中考数学专题复习——图像(表)信息题

合集下载

九年级数学中考专项复习——函数图像与实际问题应用题(附答案)

九年级数学中考专项复习——函数图像与实际问题应用题(附答案)

中考专项复习——函数与实际问题1. 甲、乙两车从A 城出发前往B 城.在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间 h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60 km/h 的速度匀速行驶.(Ⅰ)填空:① A ,B 两城相距km② 当02x ≤≤时,甲车的速度为 km/h ③ 乙车比甲车晚 h 到达B 城 ④ 甲车出发4h 时,距离A 城km⑤ 甲、乙两车在行程中相遇时,甲车离开A 城的时间为 h(Ⅱ)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式.(Ⅲ)当1352x ≤≤时,两车所在位置的距离最多相差多少km ?y 1/ km 53232. 已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:离开家的时间/min 6 10 20 46 离家的距离/km12.5(Ⅱ)填空:① 聪聪家到体育场的距离为______km② 聪聪从体育场到文具店的速度为______km/min ③ 聪聪从文具店散步回家的速度为______ km/min④ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.3.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表: 一次购买台数(台) 2 6 15 … 甲电器店收费(元) 6000 … 乙电器店收费(元)4800…(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.4.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.5.共享电动车是一种新理念下的交通工具:主要面向的出行市场,现有A 两种品牌的共享电动车,给出的图象反映了收费元与骑行时间min 之间的对应关系,其中品牌收费方式对应,品牌的收费方式对应. 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为,小明家到工厂的距离为,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时的值是 . (Ⅲ)直接写出,关于的函数解析式.3~10km B y x A 1y B 2y 300m /min 9km x 1y 2y x y /元O 10 20 x /min8 66. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.7. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为 y 乙(个),其函数图象如图所示. (I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =8. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的折出售.在乙书店一次购书的标价总额不超过元的按标价总额计费,超过元后的部分打折.设在同一家书店一次购书的标价总额为(单位:元,). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元… 在甲书店应支付金额/元 … 在乙书店应支付金额/元…(Ⅱ)设在甲书店应支付金额元,在乙书店应支付金额元,分别写出、关于的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额元,则在甲、乙两个书店中的 书店购书应支付的金额少.9. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家,文具店离家.周末小明从家出发,匀速跑步到体育场;在体育场锻炼后,匀速走了到文具店;在文具店停留买笔后,匀速走了返回家.给出的图象反映了这个过程中小明离开家的距离与离开家的时间之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min离开家的距离/ km(II )填空:① 体育场到文具店的距离为______ ② 小明从家到体育场的速度为______ ③ 小明从文具店返回家的速度为______④ 当小明离家的距离为时,他离开家的时间为______ (III )当时,请直接写出关于的函数解析式.81001006x 0x 501503*********y 2y 1y 2y x 2801203km 1.5km 15min 15min 15min 20min 30min km y min x 6122050701.23km km /min km /min 0.6km min 045x ≤≤y x10. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.11. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m②明明在书店停留的时间是min③明明与家距离900m 时,明明离开家的时间是 min(Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式. 时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m400 60012. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km⑤ 当甲车离开A 城120km 时甲车行驶了 h ⑥ 当乙车出发行驶 h 时甲乙两车相距20km13.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F32506886104参考答案1. 解:(Ⅰ)①360 ②60 ③56④6803⑤52或196(Ⅱ)当0≤x ≤2时 160y x =当2223x <≤时 1120y =当222533x <≤时 1280803y x =-(Ⅲ)当1352x ≤≤时由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大 ∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103km2.解:(Ⅰ) 1.5(Ⅱ)①2.5 ②③ ④12或 (Ⅲ)当时当时3. 解:(Ⅰ)16800 33000 14400 36000(Ⅱ)当0<≤5时当>5时,即;=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数).(x >0且x 为正整数)531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x1y 23000802400y x x %(Ⅲ)设与的总费用的差为元. 则 即. 当时 即 解得.∴当时 选择甲乙两家电器店购买均可 ∵<0∴随的增大而减小∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算4. 解:(Ⅰ)1 0.5(Ⅱ)填空:(i ) 25 (ii )(iii ) (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧x (0≤x ≤15),1(15<x ≤30), x +2(30<x ≤ 45).5.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>6. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y ∵图象过),(500和)(330,80∴⎩⎨⎧+==b k b8033050 1y 2y y 180060002400y x x 6006000y x 0y60060000x10x10x 600y x 1y 2y 23115160115130-解得⎩⎨⎧==505.3b k ∴y 与x 的函数关系式为505.3+=x y )800(≤≤x7. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当时 当时当时∵图象经过(4 120)则 解得:∴ 当时∴(2)设 把 分别代入得解得 ∴与时间t 之间的函数关系式为:8. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲03t t y 40=甲43≤t <120=甲y 84≤t <140b t y +=甲1440120b +⨯=401-=b 84≤t <4040-=t y 甲⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲2b kt y +=乙(5,0)(8,360)⎩⎨⎧+=+=22836050b k b k ⎩⎨⎧-==6001202b k y 乙)乙85(600120≤≤-=t t y9. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x10. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13(Ⅲ)当04x ≤<时5y x =当412x <≤时5154y x =+11. 解:(Ⅰ)1000 600(Ⅱ)①600 ②4 ③4.5或7或338 (Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<) 12. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或213. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x (Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等. 时间/min 2 3 4 12 容器内水量/L 10 15 20 30。

苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)

苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)

苏科版数学中考专题复习:图形的相似综合压轴题专项练习题汇编1.已知四边形ABCD中,M,N两点分别在AB,BD上,且满足∠MCN=∠BDC.(1)如图1,当四边形ABCD为正方形时,①求证:△ACM∽△DCN;②求证:DN+BM=CD;(2)如图2,当四边形ABCD为菱形时,若∠BAD=120°,试探究DN,BM,CD的数量关系.2.在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.3.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.问题发现:(1)①如图1,若四边形ABCD是正方形,且DE⊥CF于G,则=;②如图2,当四边形ABCD是矩形时,且DE⊥CF于G,AB=m,AD=n,则=;拓展研究:(2)如图3,若四边形ABCD是平行四边形,且∠B+∠EGC=180°时,求证:;解决问题:(3)如图4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,请直接写出的值.4.在等边△ABC中,D,E分别是AC,BC上的点,且AD=CE,连接BD、AE相交于点F.(1)如图1,当时,=;(2)如图2,求证:△AFD∽△BAD;(3)如图3,当时,猜想AF与BF的数量关系,并说明理由.5.如图1,点D是△ABC中AB边上一点,∠ACD=∠B,BC2=AB•BD.(1)求证:∠ADC=∠ACB;(2)求∠ACB的度数;(3)将图1中的△BCD绕点C顺时针旋转得到△ECF,BD的对应边EF经过点A(如图2所示),若AC=2,求线段CD的长.6.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN ⊥DM,且MN=DM,连接DN.(1)如图①,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM;(2)如图②,当AM=4BM时,求证:A,C,N三点在同一条直线上.7.在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上,AB=8,AD=6.(1)如图1,当点G在CD上时,求AE+DG的值;(2)如图2,FG与CD相交于点N,连接EN,当EF平分∠AEN时,求证:EN=AE+DN;(3)如图3,EG,FG分别交CD于点M,N,当MG2=MN•MD时,求AE的值.8.【问题背景】如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,由已知可以得到:①△≌△;②△∽△.【尝试应用】如图2,在△ABC和△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE =30°,求证:△ACE∽△ABD.【问题解决】如图3,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE =30°,AC与DE相交于点F,点D在BC上,,求的值.9.已知正方形ABCD中,点E是边CD上一点(不与C、D重合),将△ADE绕点A顺时针旋转90°得到△ABF,如图1,连接EF分别交AC、AB于点P、G.(1)请判断△AEF的形状;(2)求证:P A2=PG•PF;(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.10.如图,等边△ABC的边长为12,点D,E分别在边AB,AC上,且AD=AE=4,点F 为BA延长线上一点,过点F作直线l∥BC,G为射线BC上动点,连接GD并延长交直线l于点H,连接FE并延长交BC于点M,连接HE并延长交射线BC于点N.(1)若AF=4,当BG=4时,求线段HF和EH的长;(2)若AF=a(a>0),点G在运动过程中,请判断△HGN的面积是否改变.若不变,求出其值(用含a的代数式表示);若改变,请说明理由.11.在△ABC中,∠ACB=90°,AC=8,BC=6.(1)如图1,点D为AC上一点,DE∥BC交AB边于点E,若=,求AD及DE的长;(2)如图2,折叠△ABC,使点A落在BC边上的点H处,折痕分别交AC、AB于点G、F,且FH∥AC.①求证:四边形AGHF是菱形;②求菱形的边长;(3)在(1)(2)的条件下,线段CD上是否存在点P,使得△CPH∽△DPE?若存在,求出PD的长;若不存在,请说明理由.12.如图①,AB∥MH∥CD,AD与BC相交于点M,点H在BD上.求证:.小明的部分证明如下:证明:∵AB∥MH,∴△DMH∽△DAB,∴.同理可得:=,….(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图②,正方形DEFG的顶点D、E分别在△ABC的边AB、AC上,E、F在边BC 上,AN⊥BC,交DG于M,垂足为N,求证:.13.【问题情境】如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,我们可以得到如下正确结论:①CD2=AD•BD;②AC2=AB•AD;③BC2=AB•BD,这些结论是由古希腊著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③BC2=AB•BD.【结论运用】(2)如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF.①求证:△BOF∽△BED.②若CE=2,求OF的长.14.如图①,在正方形ABCD中,点P为线段BC上的一个动点,连接AP,将△ABP沿直线AP翻折得到△AEP,点Q是CD的中点,连接BQ交AE于点F,若BQ∥PE.(1)求证:△ABF∽△BQC;(2)求证:BF=FQ;(3)如图②,连接DE交BQ于点G,连接EC,GC,若FQ=6,求△GBC的面积.15.如图1,已知等边△ABC的边长为8,点D在AC边上,AD=2,点P是AB边上的一个动点.(1)连接PC、PD.①当AP=时,△APD∽△ACP;②若△APD与△BPC相似,求AP的长度;(2)已知点Q在线段PB上,且PQ=2.①如图2,若△APD与△BQC相似,则∠ACQ与∠PDC之间的数量关系是;②如图3,若E、F分别是PD、CQ的中点,连接EF,线段EF的长是否是一个定值,若是,求出EF的长,若不是,说明理由.16.(1)如图①,点E,F分别在正方形边AB,BC上,且AF⊥DE,请直接写出AF与DE的关系.(2)如图②,点E,F,G分别在矩形ABCD的边AB,BC,CD上,且AF⊥EG,求证:.(3)如图③,在(2)的条件下,连接AG,过点G作AG的垂线与CF交于点H,已知BH=3,HG=5,GA=7.5,求的值.17.【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.18.在相似的复习课中,同学们遇到了一道题:已知∠C=90°,请设计三种不同方法,将Rt△ABC分割成四个小三角形,使每个小三角形与原三角形相似.(1)甲同学设计了如图1分割方法:D是斜边AB的中点,过D分别作DE⊥AC,DF ⊥BC,请判断甲同学的做法是否正确,并说明理由.(2)乙同学设计了如图2分割方法,过点D作FD⊥AB,DE⊥BC,连结EF,易证△ADF∽△ACB,△DEB∽△ACB,但是只有D在AB特殊位置时,才能证明另两个三角形与原三角形相似,李老师通过几何画板,发现∠A=30°时,,∠A=45°时,,∠A=60°时,.猜测对于任意∠A,当=(用AC,BC或AB相关代数式表示),结论成立.请补充条件并证明.(3)在普通三角形中,显然连结三角形中位线分割成四个小三角形与原三角形相似.你能参考乙同学的分割方法找到其他分割方法吗?请做出示意图并作适当分割说明(不要求证明过程).19.△ABC中,∠BAC=90°,AB=AC,点D在AB边上,点E在AC边上,连接DE,取BC边的中点O,连接DO并延长到点F,使OF=OD,连接CF,EF,令==k.(1)①如图1,若k=1,填空:=;△ECF是三角形.②如图2,将①中△ADE绕点A旋转,①中的结论是否仍然成立?若成立,请仅就图2所示情况给出证明;若不成立,请说明理由.(2)如图3,若k=,AB=AD,将△ADE由图1位置绕点A旋转,当点C,E,D三点共线时,请直接写出sin∠1的值.20.【基础探究】如图1,四边形ABCD中,∠ADC=∠ACB,AC为对角线,AD•CB=DC•AC.(1)求证:AC平分∠DAB.(2)若AC=8,AB=12,则AD=.【应用拓展】如图2,四边形ABCD中,∠ADC=∠ACB=90°,AC为对角线,AD•CB =DC•AC,E为AB的中点,连结CE、DE,DE与AC交于点F.若CB=6,CE=5,请直接写出的值.参考答案1.(1)①证明:∵四边形ABCD为正方形∴∠ACD=∠BDC=∠BAC=45°,又∵∠MCN=∠BDC,∴∠MCN=∠ACD=45°,∴∠MCA+∠ACN=∠ACN+∠DCN,∴∠MCA=∠DCN,∴△ACM∽△DCN.②证明:由①可知:△ACM∽△DCN,∴,∴DN=AM,∴AM+BM=AB=CD,∴DN+BM=CD.(2)解:如图所示:连接AC,在DN上取一点P使∠PCD=∠PDC=30°,过P作PQ ⊥CD于Q,∴∠PCD=∠PDC=30°,∴∠NPC=60°,又∵四边形ABCD为菱形且∠BAD=120°,∴∠BAC=60°,∴∠NPC=∠BAC,又∵∠ACP=∠ACD﹣∠PCD=30°,∠MCN=∠BDC=30°,∵∠MCN=∠ACP,∴∠MCA+∠ACN=∠ACN+∠NCP,∴∠MCA=∠NCP,∴△AMC∽△PNC,∴,∵,∴CD=CP,∴,∴AM,∴AM=PN,∴AM+MB=AB=CD,∴PN+MB=CD,∴(DN﹣DP)+MB=CD,∴(DN﹣CD)+MB=CD,即DN﹣CD+MB=CD,∴DN+MB=2CD.2.解:(1)∵∠ACB=∠ADE=90°,CA=CB,DA=DE,∴∠A=∠B=∠DEA=45°,∴AB=AC=m,AE=AD=m,∴CD=AC﹣AD=m,BE=AB﹣AE=m,∴BE=CD,∵∠A=45°,∴直线CD与BE的夹角为45°,故答案为:BE=CD,45°;(2)不满足,BE=CD,直线CD与BE的夹角为30°,理由如下:如图2,过点C作CH⊥AB于H,延长CD、BE交于点F,∵CA=CB,∴AH=HB,∵∠ACB=∠ADE=120°,CA=CB,DA=DE,∴∠CAB=∠CBA=30°,∠DAE=∠DEA=30°,∴AC=2CH,∠CAD=∠BAE,由勾股定理得:AH=AC,∴AB=AC,同理可得:AE=AD,∵∠CAD=∠BAE,∴△CAD∽△BAE,∴==,∠ACD=ABE,∴BE=CD,∠F=∠CAB=30°,∴BE=CD,直线CD与BE的夹角为30°;(3)如图3,点E在线段BD上,∵m=2,∴AD=DE=1,AB=2,由勾股定理得:BD==,∴BE=BD﹣DE=﹣1,∴CD=BE=,如图4,点D在线段BE上,BE=BD+DE=+1,∴CD=BE=,综上所述:当B,E,D三点共线.CD的长为或.3.(1)解:①∵四边形ABCD是正方形,∴AD=CD,∠BAD=∠ADC=90°,∵DE⊥CF,∴∠DGF=90°=∠ADC,∴∠ADE+∠EDC=90°=∠EDC+∠DCF,∴∠ADE=∠DCF,∴△ADE≌△DCF(ASA),∴DE=CF,故答案为:1;②解:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,AB=CD=m,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=,故答案为:;(2)证明:如图所示,∠B+∠EGC=180°,∠EGC+∠EGF=180°,∴∠B=∠EGF,在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM,∵AB∥CD,∴∠A=∠CDM,∵AD∥BC,∴∠B+∠A=180°,∵∠B=∠EGF,∴∠EGF+∠A=180°,∴∠AED=∠CFM=∠CMF,∴△ADE∽△DCM,∴,即;(3)解:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴,∴,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣5,由勾股定理得:BM2+CM2=BC2,∴(x﹣5)2+(x)2=52,解得:x1=0(舍去),x2=8,∴CN=8,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴==.4.解:(1)如图,∵∠ABC=∠C=60°,∴△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AD=CE,∴△ABD≌△CAE(SAS),∴∠EAC=∠DBA,∵,∴点D是AC中点,且△ABC是等边三角形,∴∠DBA=30°,∴∠EAC=30°,∴∠BAE=∠DBA=30°,∴AF=BF,∴,故答案为:1;(2)由(1)可得△ABD≌△CAE,∴∠EAC=∠DBA,∵∠ADF=∠BDA,∴△AFD∽△BAD;(3)由(1)可得△ABD≌△CAE,∴BD=AE,∠EAC=∠DBA,∴∠BFE=∠DBA+∠BAF=∠EAC+∠BAF=∠BAD=60°,设AF=x,BF=y,AB=AC=BC=n,AD=CE=1,BD=AE=m,∵∠EAC=∠DBA,∠ADB=∠ADB,∴△ADF∽△BDA,∴,∴①,∵∠BFE=∠C=60°,∠DBC=∠DBC,∴△BFE∽△BCD,∴,∴②,①÷②得:,∴,∵,即n=4,∴.5.(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB.∴∠ADC=∠ACB.(2)解:∵BC2=AB•BD,∴.又∵∠B=∠B,∴△ABC∽△CBD.∴∠ACB=∠CDB.∵∠ADC+∠CDB=180°,∠ADC=∠ACB,∴∠ACB=∠CDB=∠ADC=90°.(3)解:∵△BCD绕点C顺时针旋转得到△ECF,∴CE=BC,∠E=∠B.∵∠ACD=∠B,∴∠ACD=∠E.∴AC=AE.∵∠ADC=90°,∴CE⊥AB.∴CD=DE=CE.∴∵△ADC∽△ACB,∴.∴AD=•AC=1,在Rt△ADC中,.6.证明:(1)①∵四边形ABCD为矩形,DM⊥MN,∴∠A=∠DMN=90°,∵AB=6,AD=4,MN=DM,∴,∴△ABD∽△MND;②∵四边形ABCD为矩形,DM⊥MN,∴∠ABC=∠DMN=90°,∴∠ABD+∠CBD=90°,由①得△ABD∽△MND,∴∠ABD=∠DNM,又∵∠MEB=∠DEN,∴△MBE∽△DNE,∴,又∵∠MED=∠BEN,∴△DME∽△NBE,∴∠NBE=∠DME=90°,∴∠CBN+∠CBD=90°,∴∠CBN=∠DNM;(2)如图②,过点N作NF⊥AB,交AB延长线于点F,连接AC,AN,则∠NF A=90°,∵四边形ABCD为矩形,AD=4,AB=6,∴∠A=∠ABC=90°,BC=AD=4,,则∠ADM+∠AMD=90°,∵AM=4BM,AB=6,∴AM=AB=,又∵DM⊥MN,∴∠DMN=90°,∴∠AMD+∠FMN=90°,∴∠ADM=∠FMN,∴△ADM∽△FMN,∴,,∴MF=6,FN=,∴,∴,∵∠ABC=∠AFN=90°,∴△ABC∽△AFN,∴∠BAC=∠F AN,∴A,C,N三点在同一条直线上.7.(1)解:∵四边形ABCD是矩形,∴∠A=∠D=90°,EF=FG,∵∠EFG=90°,∴∠AFE+∠DFN=90°,∠AFE+∠AEF=90°,∴∠DFN=∠AEF.∴△DFG≌△AEF(AAS),∴AF=DG,AE=DF,∴AE+DG=AF+DF=AD=6;(2)证明:如图,延长NF,EA相交于H,∴∠HFE=90°,∠HAF=90°,∵∠HFE=∠NFE,EF=EF,∠HEF=∠NEF,∴△HFE≌△NFE(ASA),∴FH=FN,HE=NE,∵∠AFH=∠DFN,∠HAF=∠D,∴△HF A≌△NFD(AAS),∴AH=DN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)解:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,∵MG2=MN•MD,∴=,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴∠GDM=45°,∠PDG=45°,∴△PDG是等腰直角三角形,PG=PD,∵∠AFE+∠PFG=90°,∠AFE+∠AEF=90°,∴∠PFG=∠AEF,∵∠A=∠P=90°,EF=FG,∴△PFG≌△AEF(AAS),∴AF=PG,AE=PF,∴AE=PD+DF=AF+DF=AD=6.8.【问题背景】∵△ABC和△ADE是等腰直角三角形,∴△ABC∽△ADE.∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,故答案为:①△ABD≌△ACE;②△ABC∽△ADE.【尝试应用】∵△ABC∽△ADE,∴,∠CAB=∠EAD,∴∠CAE=∠BAD,∴△ACE∽△ABD;【问题解决】连接CE,由【尝试应用】知,△ABD∽△ACE,∴∠ACE=∠ABD=∠ADE=30°,∵∠AFD=∠EFC,∴△ADF∽△ECF,∴,∵,∴,∵,∴.9.(1)解:△AEF是等腰直角三角形,理由如下:由旋转的性质可知:AF=AE,∠F AE=90°,∴△AEF是等腰直角三角形;(2)证明:∵四边形ABCD是正方形,∠CAB=45°,由(1)知∠AFE=45°,∴∠P AG=∠AFP=45°,又∵∠APG=∠FP A,∴△APG∽△FP A,∴,∴P A2=PG•PF;(3)解:设正方形的边长为2a,∵将△ADE绕点A顺时针旋转90°得到△ABF,∴∠ABF=∠D=90°,DE=BF,∵∠ABC=90°,∴∠FBC=180°,∴F,B,C三点共线,∵DE=EC=BF=a,BC=2a,∴CF=3a,EF===a,∵BG∥EC,∴BG:EC=FB:CF=FG:FE=1:3,∴BG=,AG=,GE=a,∵∠GAP=∠EG=45°,∠AGP=∠EGA,∴△AGP∽△EGA,∴,∴AG2=GP•GE,∴()2=()×,∴a=或a=0(舍去),∴AG=.10.解:(1)如图1,由题意可得:BD=DF=8,∵HF∥BC,∴∠HFD=∠B,在△HFD和△GBD中,,∴△HFD≌△GBD(ASA),∴HF=BG=4,连接DE,∵△ABC是等边三角形,∴∠B=∠BAC=60°,∵AD=AE=4,∴△ADE是等边三角形,∴DE=AD=4,∠ADE=60°,∴∠ADE=∠B,∴DE∥BC,∴DE∥FH,∵FH=DE=4,∴四边形DEFH是平行四边形,∴HE和DF互相平分,∵DA=AF,∴HE经过点A,∴HE=2AE=8;(2)如图2,面积不变,理由如下:连接DE,作FK⊥BC于K,在Rt△BFK中,∠B=60°,BF=12+a,∴FK=BF•sin60°=,由(1)得,DE∥FH=BC,∴△HDE∽△HGN,△HFD∽△GBD,∴,,∴,∴,∴,∴GN=,∴S△HGN===,11.解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴AD=2,;(2)①由翻折不变性可知:AF=FH,AG=GH,∠AFG=∠GFH,∵FH∥AC,∴∠AGF=∠GFH,∴∠AGF=∠AFG,∴AG=AF,∴AG=AF=FH=HG,∴四边形AGHF是菱形;②∵FH∥AC,∴△FBH∽△ABC,∴,又∵BC=6,AC=8,AB=10,∴BH:FH:BF=3:4:5,∴设BH=3a,则FH=AF=4a,BF=5a,∴4 a+5a=10,∴,∴FH=,即菱形的边长为;(3)在点P使得△CPH∽△DPE,理由如下:∵△CPH∽△DPE,∴,∵BH=,∴CH=,∴,∴.12.证明:(1)∴=,两边都除以MH,得,;(2)如图1,作AE⊥BD于E,MF⊥BD于F,CG⊥BD于G,∴AE∥MF∥CG,∴,∵HH∥AB,∴,∴,同理可得:,由(1)得,,两边乘以,得,(3)如图2,∵DG∥BC,∴△ADG∽△ABC,∴,∵,∴,∵四边形DEFG是正方形,∴MN=DE=DG,∴,两边都除以DG,得,.13.(1)证明:∵CD⊥AB,∴∠BDC=90°=∠ACB,∵∠CBD=∠ABC,∴△CBD∽△ABC,∴,∴BC2=AB•BD;(2)①证明:∵四边形ABCD是正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即,∵∠OBF=∠EBD,∴△BOF∽△BED;②解:在Rt△BCE中,∵BC=6,CE=2,∴BE==2,∴DE=4,BO=3,由①知△BOF∽△BED,∴,∴,∴OF=.14.(1)证明:如图①中,∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB∥CD,∴∠ABF=∠CQB,由翻折的性质可知,∠E=∠ABC=90°∵PE∥BQ,∴∠AFB=∠E=90°,∴△AFB∽△BCQ;(2)证明:如图①中,设AB=BC=CD=AD=2a,∵Q是CD的中点,∴CQ=QD=a,∵∠C=90°,∴BQ===a,∵△AFB∽△BCQ,∴=,∴=,∴BF=a,∴QF=a,∴==,∴BF=QF;(3)解:如图②,建立如图平面直角坐标系,过点E作EH⊥AB于点T.∵BF=FQ,FQ=6,∴BF=4,∴BQ=BF+FQ=4+6=10,∴CQ=2,AB=BC=CD=AD=4,∴Q(4,2),∴直线BQ的解析式为y=x,∵∠EAT=∠CBQ,∠ATE=∠BCQ=90°,∴△ATE∽△BCQ,∴==,∴==,∴AT=8,ET=4,∴BT﹣AB﹣AT=4﹣8,∴E(4,4﹣8),∵D(4,4),∴直线DE的解析式为:y=x+2﹣10,由,解得,∴G(4﹣4,2﹣2),∴S△BCG=××(2﹣2)=20﹣4.15.解:(1)①∵等边△ABC的边长为8,∴AC=8,∵△APD∽△ACP,∴,∵AD=2,∴,∴AP=4,故答案为4;②∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=60°,∵△APD与△BPC相似,∴△APD∽△BPC或△APD∽△BCP,Ⅰ、当△APD∽△BPC时,,∴,∴AP=,Ⅱ、当△APD∽△BCP时,,∴,∴AP=4,即△APD与△BPC相似时,AP的长度为或4;(2)①∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=∠ACB=60°,∵△APD与△BQC相似,∴△APD∽△BQC或△APD∽△BCQ,Ⅰ、当△APD∽△BQC时,∠APD=∠BQC,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BQC,∴∠BQC=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(180°﹣∠B﹣∠BAC)=∠B+∠BQC﹣120°=60°+∠PDC﹣60°﹣120°=∠PDC﹣120°,∴∠PDC+∠ACQ=120°;Ⅱ、当△APD∽△BCQ时,∠APD=∠BCQ,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BCQ,∴∠BCQ=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(∠PDC﹣60°)=120°﹣∠PDC,∴∠ACQ+∠PDC=120°,即满足条件的∠ACQ与∠PDC之间的数量关系是∠ACQ+∠PDC=120°或∠PDC﹣∠ACQ=120°;②线段EF的长是一个定值,为.如图,连接AE并延长至G,使AE=GE,连接PG,QG,∵点E是DP的中点,∴DE=PE,∵∠AED=∠GEP,∴△AED≌△GEP(SAS),∴AE=GE,PG=AD=2,∠ADE=∠GPE,∴PG∥AD,∴∠QPG=∠BAC=60°,∵PQ=2=PG,∴△PQG为等边三角形,∴QG=2,∠PQG=60°=∠B,∴QG∥BC,连接GF并延长交BC于H,∴∠FQG=∠FCH,∵点F是CQ的中点,∴FQ=FC,∵∠QFG=∠CFH,∴△QFG≌△CFH(ASA),∴FG=FH,CH=QG=2,连接AH,过点A作AM⊥BC于M,∴∠AMC=90°,CM=BC=4,在Rt△AMC中,AC=8,根据勾股定理得,AM2=AC2﹣CM2=82﹣42=48,在Rt△AMH中,MH=CM﹣CH=2,根据勾股定理得,AH===2,∵AE=GE,FG=FH,∴EF是△AHG的中位线,∴EF=AH=,即线段EF的长是一个定值.16.解:(1)∵AF⊥DE,∴∠ADE+∠DAF=90°,∵∠ADE+∠AED=90°,∴∠DAF=∠AED,∵∠ADE=∠ABF=90°,AD=AB,∴△ADE≌△DAF(AAS),∴AF=DE;(2)过点G作GM⊥BA交于点M,∵AF⊥EG,∴∠F AB+∠AEG=90°,∵∠F AB+∠AFB=90°,∴∠AEG=∠AFB,∵∠GME=∠ABF=90°,∴△GME∽△ABF,∴=,∵AD=GM,∴;(3)连接AH,∵AG⊥GH,∴△AGH是直角三角形,∵HG=5,GA=7.5,∴AH=,在Rt△ABH中,BH=3,AH=,∴AB=,∵∠AGH=90°,∴∠DGA+∠CGH=90°,∵∠DGA+∠GAD=90°,∴∠GAD=∠CGH,∴△DAG∽△CGH,∴==,∴==,∴AD=6,由(2)知,∴==.17.解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500.18.解:(1)甲的做法正确,理由如下:∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵∠C=90°,∴四边形DECF是矩形,∴∠EDF=90°,DE∥BC,DF∥AC,∴,△AED∽△ACB,△BFD∽△BCA,即:AE=CE,同理可得:BF=CF,∴DF∥AC,EF∥AB,∴四边形AEFD是平行四边形,△CEF∽△CAB,同理可得:四边形DEFB是平行四边形,∴∠EFD=∠A,∵∠AED=∠EDF,∴△AED∽△FDE,∴四个小三角形与△ABC相似;(2)当时,△EDF∽△AFD∽△FEC,理由如下:∵△ADF∽△ACB,△DEB∽△ACB,∴①,②,得,,∴DE=EF,∵DE∥AF,∴四边形ADFE是平行四边形,由(1)可得,△DEF和△CEF与△ABC相似,故答案是:;(3)如图,根据和AC和AB及AB的长度找出点D的位置,然后作DE∥AC交BC于E,作EF∥AB交AC于F,连接DF即可.19.解:(1)①∵O是BC的中点,∴OB=OC,在△BOD和△COF中,,∴△BOD≌△COF(SAS),∴CF=BD,∠OCF=∠B,∵AD=AE,AB=AC,∴BD=CE,∴CE=CF,即:,∵∠B+∠ACB=90°,∴∠OCF+∠ACB=90°,∴∠ECF=90°,∴△ECF是等腰直角三角形,故答案是:1,等腰直角三角形,解:(2)如图1,仍然成立,理由如下:连接BD,由(1)得:CF=BD,CF∥BD,∴∠CFO=∠DBO,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD,∠ACE=∠ABD,∴CE=CF,∵∠ACB+∠ABC=90°,∴∠ACE+∠EAO+∠ABC=90°,∴∠ABD+∠EAO+∠ABC=90°,∴∠EAO+∠DBO=90°,∴∠EAO+∠CFO=90°,∴∠FCE=90°,∴=1,△ECF是等腰直角三角形;(3)如图2,连接BD,作AG⊥CD于G,设AD=a,则AB=,AC=a,AE=,由(2)得:∠CAE=∠BAD,CF=BD,∵,∴△CAE∽△BAD,∴,∠ACD=∠ABD,∴,同理(2)得:∠CEF=90°,∴∠ECF=∠EAD=90°,∴点C、A、B、D共圆,∴∠1=∠ACG,∵AD=a,AE=,∠DAE=90°,∴DE=,由S△ADE=得,AG=a,∴sin∠ACD===,∴sin∠1=.20.(1)证明:∵∠ADC=∠ACB,,∴△ADC∽△ACB,∴∠DAC=∠CAB,∴AC平分∠DAB;(2)解:∵△ADC∽△ACB,∴,∴AC2=AB×AD,∵AC=8,AB=12,∴64=12AD,∴AD=,故答案为:;(3)解:∵∠ACB=90°,点E为AB的中点,∴AB=2CE=10,∴AC=8,∵△ADC∽△ACB,∴AD==6.4,由(1)知∠DAC=∠EAC,∵CE=AE,∴∠ECA=∠EAC,∴∠DAC=∠ECA,∴△AFD∽△CFE,∴.。

2019-2020年中考物理专题复习《专题复习 图像信息问题解题攻略》教学设计

2019-2020年中考物理专题复习《专题复习 图像信息问题解题攻略》教学设计

2019-2020年中考物理专题复习《专题复习图像信息问题解题攻略》教学设计二、考査功能:试题对学生的能力考查主要涉及实验设计能力,数据读取、分析与处理能力,图像的识别与分析能力,运用数学工具的能力等。

一、考査重点和热点:图像信息类试题是以图像、图形和数据表格为试题的信息来源.图像、图表或数据表格一般都含有题目需求的信息,这类题目的图像信息量大,较为隐蔽.它的取材范围较广,内容可能源自教材,也有的涉及高新技术或环保、能源等社会热点问题.三、考查难点:在解答这类试题的过程中,要仔细观察、挖掘图像所含的信息,并对所得到的信息进行分类、合成、提取、加工,最终求得问题的解答。

四、题型分析:题型1:图像分析与计算【例1】(xx·上海中考)甲、乙两物体先后从同地沿同方向做匀速直线运动。

甲比乙先运动2 秒,甲运动6 秒时通过的路程为 6 米,此时甲、乙间的距离为 2米。

在图所示的a、b、c三条图线中,乙的s-t图()A.一定是图线aB.一定是图线bC.可能是图线bD.可能是图线c【思路点拨】由于甲运动6s通过的路程为6m,可判断出图线a为甲的运动图像;甲比乙先运动2s,所以此时乙的运动时间为4s,在图上另外两条图线4s是的路程分别是6m、8m,根据此时甲、乙间的距离为2m,可知乙的s-t图线可能是c,故选D。

【完全解答】D【例2】分别由甲、乙两种物质组成的不同物体,其质量与体积的关系如图所示,分析图像可知,两种物质的密度之比为()A.1:2B.2:1C.4:1D.8:1【思路点拨】由图象可知,当m甲=40g时,V甲=10cm3;当m乙=10g时,V乙=20cm3,则甲乙的密度分别为:ρ甲===4g/cm3;ρ乙===0.5g/cm3,所以,甲乙的密度之比:ρ甲:ρ乙=4g/cm3:0.5g/cm3=8:1.故选D。

【完全解答】D【方法技巧】所谓图像信息题,就是根据实际问题所表现出来的图像,要求考生依据所给的信息,运用所学的知识对其进行整理、分析、加工和处理。

中考数学第二轮复习资料—专题复习(共50页,大量对应练习)

中考数学第二轮复习资料—专题复习(共50页,大量对应练习)

中考数学第二轮复习资料—专题复习(一)、初中阶段主要的数学思想1.数形结合的思想把问题中的数量关系与形象直观的几何图形有机的结合起来,并充分利用这种结合寻找解题的思路,使问题得到解决的思想方法,在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法。

涉及实数与数轴上点的对应关系,公式、定理的几何背景问题,函数与方程的对应关系等。

一:【要点梳理】1.数形结合思想方法是初中数学中一种重要的思想方法.数是形的抽象概括,形是数的直观表现,用数形结合的思想解题可分两类:一是利用几何图形的直观表示数的问题,它常借用数轴、函数图象等;二是运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等2.热点内容(1).利用数轴解不等式(组)(2).研究函数图象隐含的信息,判断函数解析式的系数之间的关系,确定函数解析式和解决与函数性质有关的问题.(3).研究与几何图形有关的数据,判断几何图形的形状、位置等问题.(4).运用几何图形的性质、图形的面积等关系,进行有关计算或构件方程(组),求得有关结论等问题.二:【例题与练习】1.选择:(1)某村办工厂今年前5个月生产某种产品的总量c(件)关于时间t(月)的图象如图所示,则该厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4、5两月生产总量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月均停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产(2)某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如图所示,正确的是( )(3)丽水到杭州的班车首法时间为早上6时,末班车为傍晚18时,每隔2小时有一班车发出,且丽水到杭州需要4个小时.图中相遇的次数最多为( )A.4次B.5次C.6次.D.7次 2.填空:(1)已知关于X 的不等式2x-a>-3的解集如图所示,则a 的值等于 (2)如果不等式组8 4x-1x mx ⎧+⎪⎨⎪⎩的解集为x>3,则m 的取值范围是3.考虑2xy =的图象,当x=-2时,y= ;当x<-2时,y 的取值范围是 。

2021届中考数学专题复习训练——二次函数 专题2.2函数动点图象问题

2021届中考数学专题复习训练——二次函数 专题2.2函数动点图象问题

函数图象解题思路起点:动点从何处出发,何时出发,何速度运动,运动方向是什么,形成的是何图形?起点有没有意义?点运动的路程(边长)中间点:分阶段运动,中间的位置是什么?终点:何时何地结束运动,停止时是否有先后?特殊点:运动过程中特殊的位置。

类型一、实际问题【经典例题1】已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A.B. C. D.【解析】 由题意和图象可得,乙到达B 地时甲距A 地120km ,开始时两人的距离为0; 甲的速度是:120÷(3−1)=60km/h ,乙的速度是:80÷3=380km/h ,即乙出发1小时后两人距离为380km ;设乙出发后被甲追上的时间为x h ,则60(x −1)=380x ,得x =1.8,即乙出发后被甲追上的时间为1.8h.所以符合题意的函数图象只有选项B.故选:B.练习1-1甲、乙两位同学进行长跑训练,甲和乙所跑的路程S (单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是( )A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢练习1-2小明在书上看到了一个实验:如图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象,如下图所示.小明选择的物体可能是( )A.B.C.D.练习1-3如图,在一个盛水的圆柱形容器的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速将小球从水下向水面上拉动时,圆柱形容器内水面的高度与时间的函数图象大致是()类型二:几何动态①动点图形面积【经典例题2】如图,在等腰△ABC中,AB=AC=4cm,△B=30°,点P从点B 出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B. C. D.【解析】作AH ⊥BC 于H ,∵AB=AC=4cm ,∴BH=CH ,∵∠B=30°,∴AH=12AB=2,BH=3AH=23,∴BC=2BH=43,∵点P 运动的速度为3m/s ,Q 点运动的速度为1cm/s ,∴点P 从B 点运动到C 需4s ,Q 点运动到C 需8s ,当0△x △4时,作QD ⊥BC 于D ,如图1,BQ=x ,BP=3x ,在Rt △BDQ 中,DQ=21BQ=21x , ∴y=21⋅21x ⋅3x =43x 2,当4<x △8时,作QD ⊥BC 于D ,如图2,CQ=8−x ,BP=43在Rt △BDQ 中,DQ=21CQ=21(8−x ),∴y=21⋅21(8−x )⋅43=−3+83, 综上所述,⎪⎩⎪⎨⎧≤<+-≤≤=)84(383)40(432x x x x y ,,,.故选D.练习2-1四边形ABCD 为直角梯形,CD△AB ,CB△AB 且CD=BC=21AB ,若直线l △AB ,直线l 截这个梯形所得的位于此直线左方的图形面积为y ,点A 到直线L 的距离为x ,则y 与x 关系的大致图象为( )A.B. C. D.练习2-2如图,四边形ABCD 是矩形,AB=8,BC=4,动点P 以每秒2个单位的速度从点A 沿线段AB 向B 点运动,同时动点Q 以每秒3个单位的速度从点B 出发沿B −C −D 的方向运动,当点Q 到达点D 时P 、Q 同时停止运动,若记△PQA 的面积为y ,运动时间为x ,则下列图象中能大致表示y 与x 之间函数关系图象的是( )练习2-3如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A. B. C. D.练习2-4如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()A. B. C. D.练习2-5如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s 的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t (s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()练习2-6如图,在△ABCD中,AB=6,BC=10,AB△AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.练习2-7如图,在平面直角坐标系x Oy中,A(2,0),B(0,2),点M在线段AB 上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为()A. B. C. D.练习2-8木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C. D.练习2-9数学课上,老师提出一个问题:如图△,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使△BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图△所示,题中用“……”表示的缺失的条件应补为( )A. 点C的横坐标B. 点C的纵坐标C. △ABC的周长D. △ABC的面积练习2-10如图,在平面直角坐标系x Oy中,以点A(2,3)为顶点作一直角∠PAQ,使其两边分别与x轴,y轴的正半轴交于点P,Q.连接PQ,过点A作AH⊥PQ 于点H.设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x函数关系的图象大致是().②动点图形边长【经典例题3】如图△,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图△所示,则AD边的长为( )A. 3B. 4C. 5D. 6【解析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为3. ∴21AB •21=3,即AB •BC=12. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为7,∴AB+BC=7.则BC=7-AB ,代入AB •BC=12,得AB 2-7AB+12=0,解得AB=4或3, 因为AB<AD ,即AB<BC ,所以AB=3,BC=4.故选:B .练习3-1如图1,动点P 从菱形ABCD 的顶点A 出发,沿以1cm/s 的速度运动到点D ,设点P 的运动时间为x (s ),△PAB 的面积为y(cm 2),表示y 与x 的函数关系的图象如图2所示,则a 的值为( ) A.25 B.5 C. 2 D.52练习3-2如如图△,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B--运动到点D.图△是点P、Q运动时,△BPQ的面积S随时出发沿折线B C D间t变化关系图象,则a的值是()A.2B.2.5C.3D.练习3-3如如图1,四边形ABCD中,AB△CD,△B=90°,AC=AD.动点P从点B出发沿折线B﹣A﹣D﹣C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.C.8D.练习3-4如如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC △的面积是______.练习3-5如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC=y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是52,则矩形ABCD 的面积是() A.523 B. 5 C. 6 D. 425【经典例题4——圆】如图,在平面直角坐标系x Oy中,以(3,0)为圆心作△P,△P与x轴交于A. B,与y轴交于点C(0,2),Q为△P上不同于A. B的任意一点,连接QA、QB,过P点分别作PE△QA于E,PF△QB于F. 设点Q的横坐标为x,PE2+PF2=y.当Q 点在△P上顺时针从点A运动到点B的过程中,下列图象中能表示y与x的函数关系的部分图象是( )【解析】△P(3,0),C(0,2),△PC2=13.△AC是直径,△△Q=90°.又PE△QA于E,PF△QB于F,△四边形PEQF是矩形。

2021年中考数学第三轮冲刺:函数图像的应用综合 压轴题专题复习(含答案)

2021年中考数学第三轮冲刺:函数图像的应用综合 压轴题专题复习(含答案)

2021年中考数学第三轮冲刺:函数图像的应用综合压轴题专题复习1、已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2、甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?3、A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.4、某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x (天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?5、在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是千米1时,B,C两地的路程为千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.6、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?7、2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20/km h,游轮行驶的时间记为()t h的图象如图2所示(游轮s km关于()t h,两艘轮船距离杭州的路程()在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?8、甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y 千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE 所表示的y 与x 之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.9、为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为3480m ,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注水,游泳池的蓄水量()3y m 与注水时间()t h 之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量()3y m 与注水时间()t h 之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?10、因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)11、暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1k 和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.12、小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t (分钟),图1表示两人之间的距离s (米)与时间t (分钟)的函数关系的图象;图2中线段AB 表示小华和商店的距离1y (米)与时间t (分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M的坐标是___________;y(米)与时间t(分钟)的函数关系式,并(2)直接写出妈妈和商店的距离2在图2中画出其函数图象;(3)求t为何值时,两人相距360米.13、为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)14、某商店代理销售一种水果,六月份的销售利润y(元)与销售量()x kg之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.15、2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系式为24(020)5112(2030)5x xpx x⎧+<⎪⎪=⎨⎪-+<⎪⎩,销售量y(千克)与x之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)16、团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.参考答案2021年中考数学第三轮冲刺:函数图像的应用综合压轴题专题复习1、已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为75 千米/时,a= 3.6 ,b= 4.5 .(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.【解答】解:(1)乙车的速度为:(270﹣60×2)÷2=75千米/时,a=270÷75=3.6,b=270÷60=4.5.故答案为:75;3.6;4.5;(2)60×3.6=216(千米),当2<x≤3.6时,设y=k1x+b1,根据题意得:,解得,∴y=135x﹣270(2<x≤3.6);当3.6<x≤4.6时,设y=60x,∴;(3)甲车到达距B地70千米处时行驶的时间为:(270﹣70)÷60=(小时),此时甲、乙两车之间的路程为:135×﹣270=180(千米).答:当甲车到达距B地70千米处时,求甲、乙两车之间的路程为180千米.2、甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有270 个,甲机器每小时加工20 个零件,乙机器排除故障后每小时加工40 个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?【解答】解:(1)这批零件一共有270个,甲机器每小时加工零件:(90﹣550)÷(3﹣1)=20(个),乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个);故答案为:270;20;40;(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,把B(3,90),C(6,270)代入解析式,得,解得,∴y=60x﹣90(3≤x≤6);(3)设甲价格x小时时,甲乙加工的零件个数相等,①20x=30,解得x=15;②50﹣20=30,20x=30+40(x﹣3),解得x=4.5,答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.3、A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN 所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C 市的路程之和是460千米.【详解】(1)由图象可知甲车在8t =时行驶到C 市,此时行驶的路程为480km ,故速度为48060km/h 8=, ∴乙车的行驶速度为:602080km/h +=,∴乙车由C 市到A 市需行驶4806h 80=, ∴图中括号内的数为4610+=,故答案为:60,10;(2)设线段MN 所在直线的解析式为 y = kt + b ( k ≠ 0 ) .把点M (4,0),N (10,480)代入y = kt + b ,得:4010480k b k b +=⎧⎨+=⎩, 解得:80320k b =⎧⎨=-⎩, ∴线段MN 所在直线的函数解析式为y = 80t -320.(3)若在乙车出发之前,即4t <时,则48060460t -=,解得13t =; 若乙车出发了且甲车未到C 市时,即48t <<时,则()48060804460t t -+-=,解得17t =(舍);若乙车出发了且甲车已到C 市时,即8t >时,则()60480804460t t -+-=,解得9t =; 综上,甲车出发13小时或9小时时,两车距C 市的路程之和是460千米.4、某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y (cm )与生长时间x (天)之间的关系大致如图所示.(1)求y 与x 之间的函数关系式;(2)当这种瓜苗长到大约80cm 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【解答】解:(1)当0≤x ≤15时,设y =kx (k ≠0),则:20=15k ,解得k =43,∴y =43x ;当15<x ≤60时,设y =k ′x +b (k ≠0),则:{20=15k ′+b170=60k ′+b ,解得{k ′=103b =−30,∴y =103x −30,∴y ={43x(0≤x ≤15)103x −30(15<x ≤60);(2)当y =80时,80=103x −30,解得x =33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.5、在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是 60 千米1时,B ,C 两地的路程为 千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.【解答】解:(1)由题意可得:(10,600)F ,∴甲车的行驶速度是:6001060÷=千米/时,M 的纵坐标为360,B ∴,C 两地之间的距离为360千米,故答案为:60;360;(2)甲车比乙车晚1.5小时到达C 地,∴点(8.5,0)E ,乙的速度为3602(100.5 1.5)90⨯÷--=千米/小时,则360904÷=,(4,360)M ∴,(4.5,360)N ,设NE 表达式为y kx b =+,将N 和E 代入,08.5360 4.5k b k b =+⎧⎨=+⎩,解得:90765k b =-⎧⎨=⎩,y∴(千米)与x(小时)之间的函数关系式为:;(3)设出发x小时,行驶中的两车之间的路程是15千米,①在乙车到B地之前时,60015S S--=乙甲,即600609015x x--=,解得:3910x=,②(600360)604-÷=小时,360904÷=小时,∴甲乙同时到达B地,当乙在B地停留时,17156044÷+=小时;③当乙车从B地开始往回走,追上甲车之前,15(9060) 4.55÷-+=小时;④当乙车追上甲车并超过15km时,(3015)(9060) 4.56+÷-+=小时;⑤当乙车回到C地时,甲车距离C地15千米时,39(60015)604-÷=小时.综上:行驶中的两车之间的路程是15千米时,出发时间为3910小时或174小时或5小时或6小时或394小时.6、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【解答】解:(1)设函数表达式为(0)y kx b k=+≠,把(1.6,0),(2.6,80)代入y kx b=+,得0 1.680 2.6k bk b=+⎧⎨=+⎩,解得:80128kb=⎧⎨=-⎩,y∴关于x的函数表达式为80128(1.6 3.1)y x x=-;(2)当20080120y=-=时,12080128x=-,解得 3.1x=,由图可甲的速度为80501.6=(千米/小时),货车甲正常到达B地的时间为200504÷=(小时),18600.3÷=(小时),415+=(小时),5 3.10.3 1.6--=(小时),设货车乙返回B地的车速为v千米/小时,1.6120v∴,解得75v.答:货车乙返回B地的车速至少为75千米/小时.7、2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20/km h,游轮行驶的时间记为()t h,两艘轮船距离杭州的路程()s km关于()t h的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km ?【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h . ∴游轮在“七里扬帆”停靠的时长23(42020)23212()h =-÷=-=.(2)①2802014h ÷=,∴点(14,280)A ,点(16,280)B ,36600.6()h ÷=,230.622.4-=,∴点(22.4,420)E ,设BC 的解析式为20s t b =+,把(16,280)B 代入20s t b =+,可得40b =-, 2040(1623)s t t ∴=-,同理由(14,0)D ,(22E ,4,420)可得DE 的解析式为50700(1422.4)s t t =-, 由题意:204050700t t -=-,解得22t =,22148()h -=,∴货轮出发后8小时追上游轮.②相遇之前相距12km 时,204(50700)12t t ---=,解得21.6t =.相遇之后相距12km 时,50700(2040)12t t ---=,解得22.4t =,21.6h ∴或22.4h 时游轮与货轮何时相距12km .8、甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x 小时后离甲地的路程为y 千米,图中折线OCDE 表示接到通知前y 与x 之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为 千米/小时;(2)求线段DE 所表示的y 与x 之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【详解】解:(1)由图象可知,休息前汽车行驶的速度为80180÷=千米/小时; 故答案为:80;(2)休息后按原速继续前进行驶的时间为:()24080802-÷=(小时), ∴点E 的坐标为(3.5,240),设线段DE 所表示的y 与x 之间的函数表达式为y kx b =+,则: 1.5803.5240k b k b +=⎧⎨+=⎩,解得8040k b =⎧⎨=-⎩, ∴线段DE 所表示的y 与x 之间的函数表达式为8040y x =-;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290800.5 4.125÷+=(小时),从早上8点到中午12点需要12-8=4(小时),∵4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.9、为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为3480m ,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注水,游泳池的蓄水量()3y m 与注水时间()t h 之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量()3y m 与注水时间()t h 之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?【详解】解:(1)设y=kt+100,把(2,380)代入得,2k+100=380,解得k=140,∴y=140t+100,当y=480时,则480=140t+100,解得t=197, (480-100)÷197=140m 3/h ;∴y=140t+100,同时打开甲、乙两个进水口的注水速度是140m 3/h ; (2)设甲的注水速度是x m 3/h ,则乙的注水速度是(140-x) m 3/h ,由题意得48044803140x x=⨯-, 解得x=60,经检验x=60符合题意,480=860(h), ∴单独打开甲进水口注满游泳池需8h .10、因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b , 将点(60,100)、(70,80)代入一次函数表达式得:100608070k bk b ⎩+⎨+⎧==, 解得:2220k b -⎧⎨⎩==,故函数的表达式为:y=-2x+220;(2)设药店每天获得的利润为W 元,由题意得: w=(x-50)(-2x+220)=-2(x-80)2+1800, ∵-2<0,函数有最大值,∴当x=80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元. 11、暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示. (1)求1k 和b 的值,并说明它们的实际意义; (2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【解答】解:(1)11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩,解得11530k b =⎧⎨=⎩,115k =表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,30b =表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为150.625÷=(元), 则2250.820k =⨯=;(3)选择方案一所需费用更少.理由如下: 由题意可知,11530y x =+,220y x =.当健身8次时,选择方案一所需费用:115830150y=⨯+=(元),选择方案二所需费用:2208160y=⨯=(元),150160<,∴选择方案一所需费用更少.12、小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离1y(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.【详解】解:(1)由题意可得:小华步行的速度为:180030=60(米/分钟),妈妈骑车的速度为:1800601010-⨯=120(米/分钟);妈妈回家用的时间为:1800120=15(分钟),∵小华到达商店比妈妈返回商店早5分钟, ∴可知妈妈在35分钟时返回商店, ∴装货时间为:35-15×2=5(分钟), 即妈妈在家装载货物的时间为5分钟;由题意和图像可得妈妈在M 点时开始返回商店, ∴M 点的横坐标为:15+5=20(分钟), 此时纵坐标为:20×60=1200(米), ∴点M 的坐标为()20,1200; 故答案为:120,5,()20,1200; (2)①当0≤t <15时y 2=120t , ②当15≤t <20时y 2=1800,③当20≤t ≤35时,设此段函数解析式为y 2=kx+b ,将(20,1800),(35,0),代入得180020035k b k b =+⎧⎨=+⎩,解得1204200k b =-⎧⎨=⎩,∴此段的解析式为y 2=-120x+4200,综上:2120(015)1800(1520)1204200(2035)tt y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩; 其函数图象如图,;(3)由题意知,小华速度为60米/分钟,妈妈速度为120米/分钟, ①相遇前,依题意有601203601800t t ++=,解得8t =(分钟); ②相遇后,依题意有601203601800t t +-=,解得12t =(分钟); ③依题意,当20t =分钟时,妈妈从家里出发开始追赶小华, 此时小华距商店180********-⨯=(米),只需10分钟,即30t =分钟时,小华到达商店,而此时妈妈距离商店为180010120600-⨯=(米)360>(米), ∴()120536018002t -+=⨯,解得32t =(分钟), ∴当t 为8,12或32(分钟)时,两人相距360米.13、为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y (单位:千米)与快递车所用时间x (单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME 的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间. (3)求两车最后一次相遇时离武汉的距离.(直接写出答案)【解答】解:(1)设ME 的函数解析式为(0)y kx b k =+≠,由ME 经过(0,50),(3,200)可得:503200b k b =⎧⎨+=⎩,解得5050k b =⎧⎨=⎩,ME ∴的解析式为5050y x =+;(2)设BC 的函数解析式为y mx n =+,由BC 经过(4,0),(6,200)可得:406200m n m n +=⎧⎨+=⎩,解得100400m n =⎧⎨=-⎩, BC ∴的函数解析式为100400y x =-;设FG 的函数解析式为y px q =+,由FG 经过(5,200),(9,0)可得:520090p q p q +=⎧⎨+=⎩,解得50450p q =-⎧⎨=⎩, FG ∴的函数解析式为50450y x =-+,解方程组10040050450y x y x =-⎧⎨=-+⎩得1735003x y ⎧=⎪⎪⎨⎪=⎪⎩,同理可得7x h =,答:货车返回时与快递车图中相遇的时间173h ,7h ;(3)(97)50100()km -⨯=,答:两车最后一次相遇时离武汉的距离为100km .14、某商店代理销售一种水果,六月份的销售利润y (元)与销售量()x kg 之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元? (2)求图象中线段BC 所在直线对应的函数表达式.。

专题复习——图表信息题

专题复习——图表信息题

例4:如图甲所示,放在水平地面上的物体,受到方向不变 如图甲所示,放在水平地面上的物体, 的水平推力F的作用, 的大小与时间t 的水平推力F的作用,F的大小与时间t的关系和物体运动速 与时间t的关系如图乙所示。由图象可知当t=1s t=1s时 度v与时间t的关系如图乙所示。由图象可知当t=1s时,物 静止 体处于__________状态。当t=5s时,物体受到的摩擦力为 体处于__________状态。 t=5s时 __________状态 2 1 __________N。 t=3s时 物体受到的合力为______N ______N。 __________N。当t=3s时,物体受到的合力为______N。
例2:图示是一定质量的某种晶体体积随温度 2:图示是一定质量的某种晶体体积随温度 变化的图像,分析图像可知: 变化的图像,分析图像可知: 0 这种晶体的熔点是________℃ ________℃; (1)这种晶体的熔点是________℃; 大于 点的密度___________E点的密度。 ___________E点的密度 (2)D点的密度___________E点的密度。 选填“大于” 等于” 小于” (选填“大于”、“等于”或“小于”)
例7:小东与几位同学做手影游戏时发现,手影大小经常在改变。 小东与几位同学做手影游戏时发现,手影大小经常在改变。 影子的大小与哪些因素有关?他猜想:影子的大小可能与光源到 影子的大小与哪些因素有关?他猜想: 物体的距离有关。他们借助如图所示的实验装置, 物体的距离有关。他们借助如图所示的实验装置,来探究影子高 度与光源到物体距离的关系。 度与光源到物体距离的关系。
实验中, 实验中,把手电筒正对黑板擦由近及远先后放在距离黑板 擦不同的位置,保持其他因素不变, 擦不同的位置,保持其他因素不变,分别测量影子在墙面 上的高度,记录数据如上表。 上的高度,记录数据如上表。 分析数据他们发现:若保持其他因素不变, ( 1 )分析数据他们发现:若保持其他因素不变,当手电筒 由近处逐渐远离黑板擦时,影子的高度随之______ ______。 由近处逐渐远离黑板擦时,影子的高度随之______。 减小 为了进一步发现其中的规律, ( 2 )为了进一步发现其中的规律,他们根据数据绘制了 影子高度H 随手电筒到黑板擦距离L 变化的图象。 影子高度H 随手电筒到黑板擦距离L 变化的图象。由图象 可知,当手电筒到黑板擦的距离L 可知,当手电筒到黑板擦的距离L =35 cm 时,影子的高 大致是____________cm 15.3—15.7 度H 大致是____________cm 。 15.3 15.7 当手电筒距黑板擦较远时, ( 3 )当手电筒距黑板擦较远时,观察图象的变化趋势发 慢 影子变小得_______ 选填“ _______( 现,影子变小得_______(选填“快”或“慢”) ;当手电 基本不变 筒距黑板擦足够远时,影子大小将_____________ _____________。 筒距黑板擦足够远时,影子大小将_____________。

2020年浙江省中考数学二轮复习专题:《函数实际应用题类型一图象类》(含答案)

2020年浙江省中考数学二轮复习专题:《函数实际应用题类型一图象类》(含答案)

第二部分题型研究题型三函数实际应用题类型一图像类针对演练1. (2019青岛)A、B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系.请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h;乙的速度是________km/h;(2)甲出发多少小时两人恰好相距5 km?第1题图2. A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B 城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数自变量的取值范围;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.第2题图3. (2019宿迁)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速.当天早上小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(千米)与行驶时间x(分钟)之间的函数图象如图所示.(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.第3题图4. (2018丽水)甲、乙两人匀速从同一地点到1500米处的图书馆看书.甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?第4题图5. 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.(1)甲、乙两地之间的距离为________千米;图中点B的实际意义是__________________;(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车晚出发多少小时?(4)请在图②中画出快车和慢车距离甲地的路程y A,y B与行驶时间x之间的函数关系.第5题图考向2 费用问题针对演练1. 某市为鼓励市民节约用水,自来水公司按分段收费标准收费,如图反映的是每月水费y(元)与用水量x(吨)之间的函数关系.(1)当用水量超过10吨时,求y关于x的函数解析式;(2)按上述分段收费标准,小聪家三、四月份分别交水费38元和27元,问四月份比三月份节约用水多少吨?第1题图2. 某书店为了迎接2018年4月23日的“世界读书日”,计划购进A、B两类图书进行销售,若购进A、B两类图书共1000本,其中购进A类图书的单价为16元/本,购进B 类图书所需费用y(元)与购买数量x(本)之间存在如图所示的函数关系.(1)求y与x之间的函数关系式;(2)若该书店购进A类图书400本,则购进A、B两类图书共需要多少元?第2题图3. 如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行驶8千米时,收费应为________元;(2)从图象上你能获得哪些信息(请写出2条);(3)求出收费y(元)与行驶路程x(千米)(x≥3)之间的函数关系式.第3题图4. (2018淮安)某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?第4题图5. (2018上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式;(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.第5题图6. (2018天门)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?第6题图考向3流量问题针对演练1. (2019吉林)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28 s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.第1题图(1)正方体的棱长为________cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.2. 一个有进水管与出水管的容器,从某时刻开始4 min内只进水不出水,在随后的8 min内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分钟进水、出水量各多少升.第2题图3. 某游泳池一天要经过“注水-保持-排水”三个过程,如图,图中折线表示的是游泳池在一天某一时间段内池中水量y(m3)与时间x(min)之间的关系.(1)求排水阶段y与x之间的函数关系式,并写出x的取值范围;(2)求水量不超过最大水量的一半值的时间一共有多少分钟.第3题图答案针对演练1. 解:(1)l2;30;20;【解法提示】∵甲先出发0.5小时后,乙才出发,∴乙图象与x 轴的交点坐标为(0.5,0),故l 2是乙离A 地距离与时间t 的函数图象;甲经过2小时走完全程,则甲的速度为60÷2=30(km/h).从0.5小时开始,经过3.5-0.5=3小时,乙走完全程,∴乙的速度为60÷3=20 (km/h).(2)设甲出发后,经过t 小时,两人相距5 km ,①当两人相遇前相距5 km 时,则:30t +20(t -0.5)=60-5,解得t =1.3,②当两人相遇后相距5 km 时,则:30t +20(t -0.5)=60+5,解得t =1.5,答:甲出发1.3 h ,1.5 h 时,两人恰好相距5 km.2. 解:(1)设甲车返回过程中y 与x 之间的函数解析式为y =kx +b ,∵图象过(5,450),(10,0)两点,∴⎩⎪⎨⎪⎧5k +b =45010k +b =0, 解得⎩⎪⎨⎪⎧k =-90b =900, ∴y =-90x +900(5≤x ≤10);(2)当x =6时,y =-90×6+900=360,v 乙=3606=60(千米/小时). 答:乙车的行驶速度为60千米/小时.3. 解:(1)如解图,由题意可设AH 的表达式为y =34x +b 1,第3题解图由H (6,3)在AH 上,则有3=34×6+b 1,即b 1=-32, ∴AH 的表达式为y =34x -32, 由A (8,m ) 在AH 上,则有m =34×8-32,即m =92, 故点A 的纵坐标m 的值为92; (2) 如解图,由题意可设BC 的表达式为y =34x +b 2, 由B (10, 92)在BC 上, 则有92=34×10+b 2,即b 2=-3,∴BC 的表达式为y =34x -3, 当y =9时,x =16,即C (16,9),∴E (15,9),∵F (9,0),∴EF 的表达式为y =32x -272, 联立方程组⎩⎪⎨⎪⎧y =34x -3y =32x -272, 解得⎩⎪⎨⎪⎧x =14y =152, 9-152=32(千米), 答:小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校32千米. 4. 解:(1)甲行走的速度:150÷5=30(米/分).(2)当t =35时,甲行走的路程为:35×30=1050(米),乙行走的路程为:(35-5)×50=1500(米),∴当t =35时,乙已经到达图书馆,甲距离图书馆的路程还有:1500-1050=450(米), ∴甲到达图书馆还需时间:450÷30=15(分),∴35+15=50(分),∴当s =0时,横轴上对应的时间为50.补画的图象如解图所示(横轴上对应时间为50),第4题解图(3)设乙出发经过x 分和甲第一次相遇,根据题意得:150+30x =50x ,解得x =7.5,7.5+5=12.5(分),即当t =12.5时,s =0,∴点B 的坐标为(12.5,0),当12.5≤t ≤35时,设BC 的解析式为:s =kt +b (k ≠0),把C (35,450),B (12.5,0)代入可得:⎩⎪⎨⎪⎧12.5k +b =035k +b 1=450,解得⎩⎪⎨⎪⎧k =20b =-250, ∴s =20t -250,∴当35<t ≤50时,设CD 的解析式为s =k 1x +b 1(k 1≠0),把D (50,0),C (35,450)代入得:⎩⎪⎨⎪⎧50k 1+b 1=035k 1+b =450, 解得⎩⎪⎨⎪⎧k 1=-30b 1=1500, ∴s =-30t +1500,∵甲、乙两人相距360米,即s =360,解得:t 1=30.5,t 2=38,答:当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.5. 解:(1)900,4小时两车相遇;(2)慢车速度是:900÷12=75 km/h ,两车的速度和:900÷4=225 km/h ,快车速度是:225-75=150 km/h;相遇时慢车行驶的路程是:75×4=300 km, 两车相遇后快车到达乙地所用的时间:300÷150=2 h ,两车相遇后2 h 两车行驶的路程:225×2=450 km,所以,B (4,0),C (6,450),设线段BC 的解析式为y =kx +b , 则⎩⎪⎨⎪⎧4k +b =06k +b =450 ,解得⎩⎪⎨⎪⎧k =225b =-900. 所以线段BC 所表示的y 与x 之间的函数关系式为:y =225x -900(4≤x ≤6);(3)第一列快车与慢车相遇时快车行驶的路程:900-300=600 km,第二列快车与慢车相遇时快车行驶的路程:600-75×12=562.5 km, 第二列快车与慢车相遇时快车所用的时间:562.5÷150=3.75 h, 4.5-3.75=0.75 h. 答:第二列快车比第一列快车晚出发0.75小时.(4)快车从甲地驶往乙地,故快车的图象从(0,0)开始,速度为150 km/h ,路程为900 km ,故快车的终点坐标为(6,900),画出图象如解图的实线所示;慢车从乙地驶往甲地,故慢车的图象从(0,900)开始,速度为75 km/h ,路程为900 km ,故慢车的终点坐标为(12,0),画出图象如解图的虚线所示.第5题解图考向2 费用问题针对演练1. 解:(1)当用水量超过10吨时,设y 关于x 的解析式是y =kx +b ,结合图象得:⎩⎪⎨⎪⎧10k +b =3020k +b =70,解得⎩⎪⎨⎪⎧k =4b =-10, 即当用水量超过10吨时,y 关于x 的函数解析式是y =4x -10;(2)将y =38代入y =4x -10,得38=4x -10,解得,x =12,即三月份用水12吨,四月份用水为:27÷(30÷10)=9(吨),12-9=3(吨),答:四月份比三月份节约用水3吨.2. 解:(1)当0≤x ≤100时,设y 与x 之间的函数关系式是y =kx ,由100k =1800, 解得k =18,即当0≤x ≤100时,y 与x 之间的函数关系式是y =18x ,当x >100时,设y 与x 之间的函数关系式是y =ax +b ,由⎩⎪⎨⎪⎧100a +b =1800200a +b =3300,解得⎩⎪⎨⎪⎧a =15b =300, 即当x >100时,y 与x 之间的函数关系式是y =15x +300,∴y 与x 之间的函数关系式是:y =⎩⎪⎨⎪⎧18x (0≤x≤100)15x +300(x >100); (2)书店购进A 类图书400本,则购进B 类图书600本,则A 类图书花费:400×16=6400(元),B 类图书花费:15×600+300=9300(元),∴购进A 、B 两类图书共需要:6400+9300=15700(元),答:购进A 、B 两类图书共需要15700元.3. 解:(1)11;(2)①行驶路程小于或等于3千米时,收费是5元;②超过3千米但不超过8千米时,每千米收费1.2元;(3)当x ≥3时,直线过点(3,5)、(8,11),设y 与x 之间的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧3k +b =58k +b =11, 解得⎩⎪⎨⎪⎧k =1.2b =1.4, ∴收费y (元)与行驶路程x (千米)(x ≥3)之间的函数关系式为y =1.2x +1.4.4. 解:(1)240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC 段,设直线BC 的解析式为y =kx +b ,则有⎩⎪⎨⎪⎧10k +b =24025k +b =150,解得⎩⎪⎨⎪⎧k =-6b =300, ∴y =-6x +300,由题意(-6x +300)x =3600,解得x =20或30(舍).答:参加这次旅行的人数是20人.5. 解:(1)设y =kx +b ,将(0,400),(100,900)分别代入得:⎩⎪⎨⎪⎧b =400100k +b =900, 解得⎩⎪⎨⎪⎧k =5b =400, ∴y 与x 的函数解析式为y =5x +400;(2)绿化面积是1200平方米时,甲公司的费用为:5×1200+400=6400(元),乙公司的费用为:5500+4×(1200-1000)=6300(元),∵6300<6400,∴选择乙公司的服务,每月的绿化养护费用较少.6. 解:(1)y 甲=0.8x ,y 乙=⎩⎪⎨⎪⎧x (0<x <2000)0.7x +600(x≥2000). 【解法提示】设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,∴y 甲=0.8x ;当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000x =2000,解得k =1,∴y 乙=x ;当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,y 2=mx +n 中得⎩⎪⎨⎪⎧2000m +n =2000,4000m +n =3400, 解得⎩⎪⎨⎪⎧m =0.7n =600, ∴y 乙=⎩⎪⎨⎪⎧x (0<x <2000)0.7x +600(x≥2000); (2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;答:当原价小于6000元时,到甲商店购买更省钱;当原价大于6000元时,到乙商店购买更省钱;当原价等于6000元时,到甲、乙两商店购买花钱一样.考向3 流量问题 针对演练1. 解:(1)10;【解法提示】由题图可知,12秒时水槽内水面的高度为10 cm ,12秒后水槽内水面高度变化趋势改变,故正方体的棱长为10 cm ,(2)设线段AB 对应的函数解析式为y =kx +b .∵图象过A (12,10),B (28,20),∴⎩⎪⎨⎪⎧12k +b =1028k +b =20,解得⎩⎪⎨⎪⎧k =58b =52, ∴线段AB 对应的函数解析式为y =58x +52(12≤x ≤28); (3)t =4.【解法提示】∵28-12=165,∴没有正方体时,水面上升10 cm ,所用时间为16秒,又∵前12秒由于正方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,又经过了4秒,恰好将水械,槽注满.2. 解:(1)当4≤x ≤12时,设y 与x 的函数关系式为y =kx +b (k ≠0),∵ 函数图象经过点(4,20)、(12,30),∴⎩⎪⎨⎪⎧4k +b =2012k +b =30,解得⎩⎪⎨⎪⎧k =54b =15, ∴ 当4≤x ≤12时,y =54x +15; (2)每分钟进水、出水量各是5L 、154L. 【解法提示】根据图象,每分钟的进水量为:20÷4=5 L ,设每分钟出水m L ,则5×8-8m =30-20,解得m =154, 故每分钟进水、出水量各是5 L 、154L. 3. 解:(1)设排水阶段y 与x 之间的函数关系式是y =kx +b ,由⎩⎪⎨⎪⎧ 285k +b =1500300k +b =0,解得⎩⎪⎨⎪⎧k =-100b =30000,即排水阶段y与x之间的函数关系式是y=-100x+30000,当y=2000时,2000=-100x+30000,得x=280,即排水阶段y与x之间的函数关系式为y=-100x+30000(280≤x≤300);(2)设注水阶段y与x的函数关系式为y=mx,则30m=1500,解得m=50,∴注水阶段y与x的函数关系式为y=50x,当y=1000时,1000=50x,解得x=20,将y=1000代入y=-100x+30000,解得x=290,∴水量不超过最大水量的一半值的时间一共有:20+(300-290)=30(分钟), 即水量不超过最大水量的一半值的时间一共有30分钟.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习——图像(表)信息题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN中考数学专题复习——图像(表)信息题一、 知识网络梳理图象(表)信息类试题是题设条件或结论中包含有图象(表)的试题,这类题目的解题条件主要靠图象(表)给出,在解答这类试题的过程中,要仔细观察、挖掘图象(表)所含的信息,并对所得到的信息进行分类、合成、提取、加工,最终求得问题的解答.它主要表现在数轴、直角坐标系、点的坐标、一次函数、二次函数、反比例函数的图象、实用统计图象及部分几何图形等,所提供的形状特征、位置特征、变化趋势等的数学基础知识很好的考查了学生的观察分析问题的能力.这类题目的图象(表)信息量大,大多数条件不是直接告诉,而是以图象(表)形式映射出来,较为隐蔽,解答它不仅要有扎实的数学基础知识,而且要有较强的读图(表)、识图(表)、分析图(表)的能力.发现挖掘出题目所隐含的条件来达到解题的目的,这类题目还会有升温的趋势.图象信息题是指由图象(表)来获取信息.从而达到解题目的的题型,这类问题来源广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.是近几年中考的热点.解图象信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题.题型1表达信息题此类题目一般以表格的形式出现,通过表格对数据进行收集、整理,得出与解题相关的信息,从而解决实际应用问题.题型2图形、图象信息题此类题目以图形、图象的形式出现,在图形的形式出现时,题型新颖,给出的形式有形象的人物及各自的语言表述,在活泼的氛围里,给出题目具体内容,在考查学生的建模能力,有时候用不等式,有时候用方程;在图象的形式出现时,有时用函数图象的形式出现,有时以统计图的形式出现,它要把所给的图象或图形的信息进行分类、提取加工,再合成.二、 知识运用举例例1. 选择题1.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图3-1、图3-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图3-1、所示的算筹图用我们现在所熟悉的方程组形图3-2图3-1式表述出来,就是3219,423.x y x y ⎧⎨⎩+=+=类似地,图3-2所示的算筹图我们可以表述为( A )A .211,4327.x y x y ⎧⎨⎩+=+= B .211,4322.x y x y ⎧⎨⎩+=+=C .3219,423.x y x y ⎧⎨⎩+=+=D .26,4327.x y x y ⎧⎨⎩+=+=2.、以下是2002年3月12日《南国早报》刊登的南宁市自来水价格调整表:南宁市自来水价格调整表(部分)单位:元/立方米用水类别 现行水价 拟调整水价一、居民生活用水 0.721.一户一表第一阶梯:月用水量在 0~30立方米/户0.82第二阶梯:月用水量超过30立方米/户1.23 2.集体表 略则调整水价后某户居民月用水量x (立方米)与应交水费y (元)的函数图像是( C ):A .B .C .D .3、甲、乙二人在如图所示的斜坡AB训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a <)b ;乙上山的速度是12a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,时间为t (分),离开点A 的路程为S (米).那么下面图象中,大致表示甲、乙B二人从点A出发后的时间t(分)与离开点A的路程S(米)之间的函数关系的是(C)4、2006年春季,我市部分地区腮腺炎流行,党和政府采取果断措施,防治结合,很快使病情得到控制.下图是某同学记载的5月1日到30日每天我市腮腺炎新增确诊病例数据图.将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为138;③第四组的众数为28.其中正确的有(C)A.0个B.l个C.2个D.3个例2(05广东佛山)如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程y与经过的时间x之间的函数关系.请根据图象填空:A.tSOB.tSOC.tSOD.tSO____________出发的早,早了___________小时,____________先到达,先到_________小时,电动自行车的速度为_________km / h,汽车的速度为_________km / h.知识点:本题考查是学生从图中获取信息的能力,及有条理的进行语言表述的能力.精析:通过观察可以得出电动自行车与汽车都行驶了90(km),而电动自行车用了5个小时,汽车却用了一个小时,由此便可求出两车的速度.解:甲(或电动自行车),2,乙(或汽车),2,18,90 .例3.(05衢州)改革开放以来,衢州的经济得到长足发展近来,衢州市委市政府又提出“争创全国百强城市"的奋斗目枥己下面是衢州市1999--2004年的生产总值与人均生产总值的统计资料:请你根据上述统计资料回答下列问题:(1)1999—2004年间,衢州市人均生产总值增长速度最快的年份是________.这一年的增长率为________.(2)从1999年至2004年衢州市的总人口增加了约________万人(精确到O.01).(3)除以上两个统计图中直接给出的数据以外,你还能从中获取哪些信息?请写出两条.解:(1)2004,21.03%(2)4.51(3)参考信息例举:①②③④跨年度比较的增长度和增长率的数据;⑤从增长趋势分析的数据.点拨:此题属于图表信息题,读懂两图的区别与联系,是解决此题的关键.例4(05河北课改区)在一次蜡烛燃烧实验中,甲、乙 两根蜡烛燃烧时剩余部分的高度y (cm)与燃烧时间x (h )的关系如图2-1-2所示.请根据图象所提供的信息解答下列问题:⑴甲、乙两根蜡烛燃烧前的高度分别是_____,从点燃到燃尽所用的时间分别是_____;⑵分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?解:⑴30cm ,25cm ;2h ,2.5h ;⑵设甲蜡烛燃烧时y 与x 之间的函数关系式为11y k x b =+,由图可知,函数的图象过点(2,0),(0,30),∴1112030k b b +=⎧⎨=⎩ 解得111530k b =-⎧⎨=⎩ 1530y x =-+ 设乙蜡烛燃烧时y 与x 之间的函数关系式为22y k x b =+,由图可知,函数的图象过点(2.5,0),(0,25),∴2222.5025k b b +=⎧⎨=⎩解得221025k b =-⎧⎨=⎩ 1025y x =-+ ⑶由题意得25103015+-=+-x x ,解得1=x∴ 当甲、乙两根蜡烛燃烧1h 的时候高度相等.点拨:要想求出一次函数解析式,关键是要找出图象上的两个关键点的坐标.这样我们就可以用待定系数法求出此函数的解析式了.例5(01宁波)一次时装表演会预算中,票价定为每张 100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图2-1-3所示,当观众人数超过1000人时,表演会组织者需向保险公司缴纳定额平安保险费5000元(不列人成本费用人请解答下列问题:(1)求当观众人数不超过1000人时,毛利润y 关于观众人数的函数解析式和成本费用S (百元)关于观众人数x 的函数解析式;(2)若要使这次表演会获得36000.元的毛利润,那么需售出多少张门票需支付成本费用多少元注:当观众人数不超过1000人时,表演会的毛利润一门票收人一成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入-成本费用-平安保险费.解:(1)由图2-1-3知,当 0≤x ≤10与10<x ≤20时,y 都是x 的一次函数.当0≤x ≤10时,设y 关于x 的函数解析式为y =kx +b ,把点(0,-100),(10,400)代入函数解析式,得10050 10400100b k k b b =-=⎧⎧⎨⎨+==-⎩⎩,解得: 所以y =50x -100(0≤x ≤10),S =100x -(50x -100)=50x +100(0≤x ≤10)(2)当10<x ≤20时,由题意,知 50x -100=360.所以x =9.2,S =50x +100 =50×9.2+100=560.当10<x ≤2 0时,设y =mx +n .把点(10,350)(20,850)代入函数解析式,得1035050 20850150m n m m n n +==⎧⎧⎨⎨+==-⎩⎩,解得: 所以y =50x -150(10<x ≤20),S =100x -(50x -150)-50=50x +100(10<x ≤20)当y =360时,50x -150=360,解得x =10.2.所以S =50×10.2+100=610.答:需售门票 920张或 1020张,相应地需支付成本费用分别为56000元或 61000元.点拨:正确理解题意,注意单位的统一.例6(恩施自治州)路在山腹行是沪蓉西高速公路的显著特点之一,全线共有隧道37座,共计长达742421.2米.下图是正在修建的庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道CD 总宽度为8米,隧道为单行线2车道.(1).建立恰当的平面直角坐标系,并求出隧道拱抛物线的解析式;(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;(3) 为了保证行车安全,要求行驶车辆顶部 (设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.知识点:考查用待定系数法求二次函数的解析式及二次函数性质的应用. 精析:该题十分新颖,而且与实际生活联系起来,这是运用二次函数及性质解决实际问题的一道不可多得的好题.解答这类问题,关键是要通过分析题意运用二次函数及性质知识建立数学模型.解:(1)以EF 所在直线为x 轴,经过H 且垂直于EF 的直线为y 轴, 建立平面直角坐标系,显然E (-5,0),F (5,0),H (0,3)设抛物线的解析式为:y =ax 2+bx +c依题意有:⎪⎩⎪⎨⎧==+-=++305250525c c b a c b a 解之⎪⎪⎩⎪⎪⎨⎧==-=30253c b a ,所以y =32532+-x (2).y =1, 路灯的位置为(635,1)或(-635,1). (只要写一个即可) (3)当x =4时,y =342532+⨯-=1.08 点到地面的距离为1.08+2=3.08因为3.08-0.5=2.58>2.5,所以能通过.例7.(06年济宁市)某农机公司为更好地服务于麦收工作,按图1给出的比例,从甲、乙、丙三个工厂共购买了150台同种农机,•公司技术人员对购买的这批农机全部进行了检验,绘制了如图2所示的统计图.请你根据图中提供的信息,解答下列问题:(1)求该农机公司从丙厂购买农机的台数;(2)求该农机公司购买的150台农机中优等品的台数;(3)如果购买的这批产品质量能代表各厂的产品质量状况,那么:①从优等品的角度考虑,哪个工厂的产品质量较好些为什么②甲厂2005年生产的360台产品中的优等品有多少台?解:(1)农机公司从丙厂购买农机:150×(1-40%-40%)=30(台);(2)优等品的台数为:50+50+26=127(台);(3)①∵265150306060>>,∴丙厂的产品质量较好些.②甲厂2005年生产的360台产品中的优等品数为:360×5060=300(台).例8.(07泰州)通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)(030x<<)存在下列关系:x(元/千克) 5 10 15 20又假设该地区这种农副产品在这段时间内的生产数量z (千克)与市场价格x (元/千克)成正比例关系:400z x =(030x <<).现不计其它因素影响,如果需求数量y 等于生产数量z ,那么此时市场处于平衡状态.(1)请通过描点画图探究y 与x 之间的函数关系,并求出函数关系式; (2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z 与市场价格x 的函数关系发生改变,而需求数量y 与市场价格x 的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?解:(1)描点略.设y kx b =+,用任两点代入求得1005000y x =-+, 再用另两点代入解析式验证. (2)y z =,1005000400x x ∴-+=,10x ∴=.∴总销售收入10400040000=⨯=(元) ∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元.(3)设这时该农副产品的市场价格为a 元/千克, 则(1005000)4000017600a a -+=+,解之得:118a =,232a =.030a <<,18a ∴=.∴这时该农副产品的市场价格为18元/千克.例9(07泰安)市园林处为了对一段公路进行绿化,计划购买A B ,两种风景树共900棵.A B ,两种树的相关信息如下表:若购买A 种树x 棵,购树所需的总费用为y 元. (1)求y 与x 之间的函数关系式;(2)若购树的总费用82000元,则购A 种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A B ,两种树各多少棵此时最低费用为多少解:(1)80100(900)y x x =+- 2090000x =-+ (2)由题意得:209000082000x -+≤ 45004100x -+≤ 400x ≥即购A 种树不少于400棵(3)92%98%(900)94%900x x +-⨯≥92989009894900x x +⨯-⨯≥ 64900x --⨯≥ 600x ≤2090000y x =-+随x 的增大而减小∴当600x =时,购树费用最低为206009000078000y =-⨯+=(元)当600x =时,900300x -=∴此时应购A 种树600棵,B 种树300棵例10(07日照)容积率t 是指在房地产开发中建筑面积与用地面积之比,即t =用地面积建筑面积S M ,为充分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般地容积率t 不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M (m 2)与容积率t 的关系可近似地用如图(1)中的线段l 来表示;1 m 2建筑面积上的资金投入Q (万元)与容积率t 的关系可近似地用如图(2)中的一段抛物线段c 来表示.(Ⅰ)试求图(1)中线段l 的函数关系式,并求出开发该小区的用地面积; (Ⅱ)求出图(2)中抛物线段c 的函数关系式. 解:(Ⅰ)设线段l 函数关系式为M =kt +b ,由图象得⎩⎨⎧=+=+.800006,280002b k b k 解之,得⎩⎨⎧==.2000,13000b k∴线段l 的函数关系式为M =13000t +2000, 1≤t ≤8.由t =用地面积建筑面积S M 知,当t =1时,S 用地面积=M 建筑面积,把t =1代入M =13000t +2000中,得M =15000 m 2. 即开发该小区的用地面积是15000 m 2.(Ⅱ)根据图象特征可设抛物线段c 的函数关系式为Q =a ( t -4)2+k , 把点(4,0.09), (1,0.18)代入,得⎩⎨⎧=+-=.18.0)41(,09.02k a k 解之,得⎪⎪⎩⎪⎪⎨⎧==.1009,1001k a ∴抛物线段c 的函数关系式为 Q =1001( t -4)2+1009, 即Q =1001t 2-252t +41, 1≤t ≤8.三、 知识巩固训练1.图1是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为 ( ) A .50台 B .65台 C .75台D .95台2.在一个可以改变容积的密闭容器内,装有一定质量m 的某种 气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足mV ρ=,它的图象如图2所示,则该气体的质量m ( )A .1.4kgB .5kgC .7kg.D .0.28kg图1图23. (07金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论 ①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( B ) A .0 B .1 C .2 D .34(07丽水)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO B '',则点B '的坐标是( )A . (3,4)B . (4,5)C . (7,4)D . (7,3)5. (07泰安)如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A B C D →→→的路径以1cm/s 的速度运动(点P 不与A D ,重合).在这个运动过程中,APD △的面积2(cm )S 随时间()t s 的变化关系用图象表示,正确的为( )ab +ABCD6.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()(1)(2)(3)A.25 B.66 C.91 D.1207.(针孔成像问题)根据图中尺寸(AB//A′B′),那么物像长y(A′B′的长)与物长x (AB的长)之间函数关系的图象大致是()8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶.下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是()A.B.C.D.9. (07山东东营)图4是韩老师早晨出门散步时,离家的距离..(y )与时间(x )之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是 ()10. 如图:这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面 上阴影部分的面积为( )A .π36.0平方米B .π81.0平方米C .π2平方米D .π24.3平方米 11.如图:是一同学骑自行车出行的图像, 从图象中得到的正确信息是( ) A .整个出行过程中的平均速度为607千米/时; B .前二十分钟的速度比后半小时的速度慢; C .前二十分钟的速度比后半小时的速度快; D .从起点到达终点,该同学共用了50分钟.12.我们知道,溶液的酸碱度由pH 确定,当pH >7时,溶液呈碱性,当pH <7时,溶液呈酸性.若将给定的HCl 溶液加水稀释,那么在下列图像中,能反映HCl 溶液的pH 与所加水的体积(V )的变化关系的是( )(A ) (B ) (C )(D ) O yx 图 420 3040 50 6010 174x (分钟)S (千米)pH pH13.一次函数y=kx+b和y=bx+k在同一坐标系内的图象大致是()14.小明的父亲饭后出去散步,从家中走20分钟到一个离家900m的报亭看10分钟报纸后,用15分钟返回家里观下图中表示小明的父亲离家的时间与距离之间关系的是()15.如下图所示,正方形的面积y与边长x之间的函数关系的大致图象是()16.三峡工程在6月l日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下图中,能正确反映这10天水位h(米)随时间t(天)变化的是()17.(乌兰察布盟)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度小于乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A、2个B、3个C、4个D、5个18.图2-l-11四个二次函数的图象,函数在x=2时有最大值3的是()19.图2-l-12是某报纸公布的我国“九·五”期间国内生产总值的统计图,那么“九·五”期间我国国内生产总值平均每年比上一年增长()A.0.575万亿元;B、0.46万亿元C.9.725万亿元;D.7.78万亿元20.如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是()A . <1>和<2>B .<2>和<3>C .<2>和<4>D .<1>和<4>21. (赤峰市)如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( )22(鄂尔多斯)如图4,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )23. (怀化)均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随时间t 变化的函数图象大致是( )s tO Ast O B stOC st O D 图41A 2A 3A4A 5AOh tAOh tB .Oh tC .OhtDOthOt hOthOth24(永州)永州市内货摩(运货的摩托)的运输价格为:2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元,那么运费y元与运输路程x千米的函数图象是()25. (03浙江丽水)据丽水市统计局报导,我市2002年第一产业、第二产业、第三产业的产值分别占全市国内生产总值的20.4%,42.9%,36.7%.用圆形统计图表示这三大产业的产值结构时(如图),表示第三产业产值的扇形的圆心角应画成约______ 度(精确到1°)26.如图,请根据小文在镜中的像写出他的运动衣上的实际号码:______.27.现代社会对破译密码的难度要求越来越高.现在有一种密码把英文的密文转换为明文(真实文)的规则是沿直线l对折,该字母则转换为与其所在格重合的那个格中的字母(不分大小写).例如:b→o、x→k.anbocpdqerfsgthuivjwkxlymz按此规则将密文znguf转换为明文,应该是___________..28.二次函数y=x2+bx+c的图象如图2-l-13所示,则函数值y<0时,对应x 的取值范围是______.29. 二次函数y=ax2+(a-b)x—b的图象如图2-l-14所示,那么化简222||a ab b b-+-的结果是_________________.30.若一次函数y=kx+b的图象如图2-l-15所示,则抛物线y=x2+kx+b的对称轴位于y轴的______侧;反比例函数y=的图象在______象限内,31.城镇人口占总人口比例的大小表示城镇化水平的高低,由图2-l-17的统计图可知,我国城镇化水平提高最快的时期是______.32.图2-l-18表示长沙市2003年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:⑴这天的最高气温是______℃;⑵这天共有______个小时的气温在3l℃以上;⑶这天在______(时间)范围内温度在上升;⑷请你预测一下,次日凌晨1点的气温大约是______.33. (绍兴市)绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共26条,每条灌装、装箱生产线的生产流量分别如图1、2所示.某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有_________条.34(07温州市)为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月1600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售员小李、小张1~6月份的销售额如下表:月份销售额销售额(单位:元)1月2月3月4月5月6月小李(A11600 12800 14000 15200 16400 17600(1)请问小李与小张3月份的工资各是多少?(2)小李1~6月份的销售额1y 与月份x 的函数关系式是1120010400,y x =+小张1~6月份的销售额2y 也是月份x 的一次函数,请求出2y 与x 的函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.35(07湖州)从有关方面获悉,在我市农村已经实行了农民新型合作医疗保险制度.享受医保的(说明:住院医疗费用的报销分段计算.如:某人住院医疗费用共30000元,则5000元按30%报销、15000元按40%报销、余下的10000元按50%报销;题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2006年门诊看病自己共支付医疗费180元,则他在这一年中门诊医疗费用共_________元;(2)设某农民一年中住院的实际医疗费用为x 元(5001≤x ≤20000),按标准报销的金额为y 元,试求出y 与x 的函数关系式;(3)若某农民一年内本人自负住院医疗费17000元(自负医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费用共多少元?36(07山东东营)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?37. (07鄂尔多斯)有甲、乙两家通迅公司,甲公司每月通话的收费标准如图153所示.表3(1)观察图15,甲公司用户月通话时间不超过100分钟时应付话费金额是__________元;甲公司用户通话100分钟以后,每分钟的通话费为_________元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算如果她的月通话时间超过100分钟,又将如何选择38(07沈阳市)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元打折后的实际售价是多少元月租费 通话费 2.5元0.15元/分钟图 11天图(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:实际售价x(元/千克)…150 160 168 180 …月销售量y(千克)…500 480 464 440 …①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?39(07荆门市)某县在实施“村村通”工程中,决定在A、B两村之间修筑一条公路,甲、乙两个工程队分别从A、B两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的函数图象,请根据图象所提供的信息,求该公路的总长度.。

相关文档
最新文档