【推荐】2015年山东省高考数学试卷(文科)

合集下载

2015年高考文科数学山东卷

2015年高考文科数学山东卷

z =i,其中 i 为虚数单位,则 z= 1 i
B. 1 i
1.5 0.6
C. 1 i
3 A. 4 1 C. 3
2 B. 3 1 D. 4
( )
3.设 a 0.6 , b 0.6 , c 1.5 ,则 a ,b,c 的大小关系是 A. a <b<c B. a <c<b C.b< a <c
2 2π 3
4 2π 3
的最小值为__________. 15.过双曲线 C : ( )
C. 2 2π
D. 4 2π
3x b, x<1, 5 10.设函数 f ( x) x 若 f ( f ( )) 4 ,则 b 6 x≥1. 2 ,
A. 1 C.
x2 y 2 1(a 0, b 0) 的右焦点作一条与其渐近线平行的直线,交 C 于 a2 b2
---------在 --------------------此 --------------------卷 --------------------上 --------------------答 --------------------题 --------------------无 --------------------效 ---------------
18. (本小题满分 12 分) 如图,三棱台 DEF—ABC 中,AB=2DE,G,H 分别为 AC,BC 的中点. (Ⅰ)求证:BD∥平面 FGH; (Ⅱ)若 CF⊥BC,AB⊥BC,求证:平面 BCD⊥平面 EGH.
20. (本小题满分 13 分) 设函数 f ( x) ( x a )ln x ,g ( x)
7.在区间[0,2]上随机地取一个数 x,则事件“ 1≤log 1 ( x )≤1 ”发生的概率为 ( )

20152015年山东高考文科数学附答案精编 word版.doc

20152015年山东高考文科数学附答案精编 word版.doc

2015年普通高等学校招生全国统一考试(山东卷)文 科 数 学第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,则{|24}A x x =<<{|(1)(3)0}B x x x =--<A B =(A )(B ) (C )(D ) (1,3)(1,4)(2,3)(2,4)(2)已知复数满足,其中i 是虚数单位,则z 1z i i =-z =(A )(B ) (C ) (D )1i -1i +1i --1i -+(3)设,则的大小关系是0.6 1.50.60.6,0.6, 1.5a b c ===,,a b c (A ) (B ) (C ) (D )a b c <<a c b <<b a c <<b c a <<(4)要得到函数的图像,只需将函数的图像sin(43y x π=-sin 4y x =(A )向左平移个单位 (B )向右平移个单位12π12π(C )向左平移个单位 (D )向右平移个单位3π3π(5),命题“若,则方程有实根”的逆否命题是m R ∈0m >20x x m +-=(A )若方程有实根,则 (B )若方程有实根,则 20x x m +-=0m >20x x m +-=0m ≤(C )若方程没有实根,则(D )若方程没有实根,则20x x m +-=0m >20x x m +-=0m ≤(6)为了比较甲、乙两地某月14时的气温数据状况,随机选取 甲 乙该月中的5天,将这5天中14时的气温数据(单位:℃) 9 8 6 2 8 9 制成如图所示的茎叶图,考虑以下结论: 1 1 3 0 1 2① 甲地该月14时的平均气温低于乙地该月14是的平均气温;② 甲地该月14时的平均气温高于乙地该月14是的平均气温;③ 甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④ 甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差其中根据茎叶图能到到的统计结论的标号为(A )①③ (B )①④ (C )②③ (D )②④(7)在区间上随机地取一个数x ,则事件“”发生的概率为[0,2]1211log ()12x -≤+≤(A ) (B ) (C ) (D )34231314(8)若函数是奇函数,则使成立的x 的取值范围为21()2x x f x a +=-()3f x >(A ) (B ) (C ) (D )(,1)-∞-(1,0)-(0,1)(1,)+∞(9)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A(B(C ) (D)(10)设函数若则b=3,1,()2, 1.x x b x f x x -<⎧=⎨≥⎩5(())4,6f f =(A )1 (B ) (C ) (D )783412第Ⅱ卷(共100二、填空题:本大题共5小题,每小题5分,共25分.(11)执行右面的程序框图,若输入的的值为1x 的值为 13 . y (12)若满足约束条件,则,x y 1,31,y x x y y -≤⎧⎪+≤⎨⎪≥⎩3z x y =+的最大值为7 .(13)过点作圆的两条切线,P 221x y +=切点分别为A ,B ,则 1.5 .PA PB = A (14)定义运算“”:⊗22(,,x y x y x y R xy xy -⊗=∈≠(2)x y y x ⊗+⊗(15)过双曲线的右焦点作一条与其渐近线平行的直线,交C 于点P.若2222:1(0,0)x y C a b a b -=>>点P 的横坐标为,则C 2a 三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参见书法社团参见演讲社团85未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参见上述一个社团的概率;(Ⅱ)在既参加书法社团又参见演讲社团的8名同学中,有5名男同学3名女12345,,,,,A A A A A 同学现从这5名男同学和3名女同学中各随机选1人,求被选中且未被选123,,,B B B 1A 1B 中的概率.(17)(本小题满分12分)中,角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC ∆ 求和c 的值.cos )B A B ac =+==sin A 不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。

2015年高考文科数学山东卷(含详细答案)

2015年高考文科数学山东卷(含详细答案)

数学试卷 第1页(共33页)数学试卷 第2页(共33页)数学试卷 第3页(共33页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}A x x =<<,{|(1)(3)0}B x x x =--<,则AB = ( )A .1,3()B .1,4()C .2,3()D .2,4()2.若复数z 满足z1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+ 3.设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a4.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位5.若m ∈R ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是 ( )A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤C .若方程20x x m +-=没有实根,则0m > D .若方程20x x m +-=没有实根,则0m ≤6.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( )A .①③B .①④C .②③D .②④7.在区间[0,2]上随机地取一个数x ,则事件“1211log ()12x -+≤≤”发生的概率为( )A .34 B .23 C .13D .148.若函数21()2x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围为( )A .(,1)-∞-B .0,1-()C .01,()D .(1,)+∞9.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()AB C .D .10.设函数3, 1,()2, 1.x x b x f x x -⎧=⎨⎩<≥若5(())46f f =,则b =( )A .1B .78C .34D .12第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.执行如图所示的程序框图,若输入的x 的值为1,则输出的y 的值是_________.12.若x ,y满足约束条件131y x x y y -⎧⎪+⎨⎪⎩≤,≤,≥,则z =x +3y 的最大值为_______.13.过点(1P 作圆221x y +=的两条切线,切点分别为A ,B ,则PA PB =________.14.定义运算“⊗”:22(,,0)x y x y x y xy xy-⊗=∈≠R .当0x >,0y >时,(2)x y y x ⊗+⊗的最小值为__________.15.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为___________.---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共33页)数学试卷 第5页(共33页)数学试卷 第6页(共33页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单(Ⅰ)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学1A ,2A ,3A ,4A ,5A ,3名女同学1B ,2B ,3B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.17.(本小题满分12分)ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =,sin()A B +=,ac =sin A 和c 的值.18.(本小题满分12分)如图,三棱台DEF —ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .19.(本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11{} n n a a +的前n 项和为21nn +.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()1 2n a n n b a =+,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数()()ln f x x a x =+,2()x x g x e=,已知曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{()()}(min{},m x f x g x p q p q =,,表示中的较小值),求m (x )的最大值.21.(本小题满分14分)平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b C +=>>:的离心率为,且点1)2在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144E x y a b+=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.2015年普通高等学校招生全国统一考试(山东卷)数学(文科)答案解析第Ⅰ卷{2|A B x=3 / 11数学试卷 第10页(共33页) 数学试卷 第11页(共33页)数学试卷 第12页(共33页)1log -≤.02x ≤≤∴所求的概率为:【解析】2()2f x =22x a a =-22xxa a =-,21()21x x f x +=>-【提示】由5 / 11【解析】如图为等腰直角三角形旋转而成的旋转体.242π3h=数学试卷 第16页(共33页) 数学试卷 第17页(共33页)数学试卷 第18页(共33页)7.30OPA ∴∠=,260BPA ∠=,1||||cos60322PA PB PA PB ∴==+=2,然后代入向量数量积的定义可求PA PB .】xx y⊗=由0x>,222x≥⨯2,故答案为7 / 11数学试卷 第22页(共33页) 数学试卷 第23页(共33页)数学试卷 第24页(共33页)G F M =四边形CFDG FGH ,BD ∴∥,G ,H 分别为,AB BC ⊥HC ,EF HE ∥,CF BC ⊥平面EGH ,HE GH H =,又BC ⊂平面BCD EGH .H F H =,BD ⊂平面(Ⅰ)证法一:如图所示,连接CDGF M =由已知可得四边形CFDG利用三角形的中位线定理可得:MH ∥BD ,可得的中点,可得四边形1n n a +,则c9 / 11又数列1n n a +⎬⎭的前(Ⅰ)知21(1)2(2n 11)24n n n n b a n -==-+=,12114244n n T b n ∴=++++…,2311424(1)44n n n n ++++-+…,两式相减,得1143443n n n T +-=+-,1(31)449n n +-+. (Ⅰ)通过对1n n c a +分离分母,并项相加并利用数列1n n a +⎬⎭的前4nn ,写出T 【考点】数列的求和数学试卷 第28页(共33页) 数学试卷 第29页(共33页)数学试卷 第30页(共33页)22004x y +②设1(,A x 212414m x -=+122222222|4164|14(16414||14x x k m k k m k m k -+-++-+⎫⎪+⎭,,将y kx m =+,又24m <+时取得最大值2理、三角形面积公式及换元法,计算即可.【考点】直线与圆锥曲线的综合问题,椭圆的标准方程11 / 11。

2015年山东省高考数学试卷(文科)

2015年山东省高考数学试卷(文科)

2015年山东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)2.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.(5分)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.(5分)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位5.(5分)当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A.若方程x2+x﹣m=0有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0没有实根,则m>0D.若方程x2+x﹣m=0没有实根,则m≤06.(5分)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④7.(5分)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.8.(5分)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)9.(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π10.(5分)设函数f(x)=,若f(f())=4,则b=()A.1 B.C.D.二、填空题(共5小题,每小题5分,满分25分)11.(5分)执行如图的程序框图,若输入的x的值为1,则输出的y的值是.12.(5分)若x,y满足约束条件,则z=x+3y的最大值为.13.(5分)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则=.14.(5分)定义运算“⊗”x⊗y=(x,y∈R,xy≠0).当x>0,y>0时,x⊗y+(2y)⊗x的最小值为.15.(5分)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为.三、解答题(共6小题,满分75分)16.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.18.(12分)如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.19.(12分)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.20.(13分)设函数f(x)=(x+a)lnx,g(x)=.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.21.(14分)平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且点(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E与A,B两点,射线PO交椭圆E于点Q.(Ⅰ)求的值;(Ⅱ)求△ABQ面积的最大值.2015年山东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•山东)已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】求出集合B,然后求解集合的交集.【解答】解:B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},A={x|2<x<4},∴A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【点评】本题考查复数的基本运算,基本知识的考查.3.(5分)(2015•山东)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【分析】直接判断a,b的大小,然后求出结果.【解答】解:由题意可知1>a=0.60.6>b=0.61.5,c=1.50.6>1,可知:c>a>b.故选:C.【点评】本题考查指数函数的单调性的应用,考查计算能力.4.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x 的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.5.(5分)(2015•山东)当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A.若方程x2+x﹣m=0有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0没有实根,则m>0D.若方程x2+x﹣m=0没有实根,则m≤0【分析】直接利用逆否命题的定义写出结果判断选项即可.【解答】解:由逆否命题的定义可知:当m∈N*,命题“若m>0,则方程x2+x ﹣m=0有实根”的逆否命题是:若方程x2+x﹣m=0没有实根,则m≤0.故选:D.【点评】本题考查四种命题的逆否关系,考查基本知识的应用.6.(5分)(2015•山东)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④【分析】由已知的茎叶图,我们易分析出甲、乙甲,乙两地某月14时的气温抽取的样本温度,进而求出两组数据的平均数、及方差可得答案【解答】解:由茎叶图中的数据,我们可得甲、乙甲,乙两地某月14时的气温抽取的样本温度分别为:甲:26,28,29,31,31乙:28,29,30,31,32;可得:甲地该月14时的平均气温:(26+28+29+31+31)=29,乙地该月14时的平均气温:(28+29+30+31+32)=30,故甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时温度的方差为:=[(26﹣29)2+(28﹣29)2+(29﹣29)2+(31﹣29)2+(31﹣29)2]=3.6乙地该月14时温度的方差为:=[(28﹣30)2+(29﹣30)2+(30﹣30)2+(31﹣30)2+(32﹣30)2]=2,故>,所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差.故选:B.【点评】本题考查数据的离散程度与茎叶图形状的关系,考查学生的计算能力,属于基础题7.(5分)(2015•山东)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.【分析】先解已知不等式,再利用解得的区间长度与区间[0,2]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.∵﹣1≤log(x+)≤1∴解得0≤x≤,∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A【点评】本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.8.(5分)(2015•山东)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)【分析】由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式.【解答】解:∵f(x)=是奇函数,∴f(﹣x)=﹣f(x)即整理可得,∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=∵f(x))=>3∴﹣3=>0,整理可得,,∴1<2x<2解可得,0<x<1故选:C【点评】本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题.9.(5分)(2015•山东)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π【分析】画出图形,根据圆锥的体积公式直接计算即可.【解答】解:如图为等腰直角三角形旋转而成的旋转体.V=2×S•h=2×πR2•h=2×π×()2×=.故选:B.【点评】本题考查圆锥的体积公式,考查空间想象能力以及计算能力.是基础题.10.(5分)(2015•山东)设函数f(x)=,若f(f())=4,则b=()A.1 B.C.D.【分析】直接利用分段函数以及函数的零点,求解即可.【解答】解:函数f(x)=,若f(f())=4,可得f()=4,若,即b≤,可得,解得b=.若,即b>,可得,解得b=<(舍去).故选:D.【点评】本题考查函数的零点与方程根的关系,函数值的求法,考查分段函数的应用.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2015•山东)执行如图的程序框图,若输入的x的值为1,则输出的y的值是13.【分析】模拟执行程序框图,依次写出得到的x,y的值,当x=2时不满足条件x <2,计算并输出y的值为13.【解答】解:模拟执行程序框图,可得x=1满足条件x<2,x=2不满足条件x<2,y=13输出y的值为13.故答案为:13.【点评】本题主要考查了循环结构的程序框图,属于基本知识的考查.12.(5分)(2015•山东)若x,y满足约束条件,则z=x+3y的最大值为7.【分析】作出题中不等式组表示的平面区域,再将目标函数z=x+3y对应的直线进行平移,可得当x=1且y=2时,z取得最大值.【解答】解:作出不等式组表示的平面区域,得到如图的三角形及其内部,由可得A(1,2),z=x+3y,将直线进行平移,当l经过点A时,目标函数z达到最大值=1+2×3=7.∴z最大值故答案为:7【点评】本题给出二元一次不等式组,求目标函数z=x+3y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.13.(5分)(2015•山东)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则=.【分析】根据直线与圆相切的性质可求PA=PB,及∠∠APB,然后代入向量数量积的定义可求.【解答】解:连接OA,OB,PO则OA=OB=1,PO=,2,OA⊥PA,OB⊥PB,Rt△PAO中,OA=1,PO=2,PA=∴∠OPA=30°,∠BPA=2∠OPA=60°∴===故答案为:【点评】本题主要考查了圆的切线性质的应用及平面向量的数量积的定义的应用,属于基础试题.14.(5分)(2015•山东)定义运算“⊗”x⊗y=(x,y∈R,xy≠0).当x>0,y>0时,x⊗y+(2y)⊗x的最小值为.【分析】通过新定义可得x⊗y+(2y)⊗x=,利用基本不等式即得结论.【解答】解:∵x⊗y=,∴x⊗y+(2y)⊗x=+=,由∵x>0,y>0,∴x2+2y2≥2=xy,当且仅当x=y时等号成立,∴≥=,故答案为:.【点评】本题以新定义为背景,考查函数的最值,涉及到基本不等式等知识,注意解题方法的积累,属于中档题.15.(5分)(2015•山东)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为2+.【分析】求出P的坐标,可得直线的斜率,利用条件建立方程,即可得出结论.【解答】解:x=2a时,代入双曲线方程可得y=±b,取P(2a,﹣b),∴双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线的斜率为,∴=∴e==2+.故答案为:2+.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.三、解答题(共6小题,满分75分)16.(12分)(2015•山东)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【分析】(Ⅰ)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(Ⅱ)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1被选中,而B1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.【解答】解:(Ⅰ)设“至少参加一个社团”为事件A;从45名同学中任选一名有45种选法,∴基本事件数为45;通过列表可知事件A的基本事件数为8+2+5=15;这是一个古典概型,∴P(A)=;(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;这是一个古典概型,∴.【点评】考查古典概型的概念,以及古典概型的概率的求法,分步计数原理的应用.17.(12分)(2015•山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.【分析】①利用两角和与差的正弦函数公式以及基本关系式,解方程可得;②利用正弦定理解之.【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,由①②解得27sin2A﹣6sinA﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,所以a=2c,又ac=2,所以c=1.【点评】本题考查了利用三角函数知识解三角形,用到了两角和与差的正弦函数、同角三角函数的基本关系式、正弦定理等知识.18.(12分)(2015•山东)如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.【分析】(I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH.由已知可得四边形CFDG是平行四边形,DM=MC.利用三角形的中位线定理可得:MH∥BD,可得BD∥平面FGH;证法二:在三棱台DEF﹣ABC中,AB=2DE,H为BC的中点.可得四边形BHFE 为平行四边形.BE∥HF.又GH∥AB,可得平面FGH∥平面ABED,即可证明BD ∥平面FGH.(II)连接HE,利用三角形中位线定理可得GH∥AB,于是GH⊥BC.可证明EFCH 是平行四边形,可得HE⊥BC.因此BC⊥平面EGH,即可证明平面BCD⊥平面EGH.【解答】(I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF﹣ABC中,AB=2DE,G为AC的中点.∴,∴四边形CFDG是平行四边形,∴DM=MC.又BH=HC,∴MH∥BD,又BD⊄平面FGH,MH⊂平面FGH,∴BD∥平面FGH;证法二:在三棱台DEF﹣ABC中,AB=2DE,H为BC的中点.∴,∴四边形BHFE为平行四边形.∴BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,∴GH∥AB,又GH∩HF=H,∴平面FGH∥平面ABED,∵BD⊂平面ABED,∴BD∥平面FGH.(II)证明:连接HE,∵G,H分别为AC,BC的中点,∴GH∥AB,∵AB⊥BC,∴GH⊥BC,又H为BC的中点,∴EF∥HC,EF=HC.∴EFCH是平行四边形,∴CF∥HE.∵CF⊥BC,∴HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,∴BC⊥平面EGH,又BC⊂平面BCD,∴平面BCD⊥平面EGH.【点评】本题考查了空间线面面面平行与垂直的判定及性质定理、三角形中位线定理、平行四边形的判定与性质定理,考查了空间想象能力、推理能力,属于中档题.19.(12分)(2015•山东)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.【分析】(1)通过对c n=分离分母,并项相加并利用数列{}的前n项和为即得首项和公差,进而可得结论;(2)通过b n=n•4n,写出T n、4T n的表达式,两式相减后利用等比数列的求和公式即得结论.【解答】解:(1)设等差数列{a n}的首项为a1、公差为d,则a1>0,∴a n=a1+(n﹣1)d,a n+1=a1+nd,令c n=,则c n==[﹣],∴c1+c2+…+c n﹣1+c n=[﹣+﹣+…+﹣]=[﹣]==,又∵数列{}的前n项和为,∴,∴a1=1或﹣1(舍),d=2,∴a n=1+2(n﹣1)=2n﹣1;(2)由(1)知b n=(a n+1)•2=(2n﹣1+1)•22n﹣1=n•4n,∴T n=b1+b2+…+b n=1•41+2•42+…+n•4n,∴4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,两式相减,得﹣3T n=41+42+…+4n﹣n•4n+1=•4n+1﹣,∴T n=.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.20.(13分)(2015•山东)设函数f(x)=(x+a)lnx,g(x)=.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.【分析】(Ⅰ)求出f(x)的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a=1;(Ⅱ)求出f(x)、g(x)的导数和单调区间,最值,由零点存在定理,即可判断存在k=1;(Ⅲ)由(Ⅱ)求得m(x)的解析式,通过g(x)的最大值,即可得到所求.【解答】解:(Ⅰ)函数f(x)=(x+a)lnx的导数为f′(x)=lnx+1+,曲线y=f(x)在点(1,f(1))处的切线斜率为f′(1)=1+a,由切线与直线2x﹣y=0平行,则a+1=2,解得a=1;(Ⅱ)由(Ⅰ)可得f(x)=(x+1)lnx,f′(x)=lnx+1+,令h(x)=lnx+1+,h′(x)=﹣=,当x∈(0,1),h′(x)<0,h(x)在(0,1)递减,当x>1时,h′(x)>0,h(x)在(1,+∞)递增.当x=1时,h(x)min=h(1)=2>0,即f′(x)>0,f(x)在(0,+∞)递增,即有f(x)在(k,k+1)递增,g(x)=的导数为g′(x)=,当x∈(0,2),g′(x)>0,g(x)在(0,2)递增,当x>2时,g′(x)<0,g(x)在(2,+∞)递减.则x=2取得最大值,令T(x)=f(x)﹣g(x)=(x+1)lnx﹣,T(1)=﹣<0,T(2)=3ln2﹣>0,T(x)的导数为T′(x)=lnx+1+﹣,由1<x<2,通过导数可得lnx>1﹣,即有lnx+1+>2;e x>1+x,可得﹣>,可得lnx+1+﹣>2+=>0,即为T′(x)>0在(1,2)成立,则T(x)在(1,2)递增,由零点存在定理可得,存在自然数k=1,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根;(Ⅲ)由(Ⅱ)知,m(x)=,其中x0∈(1,2),且x=2时,g(x)取得最大值,且为g(2)=,则有m(x)的最大值为m(2)=.【点评】本题考查导数的运用:求切线方程和单调区间、极值,同时考查零点存在定理和分段函数的最值,考查运算能力,属于中档题.21.(14分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:=1(a >b>0)的离心率为,且点(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E与A,B两点,射线PO交椭圆E于点Q.(Ⅰ)求的值;(Ⅱ)求△ABQ面积的最大值.【分析】(Ⅰ)通过将点点(,)代入椭圆C方程,结合=及a2﹣c2=b2,计算即得结论;(Ⅱ)通过(I)知椭圆E的方程为:+=1.(i)通过设P(x0,y0)、=λ可得Q(﹣λx0,﹣λy0),利用+=1及+=1,计算即可;(ii)设A(x1,y1)、B(x2,y2),分别将y=kx+m代入椭圆E、椭圆C的方程,利用根的判别式△>0、韦达定理、三角形面积公式及换元法,计算即可.【解答】解:(Ⅰ)∵点(,)在椭圆C上,∴,①∵=,a2﹣c2=b2,∴=,②联立①②,解得:a2=4,b2=1,∴椭圆C的方程为:+y2=1;(Ⅱ)由(I)知椭圆E的方程为:+=1.(i)设P(x0,y0),=λ,由题意可得Q(﹣λx0,﹣λy0),∵+=1,及+=1,即(+)=1,∴λ=2,即=2;(ii)设A(x1,y1),B(x2,y2),将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,由韦达定理,可得x1+x2=﹣,x1•x2=,∴|x1﹣x2|=,∵直线y=kx+m交y轴于点(0,m),∴S=|m|•|x1﹣x2|△OAB=|m|•==2,设t=,将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△≥0,可得m2≤1+4k2,又∵m2<4+16k2,∴0<t≤1,∴S=2=2=≤2,当且仅当t=1,即m2=1+4k2时取得最大值2,由(i)知S=3S,△ABQ∴△ABQ面积的最大值为6.【点评】本题是一道直线与圆锥曲线的综合问题,考查求椭圆方程、线段的比及三角形的面积问题,考查计算能力,利用韦达定理是解决本题的关键,注意解题方法的积累,属于难题.参与本试卷答题和审题的老师有:qiss;whgcn;吕静;w3239003;cst;刘长柏;wkl197822;changq;沂蒙松;双曲线(排名不分先后)菁优网2017年3月17日。

2015年全国高考文科数学试题及答案-山东卷_New

2015年全国高考文科数学试题及答案-山东卷_New

2015年全国高考文科数学试题及答案-山东卷2015年普通高等学校招生全国统一考试(山东卷)数学(文科) 第I 卷(共50分)本试卷分第I 卷和第II 卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{}24A x x =<< ,()(){}130B x x x =--< ,则A B =I(A )()1,3 (B )()1,4 (C )()2,3(D )()2,42、若复数z 满足1zi i=- ,其中i 为虚数单位,则z = (A )1i - (B )1i + (C )1i -- (D )1i -+ 3、设0.61.50.60.6,0.6, 1.5a b c === ,则,,a b c 的大小关系是(A )a b c << (B )a c b << (C )b a c << (D )b c a <<4、要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 4y x =的图象π个单位(B)(A)向左平移12π平移个单位向右12π个单位(D)(C)向左平移3π个单位向右平移35、设m R∈,命题“若0m>,则方程20+-=有实根”x x m的逆否命题是(A)若方程20m>+-=有实根,则0x x m(B)若方程20m≤x x m+-=有实根,则0(C)若方程20m>+-=没有实根,则0x x m(D)若方程20m≤x x m+-=没有实根,则06、为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图。

考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为 (A ) ①③ (B ) ①④(C ) ②③ (D ) ②④7、在区间[]0,2上随机地取一个数x ,则事件“1211log12x ⎛⎫-≤+≤ ⎪⎝⎭ ”发生的概率为(A )34(B )23(C )13 (D )148、若函数()212x xf x a+=- 是奇函数,则使()3f x > 成立的x 的取值范围为(A )(),1-∞- (B )()1,0- (C )()0,1(D )()1,+∞9. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A )23π (B )423π(C )22π(D )42π10.设函数()3,1,2,1,xx b x f x x -<⎧=⎨≥⎩ 若546f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则b =(A )1 (B )78(C )34 (D )12第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015年全国高考文科数学试题

2015年全国高考文科数学试题

2015年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试用时120分钟. 参考公式:如果事件,A B 互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的.1.(2015山东文)已知集合{}24A x x =<<,()(){}130B x x x =--<,则I A B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 【答案】C【解析】{|13}B x x =<<,=23(,)I A B . 【考点】集合的基本交集+一元二次不等式的解法【难度】易2.(2015山东文)若复数z 满足1zi i=-,其中i 为虚数单位,则z =( ) A .1i - B .1i + C .1i -- D .1i -+ 【答案】A【解析】2(1)1,1z i i i i i z i =-=-+=+=-.【考点】复数的运算 【难度】易3.(2015山东文)设0.60.6=a , 1.50.6=b ,0.61.5=c ,则a ,b ,c 的大小关系是( )A .<<a b cB .<<a c bC .<<b a cD .<<b c a 【答案】C【解析】由0.6=xy 在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,0.61.51>,故选C.【考点】指数函数的性质+函数值比较大小 【难度】易4.(2015山东文)要得到函数4sin(4)3y x π=-的图像,只需要将函数sin 4y x =的图像是( )A .向左平移12π个单位B .向右平移12π个单位C .向左平移3π个单位D .向右平移3π个单位【答案】B【解析】sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位. 【考点】三角函数图像的变换 【难度】易5.(2015山东文)设∈m R ,命题“若0>m ,则方程20+-=x x m 有实根”的逆否命题是( )A .若方程20x x m +-=有实根,则0>m B .若方程20x x m +-=有实根,则0≤m C .若方程20x x m +-=没有实根,则0>m D .若方程20x x m +-=没有实根,则0≤m【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D 【考点】命题的四种形式 【难度】易6.(2015山东文)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的标号为( )A .①③B .①④C .②③D .②④ 【答案】B【解析】甲地数据为:26,28,29,31,31;乙地数据为:28,29,30,31,32;所以262829313129,5x ++++==甲229303132305x ++++==乙8,()()()()()22222126292829292931293129 3.652甲⎡⎤=-+-+-+-+-=⎣⎦S ,()()()()()22222128302930303031303230252乙⎡⎤=-+-+-+-+-=⎣⎦S ,即正确的是①④【考点】茎叶图+平均数+方差+标准差【难度】易7.(2015山东文)已在区间[]0,2上随机地取一个数x ,则事件1211log ()12“”-≤+≤x 发生的概率为( )A .34 B .23 C .13 D .14【答案】A【解析】由1211log ()12-≤+≤x 得,11122211log 2log ()log 22≤+≤x ,11222≤+≤x ,302≤≤x ,所以,由几何概型概率的计算公式得,332204-==-P ,故选A 【考点】几何概型+对数函数的性质【难度】中8.(2015山东文)若函数21()2+=-x x f x a是奇函数,则使()3>f x 成立的x 的取值范围为( )A .(,1)-∞-B .(1,0)-C .(0,1)D .(1,)+∞ 【答案】C【解析】由题意()()=--f x f x ,即212122--++=--x x x x a a ,所以,(1)(21)0-+=xa ,1=a ,21()21+=-x x f x ,由21()321+=>-x xf x 得,122<<x ,01<<x ,故选C 【考点】函数的奇偶性+指数运算【难度】中9.(2015山东文)已知等腰直角三角形的直角边的长为2 ,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .223π B .423πC .22πD .42π 【答案】B【解析】右题意知,该等腰三角形的斜边长22,斜边上的高为2,所得旋转体为同底登高的全等圆锥,所以其体积为2142(2)2233ππ⨯⨯=,故选B 【考点】旋转体的几何特性+几何体的体积【难度】中10.(2015山东文)设函数3,1()2,1≥-<⎧=⎨⎩x x b x f x x ,则5(())46=f f ,则=b ( )A .1B .78C .34D .12【答案】D【解析】由题意知,555()3,662f b b =⨯-=-由5(())46=f f 得,51253()42⎧-<⎪⎪⎨⎪--=⎪⎩b b b 或5251224bb -⎧-≥⎪⎨⎪=⎩解得12b =,故选D 【考点】分段函数+函数与方程 【难度】难第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015年山东省高考数学试卷(文科)解析

2015年山东省高考数学试卷(文科)解析

2015年山东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•山东)已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.(5分)(2015•山东)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位5.(5分)(2015•山东)当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A.若方程x2+x﹣m=0有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0没有实根,则m>0D.若方程x2+x﹣m=0没有实根,则m≤06.(5分)(2015•山东)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④7.(5分)(2015•山东)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.8.(5分)(2015•山东)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1)D.(1,+∞)9.(5分)(2015•山东)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π10.(5分)(2015•山东)设函数f(x)=,若f(f())=4,则b=()A.1B.C.D.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2015•山东)执行如图的程序框图,若输入的x的值为1,则输出的y的值是.12.(5分)(2015•山东)若x,y满足约束条件,则z=x+3y的最大值为.13.(5分)(2015•山东)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则=.14.(5分)(2015•山东)定义运算“⊗”x⊗y=(x,y∈R,xy≠0).当x>0,y>0时,x⊗y+(2y)⊗x的最小值为.15.(5分)(2015•山东)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为.三、解答题(共6小题,满分75分)16.(12分)(2015•山东)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团8 5未参加演讲社团 2 30(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.17.(12分)(2015•山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.18.(12分)(2015•山东)如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.19.(12分)(2015•山东)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.20.(13分)(2015•山东)设函数f(x)=(x+a)lnx,g(x)=.已知曲线y=f(x)在点(1,f(x))处的切线与直线2x﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.21.(14分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且点(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E与A,B两点,射线PO交椭圆E于点Q.(Ⅰ)求的值;(Ⅱ)求△ABQ面积的最大值.2015年山东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•山东)已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:交集及其运算.专题:集合.分析:求出集合B,然后求解集合的交集.解答:解:B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},A={x|2<x<4},∴A∩B={x|2<x<3}=(2,3).故选:C.点评:本题考查集合的交集的求法,考查计算能力.2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘除运算法则化简求解即可.解答:解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.点评:本题考查复数的基本运算,基本知识的考查.3.(5分)(2015•山东)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a考点:不等式比较大小.专题:函数的性质及应用.分析:直接判断a,b的大小,然后求出结果.解答:解:由题意可知1>a=0.60.6>b=0.61.5,c=1.50.6>1,可知:c>a>b.故选:C.点评:本题考查指数函数的单调性的应用,考查计算能力.4.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接利用三角函数的平移原则推出结果即可.解答:解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.点评:本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.5.(5分)(2015•山东)当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A.若方程x2+x﹣m=0有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0没有实根,则m>0D.若方程x2+x﹣m=0没有实根,则m≤0考点:四种命题间的逆否关系.专题:简易逻辑.分析:直接利用逆否命题的定义写出结果判断选项即可.解答:解:由逆否命题的定义可知:当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是:若方程x2+x﹣m=0没有实根,则m≤0.故选:D.点评:本题考查四种命题的逆否关系,考查基本知识的应用.6.(5分)(2015•山东)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④考点:命题的真假判断与应用.专题:概率与统计.分析:由已知的茎叶图,我们易分析出甲、乙甲,乙两地某月14时的气温抽取的样本温度,进而求出两组数据的平均数、及方差可得答案解答:解:由茎叶图中的数据,我们可得甲、乙甲,乙两地某月14时的气温抽取的样本温度分别为:甲:26,28,29,31,31乙:28,29,30,31,32;可得:甲地该月14时的平均气温:(26+28+29+31+31)=29,乙地该月14时的平均气温:(28+29+30+31+32)=30,故甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时温度的方差为:=[(26﹣29)2+(28﹣29)2+(29﹣29)2+(31﹣29)2+(31﹣29)2]=3.6乙地该月14时温度的方差为:=[(28﹣30)2+(29﹣30)2+(30﹣30)2+(31﹣30)2+(32﹣30)2]=2,故>,所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差.故选:B.点评:本题考查数据的离散程度与茎叶图形状的关系,考查学生的计算能力,属于基础题7.(5分)(2015•山东)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.考点:几何概型.专题:计算题;概率与统计.分析:先解已知不等式,再利用解得的区间长度与区间[0,2]的长度求比值即得.解答:解:利用几何概型,其测度为线段的长度.∵﹣1≤log(x+)≤1∴解可得,﹣≤x≤,∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A点评:本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.8.(5分)(2015•山东)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()。

2015年高考文科数学山东卷及答案解析

2015年高考文科数学山东卷及答案解析

数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}A x x =<<,{|(1)(3)0}B x x x =--<,则A B = ( )A .1,3()B .1,4()C .2,3()D .2,4() 2.若复数z 满足z1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+ 3.设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a4.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位5.若m ∈R ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是 ( )A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤ C .若方程20x x m +-=没有实根,则0m > D .若方程20x x m +-=没有实根,则0m ≤6.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( )A .①③B .①④C .②③D .②④7.在区间[0,2]上随机地取一个数x ,则事件“1211log ()12x -+≤≤”发生的概率为( )A .34 B .23 C .13D .148.若函数21()2x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围为( )A .(,1)-∞-B .0,1-()C .01,()D .(1,)+∞9.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.3 B .3C .D .10.设函数3, 1,()2, 1.xx b x f x x -⎧=⎨⎩<≥若5(())46f f =,则b =( )A .1B .78C .34D.12第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.执行如图所示的程序框图,若输入的x 的值为1,则输出的y 的值是_________.12.若x ,y 满足约束条件131y x x y y -⎧⎪+⎨⎪⎩≤,≤,≥,则z =x +3y 的最大值为_______.13.过点P 作圆221x y +=的两条切线,切点分别为A ,B ,则PA PB =________.14.定义运算“⊗”:22(,,0)x y x y x y xy xy-⊗=∈≠R .当0x >,0y >时,(2)x y y x ⊗+⊗的最小值为__________.15.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为___________.---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单(Ⅰ)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学1A ,2A ,3A ,4A ,5A ,3名女同学1B,2B ,3B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.17.(本小题满分12分)ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B ,sin()A B +=ac =sin A 和c 的值.18.(本小题满分12分)如图,三棱台DEF —ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .19.(本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11{} n n a a +的前n 项和为21nn +. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()1 2n an n b a =+,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数()()ln f x x a x =+,2()x x g x e=,已知曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{()()}(min{},m x f x g x p q p q =,,表示中的较小值),求m (x )的最大值.21.(本小题满分14分)平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a bC +=>>:的离心率为2,且点1)2在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144E xy a b+=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.2015年普通高等学校招生全国统一考试(山东卷)数学(文科)答案解析第Ⅰ卷{2|A B x=【提示】求出集合【考点】交集及其运算1log-≤.02x≤≤∴所求的概率为:【解析】2()2f x=1222xx xa a+=-,22x xa a-=-21()21xxf x+=>-故选C.【解析】如图为等腰直角三角形旋转而成的旋转体.21142π3h=数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)最大值.故答案为7.30OPA∴∠=,260BPA∠=,1||||cos60322PA PB PA PB∴==⨯+=2可求PA PB.【考点】平面向量数量积的运算,直线与圆相交的性质【答案】2【解析】xx y⊗=由0x>,,22x∴+222y xyCD GF M=数学试卷第10页(共18页)数学试卷第11页(共18页)数学试卷第12页(共18页)数学试卷 第13页(共18页)数学试卷 第15页(共18页),G ,H 分别为,AB BC ⊥的中点,EF ∴是平行四边形,CF BC ⊥HE BC ∴⊥又HE ,GH HE GH H =平面BCD ⊥平面EGH .H F H =,BD ⊂平面(Ⅰ)证法一:如图所示,连接CD GF M =,连接利用三角形的中位线定理可得:1n n a +,则n c 又数列1n n a +⎬⎭的前1)2n -=-由(211)2(2n 11)24n nn a n -=-+=,1214244nn +++…,23141424(1)44nn n T n n +∴=+++-+…,211134444433n n n n ++-+++-=-…,11)449n ++. 11n n a +分离分母,并项相加并利用数列1n n a +⎫⎬⎭的前n 项和为即得首项和公差,进而可得结论;4nn ,写出【考点】数列的求和,22004x y +212414m x x -=+数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)122222222|4164|14(16414||14x x k m k k m k m k-+-++-+⎫⎪+⎭,,将y kx m =+24m <+1,即2m =3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年山东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={|2<<4},B={|(﹣1)(﹣3)<0},则A∩B=()A.(1,3)B.(1,4) C.(2,3) D.(2,4)2.(5分)若复数满足=i,其中i为虚数单位,则=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.(5分)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.(5分)要得到函数y=sin(4﹣)的图象,只需要将函数y=sin4的图象()个单位.A.向左平移B.向右平移C.向左平移D.向右平移5.(5分)当m∈N*,命题“若m>0,则方程2+﹣m=0有实根”的逆否命题是()A.若方程2+﹣m=0有实根,则m>0B.若方程2+﹣m=0有实根,则m≤0C.若方程2+﹣m=0没有实根,则m>0D.若方程2+﹣m=0没有实根,则m≤06.(5分)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④7.(5分)在区间[0,2]上随机地取一个数,则事件“﹣1≤log(+)≤1”发生的概率为()A.B.C.D.8.(5分)若函数f()=是奇函数,则使f()>3成立的的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)9.(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π10.(5分)设函数f()=,若f(f())=4,则b=()A.1 B.C.D.二、填空题(共5小题,每小题5分,满分25分)11.(5分)执行如图的程序框图,若输入的的值为1,则输出的y的值是.12.(5分)若,y满足约束条件,则=+3y的最大值为.13.(5分)过点P(1,)作圆2+y2=1的两条切线,切点分别为A,B,则= .14.(5分)定义运算“⊗”⊗y=(,y∈R,y≠0).当>0,y>0时,⊗y+(2y)⊗的最小值为.15.(5分)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为.三、解答题(共6小题,满分75分)16.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.17.(12分)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cosB=,sin (A+B )=,ac=2,求sinA 和c 的值.18.(12分)如图,三棱台DEF ﹣ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .19.(12分)已知数列{a n }是首项为正数的等差数列,数列{}的前n 项和为.(1)求数列{a n }的通项公式; (2)设b n =(a n +1)•2,求数列{b n }的前n 项和T n .20.(13分)设函数f()=(+a)ln,g()=.已知曲线y=f()在点(1,f(1))处的切线与直线2﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数,使得方程f()=g()在(,+1)内存在唯一的根?如果存在,求出;如果不存在,请说明理由;(Ⅲ)设函数m()=min{f(),g()}(min{p,q}表示p,q中的较小值),求m()的最大值.21.(14分)平面直角坐标系Oy中,已知椭圆C:=1(a>b>0)的离心率为,且点(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:=1,P为椭圆C上任意一点,过点P的直线y=+m 交椭圆E与A,B两点,射线PO交椭圆E于点Q.(Ⅰ)求的值;(Ⅱ)求△ABQ面积的最大值.2015年山东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={|2<<4},B={|(﹣1)(﹣3)<0},则A∩B=()A.(1,3)B.(1,4) C.(2,3) D.(2,4)【分析】求出集合B,然后求解集合的交集.【解答】解:B={|(﹣1)(﹣3)<0}={|1<<3},A={|2<<4},∴A∩B={|2<<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.2.(5分)若复数满足=i,其中i为虚数单位,则=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得=1﹣i.故选:A.【点评】本题考查复数的基本运算,基本知识的考查.3.(5分)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【分析】利用指数函数和幂函数的单调性,可判断三个式子的大小.【解答】解:函数y=0.6为减函数;故a=0.60.6>b=0.61.5,函数y=0.6在(0,+∞)上为增函数;故a=0.60.6<c=1.50.6,故b<a<c,故选:C.【点评】本题考查的知识点是指数函数和幂函数的单调性,难度中档.4.(5分)要得到函数y=sin(4﹣)的图象,只需要将函数y=sin4的图象()个单位.A.向左平移B.向右平移C.向左平移D.向右平移【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4﹣)=sin[4(﹣)],要得到函数y=sin(4﹣)的图象,只需将函数y=sin4的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中的系数是易错点.5.(5分)当m∈N*,命题“若m>0,则方程2+﹣m=0有实根”的逆否命题是()A.若方程2+﹣m=0有实根,则m>0B.若方程2+﹣m=0有实根,则m≤0C.若方程2+﹣m=0没有实根,则m>0D.若方程2+﹣m=0没有实根,则m≤0【分析】直接利用逆否命题的定义写出结果判断选项即可.【解答】解:由逆否命题的定义可知:当m∈N*,命题“若m>0,则方程2+﹣m=0有实根”的逆否命题是:若方程2+﹣m=0没有实根,则m≤0.故选:D.【点评】本题考查四种命题的逆否关系,考查基本知识的应用.6.(5分)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④【分析】由已知的茎叶图,我们易分析出甲、乙甲,乙两地某月14时的气温抽取的样本温度,进而求出两组数据的平均数、及方差可得答案【解答】解:由茎叶图中的数据,我们可得甲、乙甲,乙两地某月14时的气温抽取的样本温度分别为:甲:26,28,29,31,31乙:28,29,30,31,32;可得:甲地该月14时的平均气温:(26+28+29+31+31)=29,乙地该月14时的平均气温:(28+29+30+31+32)=30,故甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时温度的方差为:=[(26﹣29)2+(28﹣29)2+(29﹣29)2+(31﹣29)2+(31﹣29)2]=3.6乙地该月14时温度的方差为:=[(28﹣30)2+(29﹣30)2+(30﹣30)2+(31﹣30)2+(32﹣30)2]=2,故>,所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差.故选:B.【点评】本题考查数据的离散程度与茎叶图形状的关系,考查学生的计算能力,属于基础题7.(5分)在区间[0,2]上随机地取一个数,则事件“﹣1≤log(+)≤1”发生的概率为()A.B.C.D.【分析】先解已知不等式,再利用解得的区间长度与区间[0,2]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.∵﹣1≤log(+)≤1∴解得0≤≤,∵0≤≤2∴0≤≤∴所求的概率为:P=故选:A.【点评】本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.8.(5分)若函数f()=是奇函数,则使f()>3成立的的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)【分析】由f()为奇函数,根据奇函数的定义可求a,代入即可求解不等式.【解答】解:∵f()=是奇函数,∴f(﹣)=﹣f()即整理可得,∴1﹣a•2=a﹣2∴a=1,∴f()=∵f())=>3∴﹣3=>0,整理可得,,∴1<2<2解可得,0<<1故选:C.【点评】本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题.9.(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π【分析】画出图形,根据圆锥的体积公式直接计算即可.【解答】解:如图为等腰直角三角形旋转而成的旋转体.V=2×S•h=2×πR2•h=2×π×()2×=.故选:B.【点评】本题考查圆锥的体积公式,考查空间想象能力以及计算能力.是基础题.10.(5分)设函数f()=,若f(f())=4,则b=()A.1 B.C.D.【分析】直接利用分段函数以及函数的零点,求解即可.【解答】解:函数f()=,若f(f())=4,可得f()=4,若,即b≤,可得,解得b=.若,即b>,可得,解得b=<(舍去).故选:D.【点评】本题考查函数的零点与方程根的关系,函数值的求法,考查分段函数的应用.二、填空题(共5小题,每小题5分,满分25分)11.(5分)执行如图的程序框图,若输入的的值为1,则输出的y的值是13 .【分析】模拟执行程序框图,依次写出得到的,y的值,当=2时不满足条件<2,计算并输出y的值为13.【解答】解:模拟执行程序框图,可得=1满足条件<2,=2不满足条件<2,y=13输出y的值为13.故答案为:13.【点评】本题主要考查了循环结构的程序框图,属于基本知识的考查.12.(5分)若,y满足约束条件,则=+3y的最大值为7 .【分析】作出题中不等式组表示的平面区域,再将目标函数=+3y对应的直线进行平移,可得当=1且y=2时,取得最大值.【解答】解:作出不等式组表示的平面区域,得到如图的三角形及其内部,由可得A(1,2),=+3y,将直线进行平移,当l经过点A时,目标函数达到最大值∴=1+2×3=7.最大值故答案为:7【点评】本题给出二元一次不等式组,求目标函数=+3y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.13.(5分)过点P(1,)作圆2+y2=1的两条切线,切点分别为A,B,则=.【分析】根据直线与圆相切的性质可求PA=PB,及∠APB,然后代入向量数量积的定义可求.【解答】解:连接OA,OB,PO则OA=OB=1,PO=,2,OA⊥PA,OB⊥PB,Rt△PAO中,OA=1,PO=2,PA=∴∠OPA=30°,∠BPA=2∠OPA=60°∴===故答案为:【点评】本题主要考查了圆的切线性质的应用及平面向量的数量积的定义的应用,属于基础试题.14.(5分)定义运算“⊗”⊗y=(,y∈R,y≠0).当>0,y>0时,⊗y+(2y)⊗【分析】通过新定义可得⊗y+(2y)⊗=,利用基本不等式即得结论.【解答】解:∵⊗y=,∴⊗y+(2y)⊗=+=,由∵>0,y>0,∴2+2y2≥2=y,当且仅当=y时等号成立,∴≥=,故答案为:.【点评】本题以新定义为背景,考查函数的最值,涉及到基本不等式等知识,注意解题方法的积累,属于中档题.15.(5分)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为2+.【分析】求出P的坐标,可得直线的斜率,利用条件建立方程,即可得出结论.【解答】解:=2a时,代入双曲线方程可得y=±b,取P(2a,﹣b),∴双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线的斜率为,∴=∴e==2+.故答案为:2+.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.三、解答题(共6小题,满分75分)16.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.【分析】(Ⅰ)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(Ⅱ)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A 1被选中,而B 1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.【解答】解:(Ⅰ)设“至少参加一个社团”为事件A ; 从45名同学中任选一名有45种选法,∴基本事件数为45; 通过列表可知事件A 的基本事件数为8+2+5=15; 这是一个古典概型,∴P (A )=;(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;设“A 1被选中,而B 1未被选中”为事件B ,显然事件B 包含的基本事件数为2; 这是一个古典概型,∴.【点评】考查古典概型的概念,以及古典概型的概率的求法,分步计数原理的应用.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.【分析】①利用两角和与差的正弦函数公式以及基本关系式,解方程可得;②利用正弦定理解之.【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,由①②解得27sin2A﹣6sinA﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,所以a=2c,又ac=2,所以c=1.【点评】本题考查了利用三角函数知识解三角形,用到了两角和与差的正弦函数、同角三角函数的基本关系式、正弦定理等知识.18.(12分)如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC 的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.【分析】(I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH.由已知可得四边形CFDG是平行四边形,DM=MC.利用三角形的中位线定理可得:MH∥BD,可得BD∥平面FGH;证法二:在三棱台DEF﹣ABC中,AB=2DE,H为BC的中点.可得四边形BHFE 为平行四边形.BE∥HF.又GH∥AB,可得平面FGH∥平面ABED,即可证明BD∥平面FGH.(II)连接HE,利用三角形中位线定理可得GH∥AB,于是GH⊥BC.可证明EFCH是平行四边形,可得HE⊥BC.因此BC⊥平面EGH,即可证明平面BCD⊥平面EGH.【解答】(I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF﹣ABC中,AB=2DE,G为AC的中点.∴,∴四边形CFDG是平行四边形,∴DM=MC.又BH=HC,∴MH∥BD,又BD⊄平面FGH,MH⊂平面FGH,∴BD∥平面FGH;证法二:在三棱台DEF﹣ABC中,AB=2DE,H为BC的中点.∴,∴四边形BHFE为平行四边形.∴BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,∴GH∥AB,又GH∩HF=H,∴平面FGH∥平面ABED,∵BD⊂平面ABED,∴BD∥平面FGH.(II)证明:连接HE,∵G,H分别为AC,BC的中点,∴GH∥AB,∵AB⊥BC,∴GH⊥BC,又H为BC的中点,∴EF∥HC,EF=HC,CF⊥BC.∴EFCH是矩形,∴CF∥HE.∵CF⊥BC,∴HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,∴BC⊥平面EGH,又BC⊂平面BCD,∴平面BCD⊥平面EGH.【点评】本题考查了空间线面面面平行与垂直的判定及性质定理、三角形中位线定理、平行四边形的判定与性质定理,考查了空间想象能力、推理能力,属于中档题.19.(12分)已知数列{an}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{an}的通项公式;(2)设bn =(an+1)•2,求数列{bn}的前n项和Tn.【分析】(1)通过对cn=分离分母,并项相加并利用数列{}的前n项和为即得首项和公差,进而可得结论;(2)通过bn =n•4n,写出Tn、4Tn的表达式,两式相减后利用等比数列的求和公式即得结论.【解答】解:(1)设等差数列{an }的首项为a1、公差为d,则a1>0,∴an =a1+(n﹣1)d,an+1=a1+nd,令c n =,则c n ==[﹣], ∴c 1+c 2+…+c n ﹣1+c n =[﹣+﹣+…+﹣]=[﹣]==,又∵数列{}的前n 项和为,∴,∴a 1=1或﹣1(舍),d=2, ∴a n =1+2(n ﹣1)=2n ﹣1; (2)由(1)知b n =(a n +1)•2=(2n ﹣1+1)•22n ﹣1=n •4n ,∴T n =b 1+b 2+…+b n =1•41+2•42+…+n •4n , ∴4T n =1•42+2•43+…+(n ﹣1)•4n +n •4n+1, 两式相减,得﹣3T n =41+42+…+4n ﹣n •4n+1=•4n+1﹣,∴T n =.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.20.(13分)设函数f ()=(+a )ln ,g ()=.已知曲线y=f ()在点(1,f (1))处的切线与直线2﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数,使得方程f()=g()在(,+1)内存在唯一的根?如果存在,求出;如果不存在,请说明理由;(Ⅲ)设函数m()=min{f(),g()}(min{p,q}表示p,q中的较小值),求m()的最大值.【分析】(Ⅰ)求出f()的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a=1;(Ⅱ)求出f()、g()的导数和单调区间,最值,由零点存在定理,即可判断存在=1;(Ⅲ)由(Ⅱ)求得m()的解析式,通过g()的最大值,即可得到所求.【解答】解:(Ⅰ)函数f()=(+a)ln的导数为f′()=ln+1+,曲线y=f()在点(1,f(1))处的切线斜率为f′(1)=1+a,由切线与直线2﹣y=0平行,则a+1=2,解得a=1;(Ⅱ)由(Ⅰ)可得f()=(+1)ln,f′()=ln+1+,令h()=ln+1+,h′()=﹣=,当∈(0,1),h′()<0,h()在(0,1)递减,当>1时,h′()>0,h()在(1,+∞)递增.=h(1)=2>0,即f′()>0,当=1时,h()minf()在(0,+∞)递增,即有f()在(,+1)递增,g()=的导数为g′()=,当∈(0,2),g′()>0,g()在(0,2)递增,当>2时,g′()<0,g()在(2,+∞)递减.则=2取得最大值,令T()=f()﹣g()=(+1)ln﹣,T(1)=﹣<0,T(2)=3ln2﹣>0,T()的导数为T′()=ln+1+﹣,由1<<2,通过导数可得ln>1﹣,即有ln+1+>2;e>1+,可得﹣>,可得ln+1+﹣>2+=>0,即为T′()>0在(1,2)成立,则T()在(1,2)递增,由零点存在定理可得,存在自然数=1,使得方程f()=g()在(,+1)内存在唯一的根;(Ⅲ)由(Ⅱ)知,m()=,其中∈(1,2),且=2时,g()取得最大值,且为g(2)=,则有m()的最大值为m(2)=.【点评】本题考查导数的运用:求切线方程和单调区间、极值,同时考查零点存在定理和分段函数的最值,考查运算能力,属于中档题.21.(14分)平面直角坐标系Oy中,已知椭圆C:=1(a>b>0)的离心率为,且点(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E :=1,P 为椭圆C 上任意一点,过点P 的直线y=+m 交椭圆E 与A ,B 两点,射线PO 交椭圆E 于点Q .(Ⅰ)求的值;(Ⅱ)求△ABQ 面积的最大值.【分析】(Ⅰ)通过将点点(,)代入椭圆C 方程,结合=及a 2﹣c 2=b 2,计算即得结论;(Ⅱ)通过(I )知椭圆E 的方程为:+=1.(i )通过设P (0,y 0)、=λ可得Q (﹣λ0,﹣λy 0),利用+=1及+=1,计算即可;(ii )设A (1,y 1)、B (2,y 2),分别将y=+m 代入椭圆E 、椭圆C 的方程,利用根的判别式△>0、韦达定理、三角形面积公式及换元法,计算即可.【解答】解:(Ⅰ)∵点(,)在椭圆C 上, ∴,①∵=,a 2﹣c 2=b 2,∴=,② 联立①②,解得:a 2=4,b 2=1,∴椭圆C 的方程为:+y 2=1;(Ⅱ)由(I )知椭圆E 的方程为:+=1.(i )设P (0,y 0),=λ,由题意可得Q (﹣λ0,﹣λy 0), ∵+=1,及+=1,即(+)=1,∴λ=2,即=2;(ii )设A (1,y 1),B (2,y 2),将y=+m 代入椭圆E 的方程,可得(1+42)2+8m+4m 2﹣16=0,由△>0,可得m 2<4+162,由韦达定理,可得1+2=﹣,1•2=,∴|1﹣2|=, ∵直线y=+m 交y 轴于点(0,m ),∴S △OAB =|m|•|1﹣2|=|m|•==2, 设t=,将y=+m 代入椭圆C 的方程,可得(1+42)2+8m+4m 2﹣4=0,由△≥0,可得m 2≤1+42,又∵m 2<4+162,∴0<t ≤1,∴S=2=2=≤2,当且仅当t=1,即m 2=1+42时取得最大值2, 由(i )知S △ABQ =3S ,∴△ABQ 面积的最大值为6.【点评】本题是一道直线与圆锥曲线的综合问题,考查求椭圆方程、线段的比及三角形的面积问题,考查计算能力,利用韦达定理是解决本题的关键,注意解题方法的积累,属于难题.。

相关文档
最新文档