沈阳药科大学药剂学课件 靶向制剂
合集下载
【药剂学】第二十章 靶向制剂

50~100nm微粒进入肝实质细胞中 < 50nm 透过肝脏内皮细胞/通过淋 巴传递到脾和骨髓中
17
隐形化原理
常规微粒易于被调理素调理而被吞噬细胞识别和吞噬,分 布于单核巨噬细胞吩咐的组织,而达到其他靶组织难。
隐形化目的:避免被吞噬细胞吞噬,延长在循环系统的时 间,利用疾病生理特征,富集于病变组织。
21
例:柔红霉素靶向脂质体
肿瘤细胞转铁蛋白受体高表达 转铁蛋白-PEG-脂质体:肿瘤靶向性
22
Y
受体介导的内吞作用 Receptor-Mediated Endocytosis
靶向性配体
Targeting Ligand Candidates 转铁蛋白(Transferrin) 叶酸(Folic acid) RGD(Arg一Gly一Asp) IgG 免疫球蛋白(IgG Immunoglobulins) 纤维蛋白(Fibrin) 葡萄糖/甘露糖(Glucose / Mannose) 半乳糖(Galactose)
Liposomes
Polymeric Micelles
nanoemulsions
Nanoparticles
被动靶向的影响因素
循环系统生理特征
制剂因素
-- 微粒粒径
-- 表面性质
11
循环系统生理特征
药物体内分布:血液—组织— 细胞 血流量大,血循环好的器官药 物分布多(肝脏)。 毛细血管通透高,微粒容易通 过(肝窦毛细血管壁有很多缺 口) 淋巴循环:血流慢,毛细淋巴 管存在组织间隙,细胞间有缺 口通透性大。
7
第二节 靶向制剂的体内作用机制和分类
靶向制剂的分类
按靶标不同:
一级靶向:以特定器官或组织为靶标
二级靶向:以特定细胞为靶标
17
隐形化原理
常规微粒易于被调理素调理而被吞噬细胞识别和吞噬,分 布于单核巨噬细胞吩咐的组织,而达到其他靶组织难。
隐形化目的:避免被吞噬细胞吞噬,延长在循环系统的时 间,利用疾病生理特征,富集于病变组织。
21
例:柔红霉素靶向脂质体
肿瘤细胞转铁蛋白受体高表达 转铁蛋白-PEG-脂质体:肿瘤靶向性
22
Y
受体介导的内吞作用 Receptor-Mediated Endocytosis
靶向性配体
Targeting Ligand Candidates 转铁蛋白(Transferrin) 叶酸(Folic acid) RGD(Arg一Gly一Asp) IgG 免疫球蛋白(IgG Immunoglobulins) 纤维蛋白(Fibrin) 葡萄糖/甘露糖(Glucose / Mannose) 半乳糖(Galactose)
Liposomes
Polymeric Micelles
nanoemulsions
Nanoparticles
被动靶向的影响因素
循环系统生理特征
制剂因素
-- 微粒粒径
-- 表面性质
11
循环系统生理特征
药物体内分布:血液—组织— 细胞 血流量大,血循环好的器官药 物分布多(肝脏)。 毛细血管通透高,微粒容易通 过(肝窦毛细血管壁有很多缺 口) 淋巴循环:血流慢,毛细淋巴 管存在组织间隙,细胞间有缺 口通透性大。
7
第二节 靶向制剂的体内作用机制和分类
靶向制剂的分类
按靶标不同:
一级靶向:以特定器官或组织为靶标
二级靶向:以特定细胞为靶标
药剂学4 靶向制剂概述

(5)具有运转足够量药物能力,而且有一 定的机械强度和生物降解速度。 释药速度适宜,保证在靶区释放出大量 药物。
免疫磁性微球靶向原理示意图
二、栓塞靶向制剂
栓塞靶向制剂:动脉栓塞是通过插入动脉的导管将栓塞 物输送到靶组织或靶器官的医疗技术。 栓塞的目的是阻断对靶区的血液供应和营养,使靶区 的肿瘤细胞缺血坏死,起到栓塞和靶向化疗的双重作 用。
迄今,研究最多的被动靶向给药制剂是
Liposomes
Micro-
emulsions
Microspheres Nanoparticles
Microparticles drug delievey systems
微粒给药系统为分子组装体,药物分子包裹在载体内, 通常在微粒核心。 微粒给药系统可使药物与周围环境分离,保护药物避 免酶的降解。 由于不需共价连接,因此一种药物载体可装载不同种 类的药物,并且较大分子连接物有更高的载药量。
脂质体
脂质体(liposomes)
是将药物包封于
类脂质双分子层内
形成的微型泡囊。
聚合物纳米粒
聚合物纳米粒(polymeric nanoparticle)
由各种生物相容性聚合物(biocompatible polymers)制成,
粒径在10-1000 nm。
药物被包裹在载体膜内称为纳米囊, 药物分散在载体基质中称为纳米球。
1.相对摄取率(re) re=(AUCi)p/(AUCi)s
不同制剂同一组 织或器官比较
式中:AUCi是由浓度-时间曲线求得的第i个器官或
组织的药时曲线下面积,脚标p和s分别表示药物制
剂及药物溶液。
re大于1表示药物制剂在该器官或组织有靶向性,
re愈大靶向效果愈好,等于或小于1表示无靶向性。
《靶向制剂》课件

药代动力学参数的测定
通过药代动力学参数的测定,可以了解药物在体内的代谢和排泄速率,从而为药物的剂 量选择和给药方案制定提供依据。
靶向制剂的药效学研究
药效学研究的目的
药效学研究的主要目的是确定药物对靶点的 具体作用,以及这种作用如何转化为临床疗 效。
药效学研究的实验设计
药效学研究需要采用科学严谨的实验设计,通过对 照实验和随机分组等方法,确保实验结果的可靠性 和可重复性。
心血管靶向制剂
针对心血管疾病发病机制中的特定环节,如炎症、氧化应激等,将药物定向作用 于病变部位。
案例
心肌梗死靶向治疗:利用心肌梗死患者体内高表达的某些受体或抗原,如整合素 和血管内皮生长因子,开发相应的靶向药物,如替罗非班和贝伐珠单抗,有效改 善心肌缺血症状。
靶向制剂在神经系统疾病治疗中的应用
神经系统靶向制剂
04
靶向制剂的临床应用与案例分 析
靶向制剂在肿瘤治疗中的应用
肿瘤靶向制剂
利用肿瘤细胞表面的特异性受体或抗原,将药物定向传递至肿瘤组织,提高疗效并降低副作用。
案例
肺癌靶向治疗:针对肺癌细胞中的某些特定基因突变,如EGFR和ALK,开发相应的靶向药物,如吉非替尼和克唑 替尼,有效延长患者生存期。
靶向制剂在心血管疾病治疗中的应用
抗体偶联药物(ADC)制备技术
将药物与单克隆抗体结合,形成ADC,利用抗体的特异性识别和结合能力,将药物定向传 递至靶细胞或组织。
基因治疗载体构建技术
利用基因工程技术,将治疗基因转入靶细胞或组织,以达到治疗目的。常见的基因治疗载 体有病毒载体和非病毒载体。
放射性核素标记药物制备技术
将药物与放射性核素结合,形成放射性标记药物,利用放射性核素的能量和辐射作用,对 靶细胞或组织进行显像和治疗。
通过药代动力学参数的测定,可以了解药物在体内的代谢和排泄速率,从而为药物的剂 量选择和给药方案制定提供依据。
靶向制剂的药效学研究
药效学研究的目的
药效学研究的主要目的是确定药物对靶点的 具体作用,以及这种作用如何转化为临床疗 效。
药效学研究的实验设计
药效学研究需要采用科学严谨的实验设计,通过对 照实验和随机分组等方法,确保实验结果的可靠性 和可重复性。
心血管靶向制剂
针对心血管疾病发病机制中的特定环节,如炎症、氧化应激等,将药物定向作用 于病变部位。
案例
心肌梗死靶向治疗:利用心肌梗死患者体内高表达的某些受体或抗原,如整合素 和血管内皮生长因子,开发相应的靶向药物,如替罗非班和贝伐珠单抗,有效改 善心肌缺血症状。
靶向制剂在神经系统疾病治疗中的应用
神经系统靶向制剂
04
靶向制剂的临床应用与案例分 析
靶向制剂在肿瘤治疗中的应用
肿瘤靶向制剂
利用肿瘤细胞表面的特异性受体或抗原,将药物定向传递至肿瘤组织,提高疗效并降低副作用。
案例
肺癌靶向治疗:针对肺癌细胞中的某些特定基因突变,如EGFR和ALK,开发相应的靶向药物,如吉非替尼和克唑 替尼,有效延长患者生存期。
靶向制剂在心血管疾病治疗中的应用
抗体偶联药物(ADC)制备技术
将药物与单克隆抗体结合,形成ADC,利用抗体的特异性识别和结合能力,将药物定向传 递至靶细胞或组织。
基因治疗载体构建技术
利用基因工程技术,将治疗基因转入靶细胞或组织,以达到治疗目的。常见的基因治疗载 体有病毒载体和非病毒载体。
放射性核素标记药物制备技术
将药物与放射性核素结合,形成放射性标记药物,利用放射性核素的能量和辐射作用,对 靶细胞或组织进行显像和治疗。
最新沈阳药科大学-药剂课件(共19章全第十八章 制剂新技术ppt课件

• 最为常用的表面活性剂是泊洛沙姆188 (poloxamer188),为片状固体、毒性 小、对粘膜刺激性极小、可采用熔融法 和溶剂法制备固体分散体,可大大提高 药物的溶出速率和生物利用度。
4.有机酸类
• 常用的有枸橼酸、琥珀酸、酒石 酸、胆酸、去氧胆酸等。
• 此类载体材料的分子量较小,易 溶于水而不溶于有机溶剂。
度, E点为A和B处于最 低共熔点时的比例)。
三、固体分散体的类型
(-)固体溶液(solid solution)
❖是指药物以分子状态均匀分散在载体材料中 而形成的固体分散体。如果将药物分子看成 溶质,载体看成是溶剂,则此类分散体即可 称为固体(态)溶液。
• 因为固体溶液中的药物以分子状态存在,分 散程度高、表面积大,所以在改善溶解度方 面比下述的低共熔混合物具有更好的效果。
• 它们具有良好的亲水性,除起到药物 的分散作用外,本身还是优良的润湿 剂、分散剂、助流剂或崩解剂。 此 类固体分散体可采用溶剂分散法制备。
(二)难溶性载体材料
1.纤维素类 2.聚丙烯酸树脂类 3.脂质类
1.纤维素类
❖常用的是乙基纤维素(EC),它只能 溶于乙醇、苯、丙酮、CCl4等有机溶剂、 无毒、无药理活性,是一种理想的不溶 性载体材料。多采用溶剂分散法制备 (乙醇为溶剂)缓释的固体分散体:
• 图中A、B分别为A和B的
图18-1
简单低共熔混合物的相图•Βιβλιοθήκη 熔点; 相Ⅰ为A和B的熔融态;
温度T
A
I:熔融态
Ⅱ E
B Ⅲ
• 相Ⅱ表示A的微晶与A 在B中的饱和溶液(熔融 态)共存;
• 相Ⅲ表示B的微晶与B 在A中的饱和溶液(熔融 态)共存;
O • 相Ⅳ为固态低共熔混合
4.有机酸类
• 常用的有枸橼酸、琥珀酸、酒石 酸、胆酸、去氧胆酸等。
• 此类载体材料的分子量较小,易 溶于水而不溶于有机溶剂。
度, E点为A和B处于最 低共熔点时的比例)。
三、固体分散体的类型
(-)固体溶液(solid solution)
❖是指药物以分子状态均匀分散在载体材料中 而形成的固体分散体。如果将药物分子看成 溶质,载体看成是溶剂,则此类分散体即可 称为固体(态)溶液。
• 因为固体溶液中的药物以分子状态存在,分 散程度高、表面积大,所以在改善溶解度方 面比下述的低共熔混合物具有更好的效果。
• 它们具有良好的亲水性,除起到药物 的分散作用外,本身还是优良的润湿 剂、分散剂、助流剂或崩解剂。 此 类固体分散体可采用溶剂分散法制备。
(二)难溶性载体材料
1.纤维素类 2.聚丙烯酸树脂类 3.脂质类
1.纤维素类
❖常用的是乙基纤维素(EC),它只能 溶于乙醇、苯、丙酮、CCl4等有机溶剂、 无毒、无药理活性,是一种理想的不溶 性载体材料。多采用溶剂分散法制备 (乙醇为溶剂)缓释的固体分散体:
• 图中A、B分别为A和B的
图18-1
简单低共熔混合物的相图•Βιβλιοθήκη 熔点; 相Ⅰ为A和B的熔融态;
温度T
A
I:熔融态
Ⅱ E
B Ⅲ
• 相Ⅱ表示A的微晶与A 在B中的饱和溶液(熔融 态)共存;
• 相Ⅲ表示B的微晶与B 在A中的饱和溶液(熔融 态)共存;
O • 相Ⅳ为固态低共熔混合
第十五章 药物制剂新技术(靶向制剂).doc_PPT幻灯片

• 掩盖药物的不良臭味
• 防止药物的挥发损失
• 使某些液体药物固体化
• 减少复方制剂中ห้องสมุดไป่ตู้配伍禁忌
微囊的制备方法
➢ 物理机械法 ➢ 化学法 ➢ 物理化学法
• 喷雾干燥法 • 喷雾凝结法 • 空气悬浮法 • 多孔离心法 • 锅包衣法
• 界面缩聚法
• 辐射交联法
• 单凝聚法 • 复凝聚法 • 溶剂-非溶剂法 • 改变温度法 • 液中干燥法
脂质体
脂质体的概念、组成与结构
• 脂质体 (liposomes)是指将药物包封于类脂质 双分子层内而形成的微型囊泡。 • 分为:单室脂质体
多室脂质体 大多孔脂质体 • 脂质体的特点 • 脂质体的组成与结构 磷脂与胆固醇排列成脂质体示意图
脂质体的制备
➢ 注入法 ➢ 薄膜分散法 ➢ 冷冻干燥法 ➢ 超声波分散法 ➢ 逆相蒸发法
单凝聚法工艺流程
固体或液体药物 3%~5%明胶溶液
混浊液(或乳浊液)
10%醋酸溶液调至pH3.5~3.8 加60%硫酸纳溶液 50 ℃
凝聚囊
加稀释液
37%甲醛溶液(用20%NaOH调至pH8~9)
沉降囊
固化囊
(15℃以下)
水洗至无甲醛
微囊
制剂
• 复凝聚法制备
复凝聚法是利用两种聚合物在不同pH时,电荷的变化 (生成相反的电荷)引起相分离-凝聚的方法。
微囊
• 微型胶囊(简称微囊,microcapsules)是利用天然或合
成的高分子材料(通称囊材)将固体或液体药物(通称囊
心物)包裹而成的直径l-5000μm封闭的微小胶囊。
• 增加药物的稳定性
• 微囊化:把药物制成微囊的过程• 。延长药物的作用时间 • 防止药物在胃内破坏或对胃
药剂学课件 靶向制剂

Ce愈大,表明改变药物分布的效果愈明显。
第十二章 靶向制剂
二、靶向制剂的研究动态 TDDS的研究是本世纪后期医药学领域的一个热门领域。
将药物通过与单克隆抗体交联,或对药物进行不影响疗效的化 学结构修饰等方法制成具有靶向作用的前体药物是目前TDDS的 重要研究思路。 基因治疗是近年来发展起来的一种补充人体缺失基因或关闭异 常基因的新疗法,对于恶性肿瘤、先天性遗传病、艾滋病、糖 尿病及心血管疾病等的治疗具有重大价值。研究携带治疗基因
第十二章 靶向制剂
胆碱 (choline)+ 磷 脂 酸 → 磷 脂 酰 胆 碱 (phosphati- dylcholine) 又称 卵磷脂 (lecithin)
乙醇胺(ethanolamine)+磷脂酸→磷脂酰乙醇胺 (phosphati- dylethanolamine)
(PE)又称脑磷脂(cephain) 丝氨酸(serine)+磷脂酸→磷脂酰丝氨酸(phosphatidylserine) 甘油(glycerol)+磷脂酸→磷脂酰甘油(phosphatidylglycerol) 肌醇(inositol)+磷脂酸→磷脂酰肌醇(phosphatidylinositol) 合成磷脂: 二 棕 榈 酰 - DL-α 磷 脂 酰 胆 碱 ( Synthetic dipalmitoyl-DLα -phosphatidyl choline 简称DPPC)、 二肉豆蔻酰磷脂酰胆碱(DMPC)等。
第十二章 靶向制剂
(三)靶向性评价
药物制剂的靶向性可由以下三个参数来衡量:
(1)相对摄取率re re=(AUCi)p/(AUCi)s 式中,AUCi-由浓度-时间曲线求得的第I个 器官或组织的药时曲线下面积;脚注p和s-药 物制剂和药物溶液。 re>1,有靶向性; re≤1,无靶向性。
第十二章 靶向制剂
二、靶向制剂的研究动态 TDDS的研究是本世纪后期医药学领域的一个热门领域。
将药物通过与单克隆抗体交联,或对药物进行不影响疗效的化 学结构修饰等方法制成具有靶向作用的前体药物是目前TDDS的 重要研究思路。 基因治疗是近年来发展起来的一种补充人体缺失基因或关闭异 常基因的新疗法,对于恶性肿瘤、先天性遗传病、艾滋病、糖 尿病及心血管疾病等的治疗具有重大价值。研究携带治疗基因
第十二章 靶向制剂
胆碱 (choline)+ 磷 脂 酸 → 磷 脂 酰 胆 碱 (phosphati- dylcholine) 又称 卵磷脂 (lecithin)
乙醇胺(ethanolamine)+磷脂酸→磷脂酰乙醇胺 (phosphati- dylethanolamine)
(PE)又称脑磷脂(cephain) 丝氨酸(serine)+磷脂酸→磷脂酰丝氨酸(phosphatidylserine) 甘油(glycerol)+磷脂酸→磷脂酰甘油(phosphatidylglycerol) 肌醇(inositol)+磷脂酸→磷脂酰肌醇(phosphatidylinositol) 合成磷脂: 二 棕 榈 酰 - DL-α 磷 脂 酰 胆 碱 ( Synthetic dipalmitoyl-DLα -phosphatidyl choline 简称DPPC)、 二肉豆蔻酰磷脂酰胆碱(DMPC)等。
第十二章 靶向制剂
(三)靶向性评价
药物制剂的靶向性可由以下三个参数来衡量:
(1)相对摄取率re re=(AUCi)p/(AUCi)s 式中,AUCi-由浓度-时间曲线求得的第I个 器官或组织的药时曲线下面积;脚注p和s-药 物制剂和药物溶液。 re>1,有靶向性; re≤1,无靶向性。
沈阳药科大学药剂学PPT

▪ 凡例(总说明) ▪ 正文(主要内容) ▪ 附录(制剂通则和通用检查方法)
(制剂通则:剂型的概念、一般标准、常规检 查方法等)
2、处方 处方的概念
医疗和生产部门用于药剂调剂的重要书面文件。
类型 ▪ 法定处方:药典、部标、国标收载的,有法律约束力; ▪ 协定处方:根据本医院或本地区需要制定,医院药剂科用于常用
L-HPC
吸水体积膨胀500-700倍
交联PVP
水中迅速溶胀,不形成凝胶;性能优
交联羧甲基纤维素钠 不溶于水,吸水溶胀;与CMS-Na
CCNa
合用效果优
泡腾剂
碳酸氢钠+酸
(避免受潮)
泡腾片
崩解剂加入方法: 内加(25-50%)、外加(75-50%)或内外加(片重的5-20%)
4、润滑剂(助流、抗粘、润滑剂)
4、包衣材料与工序
种类
糖衣
工序
隔离层 粉衣层 无色糖衣 有色糖衣
材料
10%玉米朊乙醇液、15-20%虫胶乙醇液 糖浆+滑石粉交替 糖浆 糖浆+色素
打光
川蜡
胃溶 高效包衣机 HPMC、羟丙基纤维素(HPC)、PVP、
型
↓
丙烯酸树脂Ⅳ号(Eudragit E型)
薄肠 膜溶 衣型
水不 溶型
包衣材料雾化 丙烯酸树脂Ⅰ、Ⅱ、Ⅲ号( Eudragit L、S型)
喷入
邻苯二甲酸醋酸纤维素(CAP)
↓
温风干燥 邻苯二甲酸羟丙基甲基纤维素(HPMCP)
↓
邻苯二甲酸聚乙烯醇酯(PVAP)
固化
EC、醋酸纤维素
50℃干燥
包衣辅助性辅料:
▪ 增塑剂---丙二醇、蓖麻油、聚乙二醇、
硅油、甘油、邻苯二甲酸二乙酯
(制剂通则:剂型的概念、一般标准、常规检 查方法等)
2、处方 处方的概念
医疗和生产部门用于药剂调剂的重要书面文件。
类型 ▪ 法定处方:药典、部标、国标收载的,有法律约束力; ▪ 协定处方:根据本医院或本地区需要制定,医院药剂科用于常用
L-HPC
吸水体积膨胀500-700倍
交联PVP
水中迅速溶胀,不形成凝胶;性能优
交联羧甲基纤维素钠 不溶于水,吸水溶胀;与CMS-Na
CCNa
合用效果优
泡腾剂
碳酸氢钠+酸
(避免受潮)
泡腾片
崩解剂加入方法: 内加(25-50%)、外加(75-50%)或内外加(片重的5-20%)
4、润滑剂(助流、抗粘、润滑剂)
4、包衣材料与工序
种类
糖衣
工序
隔离层 粉衣层 无色糖衣 有色糖衣
材料
10%玉米朊乙醇液、15-20%虫胶乙醇液 糖浆+滑石粉交替 糖浆 糖浆+色素
打光
川蜡
胃溶 高效包衣机 HPMC、羟丙基纤维素(HPC)、PVP、
型
↓
丙烯酸树脂Ⅳ号(Eudragit E型)
薄肠 膜溶 衣型
水不 溶型
包衣材料雾化 丙烯酸树脂Ⅰ、Ⅱ、Ⅲ号( Eudragit L、S型)
喷入
邻苯二甲酸醋酸纤维素(CAP)
↓
温风干燥 邻苯二甲酸羟丙基甲基纤维素(HPMCP)
↓
邻苯二甲酸聚乙烯醇酯(PVAP)
固化
EC、醋酸纤维素
50℃干燥
包衣辅助性辅料:
▪ 增塑剂---丙二醇、蓖麻油、聚乙二醇、
硅油、甘油、邻苯二甲酸二乙酯
中药药剂学-靶向制剂

第二节:靶向制剂
一、概述
点击添加标题
点击添加标题
二、被动靶向制剂
三、主动靶向制剂 点击添加标题
四、物理化学靶向制剂
五、靶向制剂的评价 点击添加标题
目录
过渡页
一、概述 一、概述
(一)靶向制剂的含义:靶向制剂是通过载体 将药物通过局部给药、胃肠道或全身血液循环 而选择性地浓集定位于靶组织、靶器官、靶细 胞或细胞内结构的给药系统。
(三) 脂质体(属于胶体系统)可以包封脂溶性药物或水溶性药物进入体内可 被巨噬细胞作为外界异物而吞噬摄取,在肝、脾和骨髓等单核—巨噬细胞较丰 富的器官中浓集。 脂质体在体内细胞水平上的作用机制:吸附、脂交换、内吞和融合。
(四) 微球系药物溶解或分散在高分子材料中形成的微小球状实体,亦 称基质型骨架微粒。粒径多在1—250μm 之间,一般供注射或口服。
物理化学靶向制剂:系指应用某些物理化学方法如磁性、 温度、电场、PH值等使药物在特定的部位发挥药效的靶 向给药系统。
1、磁性制剂的特点 2、磁性制剂的组成材料:磁性材料、骨架材料、药物 3磁性制剂的制法:磁性微球的制法、磁性微囊的制法、磁性片剂的制 法、磁性胶囊的制法
(二)热敏靶向制剂:利用相变温度不同可制成热敏脂质体。 (三)PH敏感靶向制剂:在抗肿瘤药物的设计中,可根据肿瘤间质液 的PH值比周围正常组织低的特点设计PH敏感制剂。 (四)栓塞靶向制剂
(二)靶向制剂的特点:① 可以提高药效; ② 降低毒性; ③ 可以提高药物的安全性,有效性; ④ 可以提高病人用药的顺应性。
(三)靶向制剂的三要素: ①靶向性
②控制释药 ③可生物降解
点击添加标题
(四)靶向制剂的分类
按药物分布程度
按靶向给药的原理
一、概述
点击添加标题
点击添加标题
二、被动靶向制剂
三、主动靶向制剂 点击添加标题
四、物理化学靶向制剂
五、靶向制剂的评价 点击添加标题
目录
过渡页
一、概述 一、概述
(一)靶向制剂的含义:靶向制剂是通过载体 将药物通过局部给药、胃肠道或全身血液循环 而选择性地浓集定位于靶组织、靶器官、靶细 胞或细胞内结构的给药系统。
(三) 脂质体(属于胶体系统)可以包封脂溶性药物或水溶性药物进入体内可 被巨噬细胞作为外界异物而吞噬摄取,在肝、脾和骨髓等单核—巨噬细胞较丰 富的器官中浓集。 脂质体在体内细胞水平上的作用机制:吸附、脂交换、内吞和融合。
(四) 微球系药物溶解或分散在高分子材料中形成的微小球状实体,亦 称基质型骨架微粒。粒径多在1—250μm 之间,一般供注射或口服。
物理化学靶向制剂:系指应用某些物理化学方法如磁性、 温度、电场、PH值等使药物在特定的部位发挥药效的靶 向给药系统。
1、磁性制剂的特点 2、磁性制剂的组成材料:磁性材料、骨架材料、药物 3磁性制剂的制法:磁性微球的制法、磁性微囊的制法、磁性片剂的制 法、磁性胶囊的制法
(二)热敏靶向制剂:利用相变温度不同可制成热敏脂质体。 (三)PH敏感靶向制剂:在抗肿瘤药物的设计中,可根据肿瘤间质液 的PH值比周围正常组织低的特点设计PH敏感制剂。 (四)栓塞靶向制剂
(二)靶向制剂的特点:① 可以提高药效; ② 降低毒性; ③ 可以提高药物的安全性,有效性; ④ 可以提高病人用药的顺应性。
(三)靶向制剂的三要素: ①靶向性
②控制释药 ③可生物降解
点击添加标题
(四)靶向制剂的分类
按药物分布程度
按靶向给药的原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)前体药物
前体药物(prodrug) ,是 一类由活性药物(active drug, 亦称为母药) 通过一定方法 衍生而成的药理惰性化合物, 在体内经酶解或非酶解途径 释放出活性药物。
四、物理靶向制剂
(一)磁性靶向制剂
• 包括磁性微球、磁性纳米球(粒、囊) 、 磁性乳剂、磁性红细胞和磁性脂质体等。
二、被动靶向制剂
• 被动靶向制剂(passive targeted preparation)是利用载体的组成、粒径、电 荷等特征,通过生物体内各组织细胞的内吞、 融合、吸附和材料交换,通过毛细血管截留, 或利用病变组织的毛细血管高通透性特征, 而传递至靶区的制剂。 • 狭义而言,被动靶向制剂是指载药微粒被单 核-巨噬细胞系统的巨噬细胞(尤其是肝的 Kupffer细胞)摄取,通过正常生理过程运至 肝、脾等器官的制剂。
(二)纳米球、纳米囊
• 纳米球(囊)系大小为10~1000nm,活性成分溶 解、夹嵌、包裹在其中和/或吸附与连接其上的 固态胶体颗粒。根据构建颗粒的骨架是连续的 实体还是壳状壁膜,可将其分为纳米球 (nanospheres) 和 纳 米 囊 (nanocapsules) 。 作 为 靶向制剂的纳米球(囊)具有如下特点:①提高 对肿瘤细胞的选择性;②降低对正常组织,如 心肌的毒性;③防止药物在转运过程中过早失 活;④在靶部位缓释;⑤改进给药方案,降低 剂量,缩短给药时间,减少给药次数。
(一)脂质体和类脂质体
• 1.脂质体 脂质体靶向性主要通过①巨噬 细胞吞噬;②血流动力学;③病变组织 对脂质体的亲和性;④病变组织的通透 性等机理实现。
(1)通过巨噬细胞的吞噬而靶向
• ①.激活巨噬细胞,防止肿瘤转移。 • ②载药脂质体被吞噬,而靶向释药。
(2)利用血流动力学靶向释药:
• 脂质体在流经血栓部位时,相对于流经其 他非血栓部位时所受的压力不同,从而使 包入脂质体内部的物质优先释放出来,集 中在血凝块周围,形成局部高浓度。
三、主动靶向制剂
• 主动靶向制剂不同于被动靶向制剂,
是一类经过特殊和周密的生物识别 (如抗体识别、配体识别等)设计, 将药物导向至特异性的识别靶区, 实现预定目的的靶向制剂。主要包 括修饰的药物载体和前体药物两大 类。
(一)修饰的药物载体
1.免疫载体 是利用抗体-抗原反应,将连 有(物理吸附或共价交联) 抗体的载体, 主动地靶向传递至具有与所连抗体相对 应抗原的器官、组织和细胞的一类载体。 • (1)免疫偶联物 (2)免疫脂质体 (3)免疫纳 米粒(囊) (4)免疫微球 (5)免疫红细胞
(三)微球与微囊
• 作 为 靶 向 制 剂 的 微 球 (microsphere) 与 微 囊 (microcapsule) ,其粒径相似,一般控制在1~ 250μm之间,但结构上略有差异。微球系一微 小球状实体,为基质型骨架微粒;而微囊属薄 壳型微粒制剂。制备微球(囊)的材料有生物可 降解物质和生物不可降解物质两大类。作为靶 向制剂的材料,应首选生物可降解物质,如蛋 白类(明胶、白蛋白) 、糖类(淀粉、葡聚糖、壳 聚糖等)、合成聚合物类(聚乳酸等)。将药物制 成微球(囊),可达到缓释和靶向的目的。靶向 治疗主要通过动脉栓塞和利用毛细血管床的机 械滤过或巨噬细胞的吞噬达到目的。
第十七章 药物的新剂型
第三节 靶 向 制 剂
一、概述
• 靶向制剂,是一类利用人体生物学特性, 如pH梯度(口服制剂的结肠靶向) 、毛细 血管直径差异、免疫防卫系统、特殊酶 降解、受体反应、病变部位的特殊化学 环境(如:pH值) 和一些物理手段(如: 磁场),将药物传送到病变器官、组织或 细胞的靶向给药新剂型的统称。
(四)pH敏感脂质体
• pH敏感脂质体是一类对pH值敏感,脂质双 分子层稳定性随环境pH值变化而变化的脂 质体。目前所研究的pH敏感脂质体主要有 两大系统,一种是应用pH敏感性类脂组成 的系统,另一种是应用pH敏感性的聚电解 质结合于脂质体表面而形成的系统。 • 一般而言,肿瘤间质液的pH值显著地低于 周围正常组织,故设计酸敏脂质体可达到 靶向递药目的。
(3)缺血心肌的靶向
• 正常大鼠心肌细胞与脂质体以四种方式 作用,即融合(fusion)、内吞 (endocytosis)、吸附(adsorption)和磷脂 分子交换(exchange),而缺氧改变了心肌 细胞对脂质体的摄取方式,并增加其摄 取能力。缺血心肌组织对脂质体,尤其 对带正电荷脂质体的摄取显著增加,其 摄取量按序为:缺血-再灌注区>梗塞边 缘区>非缺血区>梗死区。
2.磁性脂质体
• 含Fe3O4微粒的5-Fu磁性脂质体兔耳静脉 注射后,在磁场定位区血管中滞留达总 量的80%。Diadonium磁性脂质体具有选 择性肌松作用[24]。
(二)栓塞靶向制剂
• 栓塞靶向制剂主要指的是,以药剂学手 段,制备一含药且质量可控的微球、微 囊、脂质体等制剂,通过动脉插管,将 其注入到靶区,并在靶区形成拴塞的一 类靶向制剂。
(一)靶向制剂的分类
①按给药途径分为注射用靶向制剂和非注射用靶向制 剂两大类; ②按分布水平可分为一级(器官)靶向、二级(组织)靶 向、三级(细胞)靶向和四级(亚细胞、分子)靶向; ③按载体材料组成、粒径大小、形态特征和靶向原理 而分为微球,纳米球、脂质体、乳剂、复乳、大分 子药物载体、前体药物等; ④按靶向制剂所具有的功能可分为单功能靶向制剂、 双功能靶向制剂和多功能靶向制剂; ⑤按靶向性原动力可分为被动靶向、主动靶向和物理 靶向等。
2.配体介导的载体
• 目前研究较多的是转铁蛋白介导和半乳糖介导 的靶向递药系统; • 例如:细胞表面均存在着转铁蛋白受体,但癌 细胞表面的转铁蛋白受体是正常细胞的2~7倍, 因此癌细胞转铁蛋白受体与转铁蛋白的亲和力 是正常细胞转铁蛋白受体的10~100倍; • 利用正常细胞和癌细胞表面转铁蛋白受体的种 显著的差异,以转铁蛋白来修饰药物载体如脂 质体,将具有明显的导向癌细胞的靶向性。
(二)靶向制剂的质量要求
• 首先,应符合一般注射剂的质量要求, 如无菌、无热原、无过敏性物质、无降 压物质等; • 其次,载体中药物的突释效应低,载体 应符合具有定位蓄积、控制释放和无毒 可生物降解(少数也有不可降解,如乙 基纤维素EC) 三项基本要求。 • 第三,根据不同的给药方式,对粒度的 要求亦不同,如肺部靶向载体的粒径应 大些 。
(三)热敏靶向制剂Байду номын сангаас
• 热敏靶向制剂,是指利用外部热源对靶区进行 加热,使靶组织局部温度稍高于周围未加热区, 实现载体中药物在靶区内释放的一类制剂。由 于制剂中药物的释放是受热控的,故而该类制 剂从理论上讲可以达到随时进行,也可以达到 根据肿瘤生长状况,进行控制治疗的理想状态。 • 至今,热敏脂质体是一类被研究较多的热敏靶 向制剂。在相变温度时,脂质体中的磷脂双分 子层从胶晶态过渡到液晶态,从而大大增加脂 质体膜的通透性,加速药物的释放。
(4)利用病变组织的通透性:
• 肿瘤组织和炎症组织的通透性均较正常 组织的通透性高,脂质体可以穿过血管 内皮间隙而靶向病变组织。提高脂质体 的体内循环稳定性,则有可能提高其靶 向性。提高脂质体的体内稳定性有多种 途径,如增加双分子层膜中胆固醇比例、 减小粒径和进行表面修饰等。
2.类脂质体
• (niosomes) 类脂质体是由非离子表面活 性剂与(或不与)胆固醇及其他物质构成的 具有双分子层结构的单室或多室囊泡, 作为药物载体,在许多方面与脂质体相 似。
1.磁性微球
• 此处所说的磁性微球是磁性药物微球的简称, 由磁性材料、骨架材料和药物三部分组成。相 对于普通(非磁性)微球制剂而言,磁性微球具 有如下特点:①提高靶区药物浓度,提高疗效, 减少用药剂量,降低不良反应;②加速药物在 靶区的聚集,达到速效目的;③微球在磁场附 近聚集,与单个微球相比,药物的扩散路程变 长,缓释性更大;④在磁场的作用下,小于血 管的微球或微球碎片仍可以在靶部位滞留。
五、多功能靶向制剂
• 将两种或两种以上功能集于一体的 靶向制剂叫多功能靶向制剂,如: 热敏磁性脂质体、热敏长循环脂质 体、光敏长循环脂质体、免疫磁性 微球、免疫长循环脂质体、免疫热 敏长循环脂质体等。
(四)注射用乳剂、微乳
• 乳剂和微乳的基本组成相似,两者的主要差别 在于粒径。通常所说的微乳,是粒径为10~ 100nm的乳滴分散在另一种液体中形成的胶体 分散体系,外观上是透明的液体;而乳剂的粒 径要比微乳大,可超过1μm,外观为乳白色。 乳剂或微乳作为静脉注射给药载体,其靶向性 能与其它微粒制剂相似,乳滴经巨噬细胞吞噬 后,在肝、脾中高度浓集,实现靶向;而肌肉、 皮下或腹腔注射,具有淋巴靶向性。
3.PEG修饰的载体
• PEG修饰载体的主要目的,是为了 延长载体的体内循环时间,增大载 体的寻靶机会,故而亦称为长循环 载体(long circulation carriers) 或 PEG化载体(pegylated carriers) 。 至今已见报道的有:PEG化脂质体、 PEG化乳剂、PEG化纳米粒等,其 中PEG化脂质体研究得较多。