平分线+垂线7等腰三角形)如图5,已知AD平分BAC,且AD BC,贝y AB AC , BD CD。
证明两条线段相等);(作用:证明两角相等或一BD AB--- 或----CD BDACOCD【经典例题】已知如图,ABC 中,BC AC ,AD 平分 CAB ,若C 90,求证:AB AC CD ;如图,在Rt ABC 中, ACB 90,CD AB 于D ,AF 平分 CAB 交CD 于E ,交CB 于F , 且EG // AB 交CB 于G 。
试求:CF 与GB 的大小关系如何?已知如图, ABC 中,BC AC ,AD 平分 CAB ,若 C 108,求证:AB AC BD ;例4、如图:已知I 是 ABC 的内心,DI//AB 交BC 于点D ,EI//AC 交BC 于E 。
求证: 长等于BC 。
ABDE C例1、DIE 的周例5、如图:已知在 ABC 中, ABC 的平分线与 ACB 的外角平分线交于点 D , DE // BC ,交AB 于 点E ,交AC 于点F ,求证:EF例6、如图,已知 ABC 中 BAC 90 ,AB AC,CD 垂直于 ABC 的平分线BD 于D , BD 交AC 于E ,求证:BE 2CD 。
角平分线四大基本模型

12
例题4 (1)在三角形ABC中,∠ABC与∠ACB的角平分线相交 于点F,过点F作DE//BC,交AB于点D,交AC于点E,若 BD+CE=9,则线段DE之长为________
13
(2)在△ABC中,BD、CD分别平分∠ABC和∠ACB, DE//AB,FD//AC,如果BC=6,求△DEF的周长
【提示】“图中有角平分线,可将图形对折看,对称以后关系现”
10
例题3 (1)已知等腰直角三角形ABC中,∠A=90°,AB=AC, BD平分∠ABC,CE⊥BD,垂足为点E,求证: BD=2CE
11
(2)在△ABC中,AB=3AC,∠BAC的平分线交BC于 点D,过点B作BE⊥AD,垂足为E,求证:AD=DE
角平分线四大基本模型 角平分线在初中几何中常见, 现总结以下四种基本类型 已知P是∠MON平分线上一点
2
【模型1】 若PA⊥OM于点A,可过P作PB⊥ON于点B,则 PB=PA 口诀:“图中有角平分线,可向两边作垂线”
3
【模型2】 若点A是射线OM上任意一点,可在ON上截取OB=OA,连接PB, 构造△OPB≌△OPA 口诀:“图中有角平分线,可将图形对折看,对称以后关系现”
“角平分线+平行线,等腰三角形必呈现”
14
ห้องสมุดไป่ตู้
4
【模型3】 若AP⊥OP于点P,可延长AP交ON于点B,构造等腰 △AOB,OP是底边AB垂线,进而利用三线合一 口诀:“角平分线加垂线,三线合一试试看”
5
【模型4】 若过点P作PQ//ON交OM于点Q,从而构造等腰△POQ 口诀:“角平分线+平行线,等腰三角形必呈现”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
D
C
E
要证明两条线段之和等于第三条线段,可以采 取“截长补短”法。
截长法即在较长线段上截取一段等于两
较短线段中的一条,再证剩下的一段等于另一 段较短线段。
所谓补短,即把两短线段补成一条,再 证它与长线段相等。
已知,如图四边形ABCD 中,AB ∥CD,∠1=∠2, ∠3=∠4。求证:BC=AB +CD
辅助线的做法 ------- 角平分线模型
小何老师 2018-10-7
高手出招1:角分线,分两边,对称全等要记全。
1. 在△ABC中, ∠B=2∠C, AD平分∠
A
求证:AB+BD=AC
12
截长 补短
BAC.
B
D
截长法
证明:在AC上截取AE=AB ,连结DE
∵ AD平分∠ BAC
∴ ∠1=∠ 2, 在△ABD和 △AED中
A
12
3
E
4
B
D
C
﹛AB=AE ∠1=∠ 2 AD=AD ∴ △ABD≌ △ AEDS( AS) ∴BD=DE, ∠B=∠ 3
∵ ∠B=2∠C
∴ ∠3=2∠C
∵ ∠3= ∠4+∠C ∴ 2∠C = ∠4+∠C ∴ ∠ C =∠ 4 ∴DE=CE ∴BD=CE ∵AE+EC=AC
∴ AB+BD=AC
补短法
高手出招2:只要看到平分线上的点,要想到向两边作垂线了(点分线,垂两边)
引垂 线
2、已知,在△ABC 中,∠A= 90°,AB =AC, ∠1=∠2。 求证:BC=AB +AD 。
练习2
截长补短 引垂线