2004年成人高考(高起点)试题及答案(数学理)

合集下载

2004年高考数学试题(福建理)及答案

2004年高考数学试题(福建理)及答案

2004年普通高等学校招生福建卷理工类数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数10)11(ii +-的值是( ) A .-1 B .1 C .-32 D .32 2.tan15°+cot15°的值是( )A .2B .2+3C .4D .3343.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充分而不必要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是 ( )A .3332 B .32C .22D .235.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:①若m ⊂α,n ∥α,则m ∥n ;②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n ,则m ∥α且m ∥β;④若m ⊥α,m ⊥β,则α∥β.其中真命题的个数是 ( ) A .0 B .1 C .2 D .36.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 ( )A .2426C A B .242621C A C .2426A AD .262A7.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b ) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是 ( )A .6πB .3πC .32πD .65π9.若(1-2x )9展开式的第3项为288,则)111(lim 2n n xx x +++∞→ 的值是 ( )A .2B .1C .21D .5210.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60°,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63 C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则( )A .f (sin6π)<f (cos 6π) B .f (sin1)>f (cos1) C .f (cos 32π)<f (sin 32π) D .f (cos2)>f (sin2) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的没岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2 km.现要在曲线PQ 上 选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、M 到C 修建公路的费用分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是( ) A .(27-2)a 万元 B .5a 万元C .(27+1) a 万元D .(23+3) a 万元第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 .14.设函数⎪⎩⎪⎨⎧-+=ax x x f 11)()0()0(=≠x x 在x =0处连续,则实数a 的值为 . 15.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正 确结论的序号).16.如图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起, 做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为 时,其容积最大. 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设函数f(x)=a ·b ,其中向量a=(2cos x ,1),b =(cos x , 3sin2x ),x ∈R.(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ;(Ⅱ)若函数y=2sin2x 的图象按向量c=(m ,n)(|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值.18.(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 19.(本小题满分12分)在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC , SA=SC=23,M 、N 分别为AB 、SB 的中点. (Ⅰ)证明:AC ⊥SB ;(Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离. 20.(本小题满分12分)某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为500(1+n21)万元(n 为正整数). (Ⅰ)设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n 、B n 的表达式;(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润? 21.(本小题满分14分) 已知f(x)=222+-x ax (x ∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.22.(本小题满分12分)如图,P 是抛物线C :y=21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q. (Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST 的取值范围.2004年普通高等学校招生福建卷理工类数学试题参考答案一、1.A 2.C 3.D 4.A 5.B 6.C 7.C 8.B 9.A 10.D 11.D 12.B二、13.45 14.1/2 15.1,3 16.2/3 三、17. 本小题主要考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,考查运算能力.满分12分.解:(Ⅰ)依题设,f(x)=2cos 2x +3sin2x =1+2sin(2x +6π). 由1+2sin(2x +6π)=1-3,得sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π.(Ⅱ)函数y=2sin2x 的图象按向量c=(m ,n)平移后得到函数y=2sin2(x -m)+n 的图象,即函数y=f(x)的图象. 由(Ⅰ)得 f(x)=2sin2(x +12π)+1. ∵|m|<2π,∴m=-12π,n=1.18.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.ξ的概率分布如下:E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32, P(B)=310381228C C C C +=1205656+=1514. 因为事件A 、B 相互独立,方法一:∴甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为 P=1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544.答:甲、乙两人至少有一人考试合格的概率为4544. 19.本小题主要考查直线与直线,直线与平面,二面角,点到平面的距离等基础知识,考查空间想象能力和逻辑推理能力.满分12分.解法一:(Ⅰ)取AC 中点D ,连结SD 、DB. ∵SA=SC ,AB=BC , ∴AC ⊥SD 且AC ⊥BD ,∴AC ⊥平面SDB ,又SB ⊂平面SDB , ∴AC ⊥SB.(Ⅱ)∵AC ⊥平面SDB ,AC ⊂平面ABC , ∴平面SDB ⊥平面ABC.过N 作NE ⊥BD 于E ,NE ⊥平面ABC , 过E 作EF ⊥CM 于F ,连结NF , 则NF ⊥CM.∴∠NFE 为二面角N -CM -B 的平面角.∵平面SAC ⊥平面ABC ,SD ⊥AC ,∴SD ⊥平面ABC. 又∵NE ⊥平面ABC ,∴NE ∥SD.∵SN=NB ,∴NE=21SD=2122AD SA -=21412-=2,且ED=EB.在正△ABC 中,由平几知识可求得EF=41MB=21, 在Rt △NEF 中,tan ∠NFE=EFEN=22, ∴二面角N —CM —B 的大小是arctan22.(Ⅲ)在Rt △NEF 中,NF=22EN EF +=23, ∴S △CMN =21CM ·NF=233,S △CMB =21BM ·CM=23. 设点B 到平面CMN 的距离为h , ∵V B-CMN =V N-CMB ,NE ⊥平面CMB ,∴31S △CMN ·h=31S △CMB ·NE ,∴h=CMNCMB S NE S ⋅=324.即点B 到平面CMN 的距离为324.解法二:(Ⅰ)取AC 中点O ,连结OS 、OB.∵SA=SC ,AB=BC , ∴AC ⊥SO 且AC ⊥BO.∵平面SAC ⊥平面ABC ,平面SAC ∩平面 ABC=AC ∴SO ⊥面ABC ,∴SO ⊥BO.如图所示建立空间直角坐标系O -x yz.则A (2,0,0),B (0,23,0),C (-2,0,0), S (0,0,22),M(1,3,0),N(0,3,2). ∴=(-4,0,0),=(0,23,22), ∵·=(-4,0,0)·(0,23,22)=0, ∴AC ⊥SB.(Ⅱ)由(Ⅰ)得=(3,3,0),=(-1,0,2).设n=(x ,y ,z )为平面CMN 的一个法向量,·n=3x +3y=0,z=1,则x =2,y=-6,·n=-x +2z=0,6,1),0,22)为平面ABC 的一个法向量, ∴cos(n ,OS ||||OS n ⋅=31.∴二面角N -CM -B 的大小为arccos 31. (Ⅲ)由(Ⅰ)(Ⅱ)得MB =(-1,3,0),n=(2,-6,1)为平面CMN 的一个法向量,∴点B 到平面CMN 的距离d=|||·|n n =324.20.本小题主要考查建立函数关系式、数列求和、不等式的等基础知识,考查运用数学知识解决实际问题的能力.满分12分. 解:(Ⅰ)依题设,A n =(500-20)+(500-40)+…+(500-20n)=490n -10n 2;B n =500[(1+21)+(1+221)+…+(1+n 21)]-600=500n -n 2500-100. (Ⅱ)B n -A n =(500n -n 2500-100) -(490n -10n 2)=10n 2+10n -n 2500-100=10[n(n+1) - n 250-10].因为函数y=x (x +1) - n 250-10在(0,+∞)上为增函数,当1≤n ≤3时,n(n+1) - n 250-10≤12-850-10<0;当n ≥4时,n(n+1) - n 250-10≥20-1650-10>0.∴仅当n ≥4时,B n >A n .答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.21.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设ϕ(x )=x 2-ax -2, 方法一: ① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ⇔-1≤a ≤1,∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0 ∴A={a |-1≤a ≤1}. 方法二:①⇔⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1 或 -1≤a ≤0 ⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0 ∴A={a |-1≤a ≤1}. (Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a .∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立, 即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ② 设g(t)=m 2+tm -2=mt+(m 2-2), 方法一:② ⇔ g(-1)=m 2-m -2≥0,g(1)=m 2+m -2≥0, ⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}. 方法二:当m=0时,②显然不成立; 当m ≠0时,②⇔ m>0,g(-1)=m 2-m -2≥0 或 m<0,g(1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.22. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分. 解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y=21x 2, ① 得y '=x .∴过点P 的切线的斜率k 切= x 1,∴直线l 的斜率k l =-切k 1=-11x , ∴直线l 的方程为y -21x 12=-11x (x -x 1),方法一:联立①②消去y ,得x 2+12x x -x 12-2=0. ∵M 是PQ 的中点 ∴ x 0=221x x +=-11x ,y 0=21x 12-11x (x 0-x 1) 消去x 1,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +,得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2),则x 0=2121x x y y --=k l =-11x ,∴x 1=-01x ,将上式代入②并整理,得 y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).(Ⅱ)设直线l :y=k x +b ,依题意k ≠0,b ≠0,则T(0,b). 分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则=+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'.由 y=21x 2, y=kx+b 消去x ,得y 2-2(k 2+b)y+b 2=0. ③ 则y 1+y 2=2(k 2+b),y 1y 2=b 2.方法一: ∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b=2. ∵y 1、y 2可取一切不相等的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二:∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2b b k +.当b>0时,||||||||SQ ST SP ST +=b 22)(2bb k +=b b k )(22+=b k 22+2>2; 当b<0时,||||||||SQ ST SP ST +=-b 22)(2b b k +=b b k -+)(22.又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,于是k 2+2b>0,即k 2>-2b. 所以||||||||SQ ST SP ST +>bb b -+-)2(2=2. ∵当b>0时,bk 22可取一切正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞).方法三:由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=11x by -.则x 1y 2-b x 1=x 2y 1-b x 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b=122212122121x x x x x x -⋅-⋅=-21x 1x 2.∴||||||||SQ ST SP ST +=||||||||21y b y b +=1|21|21x x -+1|21|21x x -=||12x x +||21x x ≥2. ∵||12x x 可取一切不等于1的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞).2 2。

成人高考数学试题及答案(高起点理工类)

成人高考数学试题及答案(高起点理工类)

人教版小学一至六年级数学必考类容(小升初金典)小学数学概念大全三角形的面积=底×高÷2 公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2三角形的内角和=180度长方体的体积=长×宽×高公式V=abh长方体(或正方体)的体积=底面积×高公式V=abh正方体的体积=棱长×棱长×棱长公式V=a3圆的周长=直径×π公式L=πd=2πr圆的面积=半径×半径×π公式S=πr2圆柱的表面积:圆柱的表面积等于底面的周长乘高。

公式S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。

公式V=Sh圆锥的体积=1÷3底面积×高。

公式V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变:1+2+9=1+9+22、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变:6+7+4=7=7+(6+4)3、乘法交换律:两数相乘,交换因数的位置,积不变:2×9×5=2×5×94、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变:1×5+9×5=(1+9)×55、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

2004年高考数学真题

2004年高考数学真题

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。

1.(1-i)2·i=( )A .2-2iB .2+2iC .-2D .22.已知函数=-=+-=)(.)(.11lg)(a f b a f x xx f 则若( )A .bB .-bC .b 1D .-b 13.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( ) A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1)5.73)12(x x -的展开式中常数项是( )A .14B .-14C .42D .-426.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误的是 ( )A .( I A)∪B=IB .( I A)∪( I B)=IC .A ∩( I B)=φD .( I A)∪( I B)= I B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径A .23B .3C .27D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21]B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则S T等于 ( )A .91B .94C .41D .3111.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513B .12516C .12518D .1251912.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1, n=1, a n =,n ≥2.16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数x xx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y a x 与直线相交于两个不同的点A 、B.(I)求双曲线C的离心率e的取值范围:(II)设直线l与y轴的交点为P,且.125PBPA=求a的值.22.(本小题满分14分)已知数列1}{1=aan中,且a2k=a2k-1+(-1)K,a2k+1=a2k+3k,其中k=1,2,3,…….(I)求a3, a5;(II)求{ a n}的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④三、解答题 17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:x x xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x xx所以函数f (x )的最小正周期是π,最大值是43,最小值是41.18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:ξ0 1 2 3 4P 0.09 0.3 0.37 0.2 0.04所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II )当,02,02,02>-<>+>x a x ax x a 或解得由时由.02,022<<-<+x a ax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a 2,由2x +ax 2<0,解得x <0或x >-a 2.所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a 2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB , ∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60° 由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.(II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG .又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BCGA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角,于是,772||||cos -=⋅⋅=BC GA BCGA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC.∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG .又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°.在Rt △PEG 中,EG=PE ·cos60°=23.在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG =23,又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan 23.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a aa e(II )设)1,0(),,(),,(2211P y x B y x A .125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1],于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为:当n 为奇数时,a n =;121)1(232121-⨯-+-+n n当n 为偶数时,.121)1(2322-⨯-+=nn n a。

高考_2004年吉林高考理科数学真题及答案

高考_2004年吉林高考理科数学真题及答案

2004年吉林高考理科数学真题及答案一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一个选项是符合题目要求的. 〔1〕集合M ={x |x 2<4},N ={x |x 2-2x -3<0},那么集合M ∩N =〔A 〕{x |x <-2} 〔B 〕{x |x >3} 〔C 〕{x |-1<x <2} 〔D 〕{x |2<x <3}〔2〕542lim 221-+-+→x x x x n =〔A 〕21 〔B 〕1 〔C 〕52 〔D 〕41 〔3〕设复数ω=-21+23i ,那么1+ω=〔A 〕–ω 〔B 〕ω2〔C 〕ω1-〔D 〕21ω〔4〕圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,那么圆C 的方程为〔A 〕(x +1)2+y 2=1 〔B 〕x 2+y 2=1 〔C 〕x 2+(y +1)2=1 〔D 〕x 2+(y -1)2=1 〔5〕函数y =tan(2x +φ)的图象过点(12π,0),那么φ可以是 〔A 〕-6π 〔B 〕6π 〔C 〕-12π 〔D 〕12π〔6〕函数y =-e x的图象〔A 〕与y =e x 的图象关于y 轴对称 〔B 〕与y =e x的图象关于坐标原点对称〔C 〕与y =e -x 的图象关于y 轴对称 〔D 〕与y =e -x的图象关于坐标原点对称 〔7〕球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,那么球心O 到平面ABC 的距离为 〔A 〕31 〔B 〕33 〔C 〕32 〔D 〕36 〔8〕在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有〔A 〕1条 〔B 〕2条 〔C 〕3条 〔D 〕4条 〔9〕平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,那么11A O =λe,其中λ= 〔A 〕511 〔B 〕-511 〔C 〕2 〔D 〕-2 〔10〕函数y =x cos x -sin x 在下面哪个区间内是增函数〔A 〕(2π,23π) 〔B 〕(π,2π) 〔C 〕(23π,25π) 〔D 〕(2π,3π)〔11〕函数y =sin 4x +cos 2x 的最小正周期为〔A 〕4π 〔B 〕2π〔C 〕π 〔D 〕2π 〔12〕在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有 〔A 〕56个 〔B 〕57个 〔C 〕58个 〔D 〕60个 二、填空题:本大题共4小题,每题4分,共16分.把答案填在题中横线上.〔13〕从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,那么随机变量ξ的概率分布为ξ 0 1 2 P〔14〕设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120那么z =3x +2y 的最大值是 .〔15〕设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,那么该椭圆的方程是 .〔16〕下面是关于四棱柱的四个命题:①假设有两个侧面垂直于底面,那么该四棱柱为直四棱柱;②假设两个过相对侧棱的截面都垂直于底面,那么该四棱柱为直四棱柱;③假设四个侧面两两全等,那么该四棱柱为直四棱柱;④假设四棱柱的四条对角线两两相等,那么该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解容许写出文字说明,证明过程或演算步骤. 〔17〕 (本小题总分值12分)锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. 〔18〕(本小题总分值12分)8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. 〔19〕(本小题总分值12分)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=nn 2+S n 〔n =1,2,3,…〕.证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .〔20〕(本小题总分值12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.〔21〕(本小题总分值12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设FB =AF λ,假设λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题总分值14分)函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学〔必修+选修Ⅱ〕答案:一、选择题:本大题共12小题,每题5分,共60分.〔1〕C 〔2〕A 〔3〕C 〔4〕C 〔5〕A 〔6〕D 〔7〕B 〔8〕B 〔9〕D 〔10〕B 〔11〕B 〔12〕C 二、填空题:本大题共4小题,每题4分,共16分. 〔13〕0.1,0.6,0.3 〔14〕5 〔15〕21x 2+y 2=1 〔16〕②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,那么AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C (II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.〔I 〕证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),那么S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列BA'C'〔II 〕解:由〔I 〕知,)2(14111≥-•=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,那么S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,那么CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 那么FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=••-+=•-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1),=DM (0,21,-21),,0,01=•=•DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,那么G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=•G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角, cos .33||||11-=•=G B CD θ 所以所求二面角的大小为π-arccos33 21.解:〔I 〕C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),那么有x 1+x 2=6,x 1x 2=1,OB OA •=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+•+=•x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=•OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0.∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ -- 22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln(2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),那么.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +). 设G(x)=F(x)-(x-a)ln2,那么).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年高考试题——数学(全国1)及答案

2004年高考试题——数学(全国1)及答案

2004年高考试题全国卷Ⅰ理参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60 1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于 ( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线;②两条互相垂直的直线;③同一条直线; ④一条直线及其外一点;在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212s i n 41)c o s s i n1(21)c o s s i n 1(2c o s s i n 122+=+=--=x x x x x x x 所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。

2004年成人高考专升本高等数学二考试真题附参考答案

2004年成人高考专升本高等数学二考试真题附参考答案

2004年成人高考专升本高等数学二考试真题及参考答案
一、选择题:本大题共5个小题,每题4分,共20分,在每题给出的四个选项中,只有一项为哪一项符合题目的要求,把所选项前的字母填在题后的括号内。

第1题
参考答案:A
第2题
参考答案:D
第3题
参考答案:D
第4题
参考答案:B
第5题
参考答案:C
二、填空题:本大题共10个小题,每题4分,共40分,把答案填写在题中横线上。

第6题
参考答案:1
第7题
参考答案:0
第8题
参考答案:1
第9题
参考答案:2/x3
第10题
参考答案:-1
第11题
参考答案:0
第12题
参考答案:e-1 第13题
参考答案:1
第14题
参考答案:-sinx 第15题
三、解答题:本大题共13个小题,共90分,解容许写出推理、演算步骤. 第16题
第17题
第18题
第19题
第20题
第21题
第22题
第23题
第24题
第25题
第26题
第27题
第28题。

2004年高考试题——数学理(北京卷)

2004年高考试题——数学理(北京卷)

2004年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟. 第I 卷(选择题 共40分) 注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上. 3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式sin cos [sin()sin()]αβαβαβ=++-12 cos cos [cos()cos()]αβαβαβ=++-12s i n s i n [c o s ()c o s ()]αβαβαβ=-+--12正棱台、圆台的侧面积公式 S c c l 台侧=+12(')其中c’,c 分别表示上、下底面周长,l 表示斜高或母线长 球体的表面积公式S R 球=42π 其中R 表示球的半径一、 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则M N 等于( )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 2.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )A . 一条直线B . 两条直线C . 圆D . 椭圆 3.设m 、n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则αβ//其中正确命题的序号是( ) A .①和② B . ②和③C . ③和④D . ①和④4.如图,在正方体1111ABC D A B C D -中,P 是侧面BB C C 11内一动点,若P 到直线BC 与 直线C D 11的距离相等,则动点P 的轨迹所在的曲线是( )D C 1A CA .直线B .圆C . 双曲线D . 抛物线5.函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是 ( ) A .a ∈-∞(,]1B .a ∈+∞[,)2C .a ∈[,]12D . (,1][2,)a ∈-∞+∞6.已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 ( ) A .ab ac > B . c b a ()-<0C . cb ab 22<D . 0)(<-c a ac7.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取 法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则m n等于 ( )A .110B .15C .310D .258.函数,(),x x Pf x x x M ∈⎧=⎨-∈⎩,其中P 、M 为实数集R 的两个非空子集,又规定(){|(),}f P y y f x x P ==∈,(){|(),}f M y y f x x M ==∈,给出下列四个判断:①若P M =∅ ,则()()f P f M =∅ ②若P M ≠∅ ,则()()f P f M ≠∅ ③若P M R = ,则()()f P f M R = ④若P M R ≠ ,则()()f P f M R ≠ 其中正确判断有( )A . 1个B . 2个C . 3个D . 4个第Ⅱ卷(非选择题 共110分)二、 填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.函数f x x x x ()cos sin cos =-223的最小正周期是___________. 10.方程lg()lg lg 4223xx+=+的解是___________________ .11.某地球仪上北纬30 纬线的长度为12πcm ,该地球仪的半径是__________cm ,表面积是______________cm 2. 12.曲线C :x y ==-+⎧⎨⎩cos sin θθ1(θ为参数)的普通方程是__________,如果曲线C 与直线x y a ++=0有公共点,那么实数a 的取值范围是_______________.13.在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最______________值(填“大”或“小”),且该值为______________.14.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{}a n 是等和数列,且a 12=,公和为5,那么a 18的值为______________,这个数列的前n 项和S n 的计算公式为________________ .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在∆ABC 中,sin cos A A +=22,AC =2,AB =3,求tgA 的值和∆ABC 的面积.16.(本小题满分14分)如图,在正三棱柱ABC A B C -111中,AB =3,AA 14=,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N ,求:(I )该三棱柱的侧面展开图的对角线长;(II )PC 和NC 的长;(III )平面NMP 与平面ABC 所成二面角(锐角)的大小(用反三角函数表示)1N C B17.(本小题满分14分)如图,过抛物线y px p 220=>()上一定点00(,)P x y (y 00>),作两条直线分别交抛物线于11(,)A x y ,22(,)B x y (I )求该抛物线上纵坐标为p 2的点到其焦点F 的距离(II )当P A 与PB 的斜率存在且倾斜角互补时,求y y y 12+的值,并证明直线AB 的斜率是非零常数x18.(本小题满分14分)函数f x ()是定义在[0,1]上的增函数,满足f x f x()()=22且f ()11=,在每个区间(,]12121ii -(i =1,2……)上,y f x =()的图象都是斜率为同一常数k 的直线的一部分.(I )求f ()0及f ()12,f ()14的值,并归纳出f i i()(,,)1212= 的表达式;(II )设直线x i=12,x i =-121,x 轴及y f x =()的图象围成的矩形的面积为a i (i =1,2……),记S k a a a n n ()lim ()=+++→∞12 ,求S k ()的表达式,并写出其定义域和最小值19.(本小题满分12分)某段城铁线路上依次有A 、B 、C 三站,AB =5km ,BC =3km ,在列车运行时刻表上,规定列车8时整从A 站发车,8时07分到达B 站并停车1分钟,8时12分到达C 站.在实际运行中,假设列车从A 站正点发车,在B 站停留1分钟,并在行驶时以同一速度vkm h /匀速行驶,列车从A 站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差.(I )分别写出列车在B 、C 两站的运行误差;(II )若要求列车在B ,C 两站的运行误差之和不超过2分钟,求v 的取值范围.20.(本小题满分13分)给定有限个正数满足条件T :每个数都不大于50且总和L =1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r 1与所有可能的其他选择相比是最小的,r 1称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r 2;如此继续构成第三组(余差为r 3)、第四组(余差为r 4)、……,直至第N 组(余差为r N )把这些数全部分完为止.(I )判断r r r N 12,,, 的大小关系,并指出除第N 组外的每组至少含有几个数; (II )当构成第n (n <N )组后,指出余下的每个数与r n 的大小关系,并证明r n L n n ->--11501;(III )对任何满足条件T 的有限个正数,证明:N ≤11.2004年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)参考答案一、选择题:本大题主要考查基本知识和基本运算.每小题5分,满分40分.1.A 2.C 3.A 4.D 5.D 6.C 7.B 8.B二、填空题:本大题主要考查基本知识和基本运算.每小题5分,满分30分.9.π 10.x x 1201==, 11.43 192π 12.x y 2211++=() 1212-≤≤+a13.大 -3 14.3 当n 为偶数时,S n n =52;当n 为奇数时,S n n =-5212三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.本小题主要考查三角恒等变形、三角形面积公式等基本知识,考查运算能力.满分13分.解法一:.21)45cos(,22)45cos(2cos sin =-∴=-=+A A A A又0180A << ,.323131)6045(.105,6045--=-+=+=∴==-∴tg tgA A As i n s i ns i n ()s i n c o s c o s s i n A ==+=+=+105456045604560264.S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin ()解法二: s i n c o s A A +=22, (1).0c o s ,0s i n ,1800,21c o s s i n 2,21)c o s (s i n 2<>∴<<-=∴=+∴A A A A A A A(s i n c o s )s i n c o s A A A A -=-=21232,∴-=s i n c o s A A 62, (2)(1)+(2)得:sin A =+264,(1)-(2)得:cos A =-264,∴==+⨯-=--t g A A As i n c o s 26442623.(以下同解法一)16.本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分14分.解:(I )正三棱柱ABC A B C -111的侧面展开图是一个长为9,宽为4的矩形,其对角线长为949722+=.(II )如图1,将侧面BB C C 11绕棱CC 1旋转120 使其与侧成AA C C 11在同一平面上,点P 运动到点P 1的位置,连接M P 1,则M P 1就是由点P 沿棱柱侧面经过棱CC 1到点M 的最短路线.设PC x =,则P C x 1=,在Rt M AP ∆1中,由勾股定理得()322922++=x 求得x =2..54,52.2111=∴====∴NC A P C P MANC C P PC(III )如图2,连结PP 1,则PP 1就是平面NMP 与平面ABC 的交线,作NH PP ⊥1于H ,又CC 1⊥平面ABC ,连结CH ,由三垂线定理得,CH PP ⊥1.A∴∠N H C 就是平面NMP 与平面ABC 所成二面角的平面角(锐角)在Rt PH C ∆中,∠=∠=P C H P C P 12601,12P C C H ∴==.在R t N C H ∆中,tg NH C NCCH ∠===45145, 故平面NMP 与平面ABC 所成二面角(锐角)的大小为arctg 45.17.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.满分14分. 解:(1)当y p =2时,x p =8,又抛物线y px 22=的准线方程为x p =-2.由抛物线定义得,所求距离为p p p 8258--=().(2)设直线P A 的斜率为k PA ,直线PB 的斜率为k PB 由y px 1212=,y px 0202=,相减得()()()y y y y p x x 1010102-+=-. 故k y y x x p y y x x PA =--=+≠101010102().同理可得k p y y x x PB =+≠22020().由PA ,PB 倾斜角互补知k k PA PB =-, 即221020p y y p y y +=-+, 所以y y y 1202+=-, 故y y y 122+=-.设直线AB 的斜率为k AB由y px 2222=,y px 1212= 相减得()()()y y y y p x x 2121212-+=-, 所以k y y x x p y y x x AB =--=+≠212112122(). 将y y y y 120020+=->()代入得k p y y p y AB =+=-212,所以k AB 是非零常数.18.本小题主要考查函数、数列等基本知识,考查分析问题和解决问题的能力.满分14分. 解:(I )由f f ()()020=,得f ()00= 由f f ()()1212=及f ()11=,得f f ()()1212112==.同理,f f ()()1412124==1.归纳得f i i i ()(,,)121212== .(II )当12121ii x <≤-时,f x k x i i ()()=+---121211a k i i i ii i i=++------121212121212121111[()]() =-1=-()(,,)1421221ki i .所以{}a n 是首项为1214()-k ,公比为14的等比数列, 所以S k a a a k k n n ()lim ()()()=+++=--=-→∞1212141142314.S k ()的定义域为0<≤k 1,当k =1时取得最小值12.19.本小题主要考查解不等式等基本知识,考查应用数学知识分析问题和解决问题的能力.满分12分.解:(I )列车在B ,C 两站的运行误差(单位:分钟)分别是 ||3007v -和||48011v-.(II )由于列车在B ,C 两站的运行误差之和不超过2分钟,所以 ||||3007480112vv -+-≤. (*)当03007<≤v 时,(*)式变形为3007480112vv-+-≤,解得393007≤≤v ; 当300748011<≤v 时,(*)式变形为7300480112-+-≤vv , 解得300748011<≤v ; 当v >48011时,(*)式变形为700114802-3+-≤vv,解得480111954<≤v .综上所述,v 的取值范围是[39,1954]20.本小题主要考查不等式的证明等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.满分13分.解:(I )r r r N 12≤≤≤ .除第N 组外的每组至少含有150503=个数(II )当第n 组形成后,因为n N <,所以还有数没分完,这时余下的每个数必大于余差r n ,余下数之和也大于第n 组的余差r n ,即L r r r r n n --+-++->[()()()]150******** , 由此可得r r r n L n 121150+++>-- . 因为()n r r r r n n -≥+++--11121 ,所以r n L n n ->--11501.(III )用反证法证明结论,假设N >11,即第11组形成后,还有数没分完,由(I )和(II )可知,余下的每个数都大于第11组的余差r 11,且r r 1110≥, 故余下的每个数>≥>⨯-=r r 111015011127510375. . (*)因为第11组数中至少含有3个数,所以第11组数之和大于37531125..⨯=.此时第11组的余差11150r=-第11组数之和150112.537.5<-=这与(*)式中r11375>.矛盾,所以N≤11.第11页共11页。

2004年全国高考数学试题(全国卷理科word版)

2004年全国高考数学试题(全国卷理科word版)

2004年全国高考数学(人教版)试题(理科)一、选择题(每小题5分,共60分)1、设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为( )A 、1B 、2C 、3D 、42、函数2sin x y =的最小正周期是( ) A 、 2π B 、 π C 、π2 D 、π4 3、设数列{}n a 是等差数列,且6,682=-=a a ,n S 是数列{}n a 的前n 项和,则( )A 、54S S <B 、54S S =C 、56S S >D 、56S S =4、圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A 、023=-+y xB 、043=-+y xC 、043=+-y xD 、023=+-y x5、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( --6、设复数z 的辐角的主值为32π,虚部为3,则2z =( ) A 、i 322-- B 、i 232-- C 、i 32+ D 、i 232+7、设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( ) A 、5 B 、 5 C 、25 D 、45 8、不等式311<+<x 的解集为( )A 、()2,0B 、())4,2(0,2 -C 、()0,4-D 、())2,0(2,4 --9、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A 、322B 、2C 、32D 、324 10、在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A 、223B 、233 C 、23 D 、3311、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( ) A 、(][]10,02, -∞- B 、(][]1,02, -∞- C 、(][]10,12, -∞- D 、[)[]10,10,2 -12、将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A 、12种B 、24种C 、36种D 、48种二、填空题(每小题4分,共16分)13、用平面α截半径为R 的球,如果球心到平面α的距离为2R ,那么截得小圆的面积与球的表面积的比值为 .14、函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 . 15、已知函数)(x f y =是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g .16、设P 是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解答题(6道题,共76分)17、(12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档