2015春八年级数学下册《18.1勾股定理》课件3 (新版)沪科版

合集下载

沪科版八年级下册数学《18.1 勾股定理》

沪科版八年级下册数学《18.1 勾股定理》

1.在△ABC中,∠C=900.AB=c,BC=a,AC=b.
(1)a=5,b=12,求c; 13
A
(2)a=8,c=17,求b. 15
c b
B aC
ቤተ መጻሕፍቲ ባይዱ展新知
勾股定理 a2 +b2 =c2 有哪些的变形?
(1)a2 =c2 - b2 (2)b2 =c2 - a2
(3) c a2 b2 (4) a c2 b2
S3的面积怎么算呢? (图中每个小方格代表一个单位面积)
A
S3
S2
C
B
S1
(1)观察
S1 _9__个单位面积。 S2 _9__个单位面积。 S3 _1_8_个单位面积。
S3的面积怎么算呢?
(图中每个小方格代表一个单位面积)
三个正方形的面积有 什么关系?
S1+S2=S3
一般的直角三角形 三边为边作正方形 (2)观察
沪科版八年级下册
18.1勾股定理

发们映友 现,直家

什我角作相 么们三客传

? 也 角 , 25 来 形 发 00

观三现年 察边朋前

下的友, 面某家一

的种用次 图数砖毕
案量铺达
,关成哥 看系的拉 看,地斯
你同面去
能学反朋
A
S3
S2
C
B
S1
(1)观察
S1 _9__个单位面积。 S2 _9__个单位面积。 S3 _1_8_个单位面积。
S1 _9__个单位面积。 S2 _1_6_个单位面积。
S3 _2_5_个单位面积。
A
S3 S2
C
B
S1

沪科版八年级数学下册18.1勾股定理课件

沪科版八年级数学下册18.1勾股定理课件

AB
13 13
由直角三角形的面积求法可知直角三角形两直角边的积等于
斜边与斜边上高的积,它常与勾股定理联合使用.
课堂练习
1.图是一株美丽的勾股数,其中所有的四边形都是正方形,所有的三 角形都是直角三角形,若最大的正方形G的边长是6厘米,则正方形 A、B、C、D、E、F、G的面积之和是( ) A. 18cm2 B.36cm2 C. 72cm2 D.108cm2
⒊据不完全统计,勾股定理的证明方法已经多达
400多种,今天我们用了什么方法?
面积法
4.运用勾股定理应注意哪些事项? (1)前提条件是在直角三角形中; (2)弄清哪个角是直角; (3)已知两边没有指明是直角边还是斜边时一定要分类讨论;
首页
板书设计
一份自豪 身为中国人
一种思想 数形结合
一次探索
特殊到一般
AD的长为( )
A. 5
B.4
C. 3
D.2
解:∵ AB=AC, AD是∠BAC平分线,
BD 1 BC 4, AD BC, 2
由勾股定理,得 AD AB2 BD2 4,
故而选:C
课堂练习
3.在ΔABC中, ∠C=90°,AC=9,BC=12,则AB边上的高是( )
A . 36 B .12 C . 9 D . 3 3
AO AB2 BO2 102 62 64 8
在Rt△CDO中,由勾股定理得
CO AB2 DO2 102 92 19 CD AO CO 8 19 8 4.36 3.6
答:这时消防车要从原处再着火的楼房靠近约3.6米
新知讲解 例3 已知,如图在Rt△ABC中,两直角边AC=5,BC=12,求斜边

沪科版八年级下册数学《18.1勾股定理6》课件(共19张PPT)

沪科版八年级下册数学《18.1勾股定理6》课件(共19张PPT)

千人桥镇中心学校
变式运用:
cba
bca cab
确定斜边

a2+b2 = c2 a2+c2 = b2 b2+c2 = a2
a
c
b
敬业 严谨 博学 求真
灵活运 用公式
c2=a2 +b2
a2= c2 - b2 b2= c2 - a2
千人桥镇中心学校
例题分析
例1:
(1)在Rt△ABC中,∠C=90°.已知:a=3,c=4,求b;
千人桥镇中心学校
例3、如下图,所有的四边形都是正方形,所有的三角形都是直角三角形, 其中最大的正方形的边长是7cm,求正方形A、B、C、D的面积之和。
EF G
敬业 严谨 博学 求真
千人桥镇中心学校
敬业 严谨 博学 求真
千人桥镇中心学校
4. △ABC中,AB=10,AC=17,BC边上的高线AD=8,求线段BC 的长.
九年义务教育沪科版八年级数学下册
第十八章 勾股定理
18.1 勾股定理(1)
千人桥镇中心学校
左下图是2002年 在北京召开的国 际数学家大会会 徽
敬业 严谨 博学 求真
千人桥镇中心学校
想一想:有少数同学为了避开拐角走捷径,在长方形的花圃内走出了一 条“路”,他们仅仅少走了多少米,却踩伤了花草呢?
3 4
ac
bБайду номын сангаас
千人桥镇中心学校
敬业 严谨 博学 求真
猜想:a、b、c
之间的关系?
a2 +b2 =c2
ac
b
千人桥镇中心学校
4.验证:a、b、c 之间的关系? a2 +b2 =c2

沪科版数学八年级下册18.1《勾股定理》课件(共16张PPT)

沪科版数学八年级下册18.1《勾股定理》课件(共16张PPT)

1.求下列图中表示边的未知数x、y、z的值. 144 81 144 ① 169 ②
z
625
576

2.求下列直角三角形中未知边的长:
比 一 比 看 看 谁 算 得 快 !
5 8 17
x
20
16
x
12
x
方法小结: 可用勾股定理建立方程.
小结
数学知识:


勾股定理
勾股定理的简单计算及运用
观 经历过程: 察
B
C
A
勾 股 定 理
一、情景引入
如图,一根电线杆在离地面5米处断裂,电 线杆顶部落在离电线杆底部12米处,电线 杆折断之前有多高?
B
C
12米
A
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC C
B 图甲 图甲 图乙 4 A的面积 4 B的面积 C的面积 8 1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 ⑵正方形 面积各为多少? 面积有什么关系?
a 勾
股 b 弦 c
a b c
2
2
2
即直角三角形两直角边的平方和等于 斜边的平方.
勾 股 世 界
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 定理。为了纪念毕达哥拉斯学派, 1955 理。为了纪念毕达哥拉斯学派, 1955年 年希腊曾经发行了一枚纪念票。 希腊曾经发行了一枚纪念邮票。
2.观察图乙,小方格 的边长为1. ⑵正方形A、B、C的 面积有什么关系?

最新沪科版八年级数学下册第18章勾股定理PPT

最新沪科版八年级数学下册第18章勾股定理PPT

温馨提示:上述这种验证勾股定理的方法是用面积法.
“赵爽弦图”表现了我国古人对数学的钻研精神和聪明 才智,它是我国古代数学的骄傲.这个图案被选为2002年在北 京召开的国际数学大会的会徽.
知识要点 弦

前提
勾股定理 如果直角三角形的两直角边 长分别为a,b,斜边长为c,那么a2+b2=c2.

即:勾2+股2=弦2
第18章 勾股定理 18.1 勾股定理
第1课时
情景引入
相传2500年前,毕达哥拉斯有一次在朋友家里做客时,
发现朋友家用砖铺成的地面中反映了A、B、C面积之间的数
量关系,进而发现直角三角形三边的某种数量关系.
看似平淡 无奇的现 象有时却 隐藏着深 刻的道理
毕达哥拉斯
AB C
合作探究 活动:探究勾股定理与图形的面积
(C)42或32 (D)30或35
合作探究
活动1:探究勾股定理的应用 问题1 有一个水池,水面是一个边长为l0尺的正方形.在水
池正中央有一根芦苇.它高出水面l尺.如果把这根芦苇拉向水池
一边,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长
度分别是多少?
D C
5A
X
X+1
实际问题 实物图形
B 数学问题 几何图形
活动2:探究用勾股定理在数轴上表示无理数 问题2 我们知道数轴上的点有的表示有理数,有的
表示无理数,你能在数轴上画出表示 1的3点吗?
提示
直角边长为整数2,3的直角
三角形的斜边为 13 .
探究思路:把握题 意——找关键字 词——联系相关知 识——建立数学模
D C
5A
X
X+1

沪科版八年级下册数学:18.1 勾股定理 (共22张PPT)

沪科版八年级下册数学:18.1 勾股定理 (共22张PPT)
第一课时
受台风影响,一棵树在离地面4米处断 裂,树的顶部落在离树跟底部3米处,这棵 树折断前有多高?
4 米
3米
相传二千多年前,一次,毕 达哥拉斯去朋友家作客。在宴 席上他看着朋友家的方砖地面 发起呆来。主人觉得非常奇怪, 就想过去问他。谁知毕达哥拉 斯突然恍然大悟的样子,站起 来,大笑着跑回家去了。后来 知道是因为他从中发现了直角 毕达哥拉斯 三角形三边的数量关系,赶着 (公元前572---- 回家证明去了。 前492年),古希腊 那么,他朋友家的地板到底是 著名的哲学家、 怎样呢?我们也观察一下看看能 数学家、天文学 发现什么? 家。
C
a (1)
b
(2)
(3)
(4)
利用准备好的四个全等的直 角三角形,a、b表示两条直角 边, c表示斜边。
动手实践:这四个全等的直 角三角形可以拼成一个正方 形吗?有哪些不同的方法?
思考:拼出的正方形面
积用含a、b、c的式子可以
怎么表示? 能得到我们要证明的结论吗?
C
a (1) b
(2)
(3)
(4)
4.等腰直角△ABC中,∠C=90°,AC=2cm, 那么它的斜边上的高为2 _c_m____.
感谢光临! 敬请批评指正!
再 见!
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。

沪科版数学八年级下册18.1《勾股定理》教学课件(共37张PPT)

沪科版数学八年级下册18.1《勾股定理》教学课件(共37张PPT)

美国总统证法
那个小男孩头也不抬地说:“请问先生, 如果直角三角形的两条直角边分别为3 和4,那么斜边长为多少呢?”加菲尔 德答道:“是5呀。”小男孩又问道: “如果两条直角边分别为5和7,那么这 个直角三角形的斜边长又是多少?”加 菲尔德不加思索地回答到:“那斜边的 平方一定等于5的平方加上7的平方.” 小男孩说:“先生,你能说出其中的道 理吗?”加菲尔德一时语塞,无法解释 了,心里很不是滋味。加菲尔德不再散 步,立即回家,潜心探讨小男孩给他出 的难题。他经过反复思考与演算,终于 弄清了其中的道理,并给出了简洁的证 明方法。
A
13
?
C
12
B
试一试:
3、一个直角三角形的三边长为三个连续 偶数,则它的三边长分别为 ( B )
A 2、4、6 C 4、 6、 8
B 6、8、10
D 8、10、12
试一试:
4、已知:Rt△ABC中,AB=4,AC=3,则 BC的长为 B 4 C 4
5或
7
.
B
3
A
A
3
C
2.求下列直角三角形中未知边的长:
a c b
2
C
c2-b2
2
2
=c2-a2 b= c2-a2
2
a
B
c a b
勾股小常识:勾股数
1.基本勾股数如:大家一定要熟记
3、、 45
1、 1、 2
5、 12、 13
7、 24、 25
1、3、 2
2.如果a,b,c是一组勾股数,则ka、kb、kc(k为正整 数)也是一组勾股数, 如: 6、8、10 ; 9、12、15; 15、36、39……
方法 小结
(4) 已知: a:b=3:4, c=15,求a、b.

沪科版八年级下册数学-18.1勾股定理1——两点之间的距离公式-课件(共19张PPT)

沪科版八年级下册数学-18.1勾股定理1——两点之间的距离公式-课件(共19张PPT)

x
平面内有一点A(3,4),如何求O,A之间的距 离|OA|?
|OB|=3 |AB|=4 |OA|=5
两点间距离公式及应用(授新)
y
5
4
3
A(1,2)
2
1
B(5,5) C (5,,2)
-2 -1 0 1 2 3 4 5
x
B1
平面上两点A(1,2),B(5,5),如何计算这两点之间的距离|AB|?
|AC|=|xA-xC|=|1-5|=4
两点之间的距离公式
两点间距离公式及应用(复习导入)
A
B
-2 -1 0 1 2 3
|AB|=|-2-3|=|-5|=5
两点间距离公式及应用(复习导入)
C
D
x1
-2 -1 0 1 2 3
x2
|CD|=|x1-x2|
两点间距离公式及应用(授新)
y
5
|AB|=|5-1|=4
4
3
A(1,2)
2
1
B(5,2)
|BC|= |yB-yC|=|5-2|=3
|AB|=5
两点间距离公式及应用(授新)
平面上任意两点A(x1,y1)和B(x2,y2),如何计算AB两点之间的距离|AB|
y
A(x1,y1)
|BC|=|x2-x1|
C(x1,y2)
B(x2,y2)
0
A1
x
平面直角坐标系中两点之间的距离公式:
|AC|=|y2-y1|
两点间距离公式及应用(作业)
1、P62思考 2、P63.3
两点间距离公式及应用(拓展延伸)
1、在平面内,已知A(1,-1),B(b,3),且AB=5,求b 2、已知A(1,1),B(3,-1),C(3,y),且△ABC为等腰三角形, 求y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S△ABC=84或36
小结:勾股定理在生活中的应用 十分广泛,利用勾股定理解决问 题,关键是找出问题中隐藏的直 角三角形或自己构造合适的直角 三角形,尝试把立体图形转换为 平面图形.
《18.1勾股定理》
辉煌发现
我国早在三千多年就知道了这个定理,人们 把弯曲成直角的手臂的上半部分称为“勾”,下 半部分称为“股”,我国古代学者把直角三角形 较短的直角边称为“勾”,较长的直角边称为“ 股”,斜边称为“弦”.因此就把这一定理称为 勾股定理.





数学史话
商高
《周髀算经》
毕达哥拉斯
A.3 米 B.4 米 C.5米 D.6米
3 4
2、求出下列直角三角形中未知边的长度.
6
x x
5
8 13
解:由勾股定理得: x2=62+82 x2 =36+64 x2 =100 ∵x>0 ∴ x=10
∵ x2+52=132 ∴ x2=132-52 x2 =169-25 x2 =144 ∵x>0 ∴ x=12
《勾股圆方图》
证法1:伽菲尔德经过反复的思考与演算,终于弄清楚了其中 的道理,并给出了简洁的证明方法.1876年4月1日,伽菲尔 德在《新英格兰教育日志》上发表了他对勾股定理的这一证 法.1881年,伽菲尔德就任美国第二十任总统后,人们为了 纪念他对勾股定理直观、简捷、易懂、明了的证明,就称这 一证法称为“总ab+b2-2ab+b2 =a2+b2 ∵s大正方形=s大正方形 ∴c2=a2+b2
1 2
定理:经过证明被确认为 正确的命题叫做定理. 勾股定理:如果直角三角形的两直
角边长分别为a、b,斜边为c,那 么a2+b2=c2.
基础练习之出谋划策
1、如图,一个高3米,宽4米的大门,需在 相对角的顶点间加一个加固木条,则木条的 长为. ( C )
例、如图,在Rt△ABC中,∠C=90°,AD平分 ∠BAC, AC=6cm,BC=8cm,(1)求线段CD的 长;(2)求△ABD的面积.
A
方程思想:直角三 角形中,已知一条 边,以及另外两条 6 边的数量关系时, 可利用勾股定理建 立方程求解.
6 x
C x D
10
E
4
8-x
B
8
补充练习:
1、在△ABC中,AD是BC边上的高,若 AB=l0,AD=8,AC=17,求△ABC的面积.
a c

½(a + b)(b + a) = ½c2 + 2(½ab)
b
½a2 + ab + ½b2 = ½c2 + ab
a2 + b2 = c2
c
a

b
c a b
证法2: 2=a2+2ab+b2 s大正方形=(a+b) 1 s大正方形=c2+4× 2 ab=c2+2ab ∵s大正方形=s大正方形 ∴a2+2ab+b2=c2+2ab ∴a2+b2=c2 证法3: s大正方形=c2 s大正方形=4×
相关文档
最新文档